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Abstract. In this paper, we address the problem of recognizing degra-
dation images that are suffering from high blur or low-resolution. We pro-
pose a novel degradation aware scene text recognizer with a pluggable
super-resolution unit (PlugNet) to recognize low-quality scene text to
solve this task from the feature-level. The whole networks can be trained
end-to-end with a pluggable super-resolution unit (PSU) and the PSU
will be removed after training so that it brings no extra computation. The
PSU aims to obtain a more robust feature representation for recognizing
low-quality text images. Moreover, to further improve the feature qual-
ity, we introduce two types of feature enhancement strategies: Feature
Squeeze Module (FSM) which aims to reduce the loss of spatial acuity
and Feature Enhance Module (FEM) which combines the feature maps
from low to high to provide diversity semantics. As a consequence, the
PlugNet achieves state-of-the-art performance on various widely used
text recognition benchmarks like IIIT5K, SVT, SVTP, ICDAR15 and
etc.
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1 Introduction

Scene text recognition, where the task is aiming to recognize the text in the scene
images, is a long-standing computer vision issue that could be widely used in the
majority of applications like driverless vehicles, product recognition, handwrit-
ing recognition, and visual recognition. Different from the Optical Character
Recognition (OCR) which has been well-solved before, scene text recognition
is still a challenging task owing to the variable scene conditions as occlusion,
illumination, curvature distortions, perspective, etc.
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Fig. 1. (a)Low-quality images that are suffering from low-resolution, blur or shake will
make a great challenge for text recognition. (b)Two types of strategies to solve the
degrade images: the image-level solution and feature-level solution.

Over recent years, inspired by the practical and research value, scene tex-
t recognition attracts growing attention [33,1,45,42,18]. We have witnessed the
great improvement in this area due to the powerful feature extractor like deep
convolution networks like Resnet [10] and more specific methods as Aster [33].
State-of-the-art scene text recognizers nowadays are base on two types of cate-
gories: the bottom-up approaches that recognize the text by each character and
top-down approaches that recognize the text by the whole image. However, both
of the categories are facing a condition that using the lexicon or not will make
a great gap in the recognition result. Part of the above problem is caused by
the low-quality images which are suffering the noising, blurred or low-resolution
as shown in Fig. 1 (a). Due to the lack of sufficient details, those images easily
cause the wrong result.

Generally, when facing low-quality images in other computer vision tasks,
previous works prefer to solve this problem from the image-level. Embedding a
super-resolution module in the ordinary model seems like a paradigm [3]. Follow-
ing this trend, TextSR[39] training an ESRGAN][40]-Aster recognition network.
Unfortunately, although this method shows better visual quality than original
images, it improves limited in the recognition result. Especially when consid-
ers its efficiency, this structure is far from satisfied. For example, we train the
ESRGAN-Aster with the Synth90K dataset [11] with a single NVIDIA 2080Ti,
it needs nearly 30 days each epoch.

Motivated by this condition, we attempt to explore a more reasonable way
to solve low-quality images. Different from general methods, we attempt to solve
those degradation images from the feature-level as shown in Fig. 1 (b). Base
on this idea, we proposed an end-to-end trainable scene text recognizer together
with a pluggable super-resolution unit (PlugNet) for auxiliary training. As shown
in Fig. 2, the PlugNet can be divided into four parts: rectification network, CNN
backbone, recognition network, and pluggable super-resolution unit. Specifically,
the PlugNet only takes a light-weight pluggable super-resolution unit (PSU)
that constructed by upsampling layers and few convolution layers to improve
the feature quality in the training stage. During the inference stage, the PSU
will be removed which means no extra computation.
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As the most popular text recognition framework, the CNN-LSTM shows a
great performance nowadays. Owing to the special structure, the input for LST-
M should be a one-dimension vector. So, in most the previous works tend to use
deep CNN to squeeze the height-level features maps to generate one-dimension
vectors. However, CNN shows limited performance to cope with spatial-level is-
sues like rotation[14], shift[16]. Due to the loss of spatial acuity makes it difficult
for both the recognition part and the rectified part to get effective learning.
Therefore, in our work, we proposed a Feature Squeeze Module (FSM) trying to
maintain more spatial information in the final one-dimension vectors. Specifical-
ly, we remove the down-sampling convolutional layers in the last three blocks to
maintain the feature resolution and use a 1 x 1 convolution layer together with
a reshape layer to generate the same one-dimension vectors straightly from the
feature maps. Surprisingly, by adding more spatial information into the features,
recognition performance improved significantly in all of the datasets. Addition-
ally, maintain more feature-resolution helps the PSU could easily be attached to
the CNN backbone.

Affected by the above observation and Feature Pyramid Networks [21], we
suppose those low-level semantics will also enhance the final sharing feature
maps. We designed a Feature Enhance Module (FEM) to further combine those
semantics from low to high levels.

The proposed PlugNet is compared against several state-of-the-art scene
text recognition method (as [12,25,19]) on various challenging text recognition
datasets like SVT [37] ICDAR2015 [15], SVTP [29] and etc, to demonstrate its
significant advantages.

In summary, the main contributions of this paper are as follows:

— We proposed an end-to-end trainable scene text recognizer (PlugNet), which
combined with a light-weight pluggable super-resolution unit to handle degra-
dation images from the feature-level with no extra computation during the
inference stage.

— Observed the importance of feature resolution in the text recognition issue,
we introduced a feature squeeze module (FSM) that offers a better way to
connect the CNN-based backbone and the LSTM-based recognition model. It
could also be used as a fresh baseline for top-down text recognition method.

— A feature enhance module is designed to combine those semantics from low
to high levels which further strengthen the sharing feature maps.

— Experimental results have demonstrated the effectiveness of the proposed
PlugNet, PlugNet achieves the state-of-the-art performance on several wildly-
used text recognition benchmarks.

2 Related works

Text recognition has made great progress in the last decades. Most of the text
recognition methods can be divided into two categories: The bottom-up ap-
proaches which recognize the text by each character and top-down approaches
which recognize the text by the whole image.



4 Y. Mou et al.

Traditional text recognition methods tend to use the bottom-up approach,
in which the characters will be detected firstly by hand-crafted features and
then follow with some subsequent steps like non-text component filtering, text
line construction, and text line verification. These methods depend heavily on
the result of character detection which using sliding-window [38,37], connected
components [28] and Hough voting [13]. These methods often extract low-level
hand-crafted features like HOG [43], SWT[44] to separate characters and back-
grounds. Although those methods or relating occupy the major status before the
deep learning era, it is still a challenge for text recognizers to reach satisfactory
performance in the wild. As the most powerful extractor and classifier, we have
witnessed lots of deep neural network-based frameworks further improved the
performance. Bissacco et al. [1] utilizes the fully connected network with 5 hid-
den layers to extract the characters’ features, then using the n-gram language

model to recognition. Jaderberg et al. [12] introduced a CNN-based method to
solve unconstrained. Charnet [22] trained a character-aware neural network for
distorted scene text. Liao et al. [19] combined the text recognition methods with

a semantic segmentation network for recognizing the text of arbitrary shapes.

On the other hand, the top-down approach has an advantage in character
localization for using the whole image instead of individual characters. Jaderberg
et al. [13] regards each word as an object and converts the text recognition to
classification by training a classifier with a large number of classes. Inspired
by speech recognition and Natural Language Processing [20,8], recurrent neural
networks (RNN) are widely used in recent text recognition models in recent
years. These methods solved this problem by converting the text recognition to
sequence recognition which has high similarity. Su et al. [34] extracts the HOG
features of the word and generates the character sequence with RNN. Busta et
al. and Shi et al. [5,31] introduces an end to end model paradigm which using
CNN for extracted the feature maps and using RNN to the decoder the feature
maps. In recent years, the attention mechanism has inspired several works like
Focus Attention[6], Moran[25].

Also, some special problems in text recognition have been proposed and
solved well in the past three years. Aster, ESIR and Liao et al. [33,45,19] de-
signed a rectification network to transform those irregular text. Liu et al. [23]
proposed a data augmentation method to improve image feature learning for
scene text recognition.

3 Approach

3.1 Overall Framework

The overall framework of our PlugNet is shown in Fig. 2. In order to solve the blur
and low-resolution cases, we adopt the pluggable super-resolution unit (PSU) for
auxiliary training to assist the recognition network. Hence, our PlugNet can be
divided into four parts: rectification network, sharing CNN backbone, PSU, and
recognition part.
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Fig. 2. Overall framework of our PlugNet. The pipeline of our method includes four
parts: rectification network, sharing CNN backbone, recognition network and pluggable

super-resolution unit.

Rectification Network: The rectification network aims to rectify those
irregular scene text. Our method employs the same strategy as Aster[33], which
shows robust performance in irregular scene text recognition. The Rectification
Network is composed of three parts: localization network, grid generator, and
sampler. Localization network using a CNN-based network to localize the borders
of text in the input image by n control points. The grid generator will utilize
the localization result and compute the transformation matrix for each pixel
by Thin-Plate-Spline (TPS). Finally, the sampler is attached to generate the
rectified images.

Sharing CNN Backbone: As shown in Fig. 2, the sharing CNN backbone
employed the Resnet-based structure to extract the feature maps. In this work,
we keep a similar structure as Aster does. We describe the detailed structure in
Table. 1. Compared with the Aster, for achieving better expandability and retain
more spatial information, we removed the down-sampling layers in last three
CNN blocks so that the feature maps after the backbone have the dimension as
% X % x C where the W, H means the width and height of input image.

Recognition Part: Following the success of previous works like ESIR, Aster,
we employed the LSTM-based method for text recognition for its advantage per-
formance in solving whole sequences. The structure of the recognition part is
shown in Fig. 2 (d)(e). Those features after the sharing CNN backbone will be
used to the Feature Squeeze Module to generate the one-dimension vectors. Af-
ter that, we employed a sequence-to-sequence model with attention mechanism
which composed by two-layer Bidirectional LSTM (BiLSTM) with 256 hidden
unit as an encoder and a two-layer attentional LSTM as a decoder. In detail,
suppose the input sequence Vi whose shape can be denoted as W x (H x C), a
two-layer BILSTM is attached to capture the long-range dependencies in both
directions, obtaining a robust new sequence Hy of the same length as V;. Next,
a two-layer attentional LSTM is adopted to translate sequence H, to a out-
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Table 1. Structure of CNN Blocks in Fig. 2. Herein, the ’s’ means the stride of the
first convolutional layer of each block.

Layers | Output size Configurations
Block 0| 32 x 100 3 X 3conv,s =1
1 x 1co7w,32-
Block 1 16 x 50 X 3,§=2
3 X 3conv, 32
1 x 1c0m)764-
Block 2 8 x 25 X 3,5=2
3 X 3conv, 64

1 x lconw, 128]
Block 3 8 X 25 x3,s=1
3 X 3conv, 128

(1 x lconw, 256 |
Block 4 8 x 25 x3,s=1
3 X 3conv, 256

[1 x 1conwv, 512]
Block 5 8 x 25 x3,s=1
3 x 3conv, 512

put sequence Y;. Herein, to confirm the length of sequences, an end-of-sequence
symbol (EOS) will be attached as a rest.

Pluggable SR Unit: Benefit from the FSM, the sharing CNN backbone
could keep the image resolution. It helps the PSU which based-on the image
super-resolution method can easily be attached in the whole network. In our
work, the PSU is used to build the super-resolution images from the high-level
features. This part will be detailed in Sec 3.2.

3.2 Pluggable Super-resolution Unit

As we have mentioned before, the PSU is designed to solve the degradation
images from the feature level. Most of the recognition methods tend to embed
the super-resolution network in the original recognition network. Limited by the
efficiency, the SR-Recognition framework that solves those degradation images
from the image-level shows an obvious bottleneck. Inspired by the success of
multi-task learning, we utilized the PSU to help the sharing CNN backbone
better represent the features of degradation images. We employed the RCAN
[17] structure to build the PSU. As shown in Fig. 2 (c), we use two Residual
Channel Attention Block(RCAB) to construct each Residual Group(RG). Then,
two RGs are used to build the final PSU. After training, the PSU will be removed
which means no extra computation in the inference stage.
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3.3 Feature Enhancement

Feature Squeeze Module: As shown in Fig. 2 (d), we replaced those down-
sampling convolution layers by the Feature Squeeze Module (FSM) to maintain
more resolution information in the final one-dimension vectors. FSM only con-
tains a 1 x 1 convolutional layer for the channel reduction and a reshape layer
to generate the one-dimension vectors from the feature maps which means FSM
adds few extra computations when compared to the baseline method. Based on
the FSM, not only the CNN-LSTM text recognition framework has improved a
lot, but also the PSU could benefit from high-resolution features which influenced
a lot in the super-resolution issue.

Feature Enhance Module: Affected by the Feature Pyramid Networks
[21] and the success of FSM, to further combine those semantics from low to
high levels, we designed a Feature Enhance Module as shown in Fig. 2 (b). For
the first two blocks, we use a down-sampling layer to transform their shape to
W H

1 X 77~ Then all of the features maps from low to high will be concatenated as

the enhanced feature.

3.4 Training and Inference

Training Dataset Our model is trained on the Synth90K (90k) [11] and Syn-
thText (ST) [9]. The Synth90K includes 9 million synthetic text images gener-
ated from 90k words lexicon. Similarly, the synthetic is also synthetic dataset
(SynthText). It is generated for text detection research, so the images should
be cropped to a single text. We cropped 4 million text images for training our
model which keeps the same size as [15] but less than [33] who cropped 7 million
text images. When training our model, we do not separate the train data and
test data, all images in these two datasets are used for training.

Training Super-resolution Unit Owing to the text recognition dataset has
no separation of high-resolution and low-resolution images, training the super-
resolution is not an easy task. To achieve this task, we adopted two strategies
as Gaussian Blur and down-up sampling to generate low-quality images. Herein,
we set a probability parameter a to ensure randomness.

fd—u(fgau(l))a if pr >=a;ps >=«

fgau(1), if p1 >=a;p2 <«

Iblur = . (1)
fa—u(1), ifp1 <aypr >=a
1, if pr <a;pr <«

Herein, the fgq., refers to the Gaussian Blur and f;_, refers to the down-up
sampling. The random numbers p1,ps € [0, 1] and we set « = 0.5.

Nevertheless, another challenge exists in training the super-resolution branch.
For the Rectification Network, it will change distribution of each pixel which
makes a huge difference between the output image and input image. Following
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the original super-resolution methods and taking the Rectification Network into
consideration, the loss Lg, can be described as:

Lsr - floss(frn(-[)vfblu'r‘(f'r‘n(-[))) (2)

where the fj,ss means loss function of super-resolution, the f,, means the Rec-
tification Network, and I refers to the input image and fp refers to the blur
function as stated before. But, following this equation will cause a tricky problem.
The four(frn(I)) means the data generation strategies should take effect after
the Rectification Network which means the input images are high-resolution.
Therefore, we use the fr,(forur(I)) to approximate fypr(frn(I)) as:

Lsr - floss(frn(-[)vfrn(fbluT(I))) (3)

In this way, the Rectification Network can not only learn about solving low-
quality images but also simplify the whole networks thus making it easy to
achieve.

Loss Functions Following the success of multi-task learning, recognition loss
and super-resolution loss are combined to train our model end-to-end as:

L= Lyec+ ALy (4)

where L,.. denotes recognition loss and L, denotes super-resolution loss. In
order to balance the weight in two different tasks and keep the recognition per-
formance, we add a parameter A. In our method, we set the A = 0.01.

In most of the time, the recognition problem could formulated as a classifi-

cation problem|[33,11], so we use a cross-entropy loss to describe Ly.:
| MN
Lyee = TN ; ; Yi,j log(si,j) (5)

where ¢ is the index of the sample in a batch and j is the index of the number
in the label. In addition that, p is the ground truth label, s is the recognition
result.

For the super-resolution branch, as has mentioned in [20] that L1 loss provides
better convergence than L2 loss, we select L1 loss to train our network. So, for
each pixel (7, ) in output O, the Ly, is employed as:

L A
Lor = g 22 221107 = 1 (©)

Herein, the I means the ground truth of input image, W and H refers to the
width and height of the input image.
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4 Experiment

4.1 Datasets

We evaluate PlugNet over 7 widely used benchmarks as IIIT5K, ICDAR2003,
ICDAR2013, ICDAR2015, SVTP, and CUTES80 to demonstrate its ability. A-
mong these 7 datasets, SVT and SVTP are highly blurred and low-resolution
which seems more typical. Herein, we evaluate PlugNet without any lexicon to
show its robust performance.

ITIT5K[27] includes 3000 test images that are cropped from the website.
Each image has a 50-word lexicon and a 1000-word lexicon in this dataset.

Street View Text (SVT)[37] contains 647 images, which are collected from
the Google Street View. Many images in this dataset are suffering from noise,
blur or having very low resolutions. Each image has a 50-word lexicon attached.

ICDAR 2003 (IC03)[24] contains 860 images after selection. Following
[37], we discarded images that contain nonalphanumeric characters or have less
than three characters.

ICDAR 2013 (IC13)[16] contains 1015 cropped text images. Most of text
images inherit from IC03 and provide no lexicon.

ICDAR 2015 (IC15)[15] contains 2077 cropped text images collected by
Google Glasses. IC15 is one of the most challenge datasets in text recognition in
recent years. Same as IC13, no lexicon is attached to this dataset.

SVT-Perspective (SVT-P)[29] contains 645 cropped images from side-
view angle snapshots in Google Street View. This dataset is not only suffering
from noise, blur or having very low resolutions as SVT but also suffering from
perspective distorted.

CUTESO[30] contains 288 images cropped from the 80 high-resolution scene
text images. This dataset focuses on the curved text and provides no lexicon.

4.2 Implementation Details

Our method implemented in Pytorch and trained end-to-end on the Synth90k
and SynthText. The training images are all from these two datasets without
any data augmentation or selection. The model is trained by batches of 128
examples. Each batch includes 64 samples from Synth90k and 64 samples from
SynthText. During the training, the learning rate is initiated from the 1 and is
decayed to 0.1 and 0.01 respectively after 0.6M and 0.8M iterations. We adopted
the ADADELTA as an optimizer to minimize the objective function. In addition,
all the experiments and training are accomplished on 2 NVIDIA GeForce GTX
2080Ti 11GB GPU.

Compared to the baseline method, both FSM and FEM needs very few com-
putations when compared to the whole network. Therefore, in the inference stage,
PSU is removing, the speed of PlugNet is 22ms per image when the test batch
size is 1 which is a little higher than the Aster(baseline method) as 20ms. In the
training stage, PSU is adding. The speed of the Plugnet is 0.97s per batch(128),
and the Aster is 0.63s per batch(128). The training process could be accelerated
by a larger batch size.
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Table 2. Scene text recognition performance among various widely used benchmarks
under different feature resolutions.

Resolution Data SVT SVTP TIIT5K 1C03 1C13 I1C15 CUTES0
1x25 90K 85.2 76.1 80.7 91.8 89.3 69.3 66.3
2x25 90K 87.011.8 78.112.0 82.712.0 92.311.5 89.440.1 69.310 68.442.1
4%25 90K 87.910.9 79.5¢1.4 82.2y0.5 92.710.4 89.8410.4 T1.442.1 69.110.7
8%25 90K 89.0101  82.0125 853131  94.3n  91.0ms  73.6150 69.1p

Fig. 3. Visualization of rectification results under different feature resolutions. Please
zoom in to see the distribution of control points..

4.3 Ablation Study

Effectiveness of Feture Squeeze Module: The FSM is designed to offer
better one-dimension vectors to connect the CNN part and the LSTM part. To
further analyze the influence of the CNN feature resolution in the text recogni-
tion issue, we trained four networks with different CNN feature resolution under
the 90K dataset. For better comparison, we change the number of the channel of
the 1 x 1 convolutional layer to keep the output of FSM has the same dimension
as 25 x 1024.

Table. 2 shows the result of four different networks in seven widely used text
recognition datasets. With the broadening of the feature-resolution, the recogni-
tion accuracy gets increased in all of the datasets. It has already illustrated the
importance of spatial information in text recognition tasks.

Additionally, we visualized the rectified results of the above four networks in
Fig. 3. Clearly, decrease the loss spatial acuity helps the Rectification Network
shows a much better location result of control points which helps the recognizer
could overcome tougher irregular cases.

Effectiveness of Feature Enhance Module: As stated before, to obtain
much robust feature maps for the recognition network, we designed a Feature
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Table 3. Ablation study of PlugNet on several typical datasets. Herein, the SR-Plugnet
is training following the SR-Recognition framework without PSU.

Methods FSM FEM Data_Aug ESRGAN PSU SVT SVTP 1IC15 CUTES0

Baseline(R) [33] X X X X X 89.5 78.5 76.1 79.5
PlugNet(R) v X X X X 90~OT0~5 80.8T2,3 7842‘?2,1 82.6T3,1
PlugNet(R) v v X X X 90~6Tl).6 81.6¢0,g 8042@,0 83.711,1

PlugNet oo/ v X X 89808 822106 798104 81.621
SR-PlugNet oo/ v v X 90.6j08 80.8;14 794504 826710
PlugNet v/ v v X v 92.3117 84.3135 82.2125 85.0124
R -
SCAS

Groud Truth school arts for the
Aster scrool ar_ row till
PlugNet school arts for the

Fig. 4. Several recognition results produced by our PlugNet and Baseline method Aster
33] in low-quality text images of the SVT dataset.

Enhance Module (FEM) that aims to combine the feature maps from low to
high to provide diversity semantics.

To analyze the influence of FEM, we training the FSM enhanced model with
and without FEM. Herein, we chose four typical datasets for evaluation: SVT
that including many highly-blurred images, SVTP that suffering from blur and
perspective, CUTES80 that contains many irregular cases, and the most widely
used challenging dataset-IC15. The experimental result in Table 3 has illustrated
the efficiency of FEM. We observe that adding the FEM, all of the results in
these four datasets get improved as 0.6%, 0.8%, 2%, 1.1% in final recognition
accuracy when compared to the model without FEM. It indicates that the feature
enhancement module has improved feature quality by low-level semantics which
in turn improved the recognition performance.

Effectiveness of Pluggable Super-Resolution Unit: So far, recognizing
those scene texts with highly-blurred and low-resolution remains a challenging
task, thus we employed the super-resolution method to better solve this problem.

As shown in Table 3, we conduct a set of ablation experiments by adding the
PSU or not. Owing to PSU, we use the generated data rather than the raw data
for training. Hence, to better compare the influence of PSU, we train the network
without PSU both in raw data and generated data. The results show that the
recognizer with PSU produced a much better performance in solving low-quality
scene text images. Coupled with PSU, the recognition accuracy in SVT, SVTP,
IC15 and CUTESO has improved from 89.8%, 82.2%, 79.8%, 81.6% to 92.3%,
84.3%, 82.6%, 85.0%. In the visual level, we chose the recognition results of four
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Fig. 5. Results of PlugNet recognition accuracy under different parameter A value on
various datasets.
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Fig. 6. Visualizing results of PlugNet under different parameter A value.

low-quality images in the SVT dataset in Fig.4 to show the improvement of our
method when compared to the baseline method.

Herein, to make a comparison between the PSU method and general super-
resolution combine with the recognizer method, we trained an end-to-end SR-
Plugnet (no PSU) model under the 90K and ST datasets. The SR-Plugnet(no
PSU) using the ESRGAN for the super-resolution part and Plugnet (no PSU) for
the recognition part. Obviously, as shown in Table 3, the SR-Plugnet shows limit-
ed improvement in recognition results, which is a similar case to the TextSR[39].
Of course, we think SR-Plugnet may reach a higher performance when using a
better training strategy, more proper parameters or adding more effective data.
Like the TextSR using extra selected data for training to reach an even better
performance. But consider the structure and efficiency, PSU is obviously a better
choice to solve low-quality images.Finally, about the effect on the sharing feature
maps will be discussed in the Sec. 4.4, in which we set different weights of PSU
to show the changes of feature gradually.

4.4 Experiments on the Parameter A\

Proper parameters are necessary for training a multi-task network. In this work,
we use the parameter A in the formula 4 to balance the recognition branch and
the super-resolution branch. To analyze the influence of the parameter A, we train
the model with the A from 0.0001 to 0.5. We extensively evaluate these models
on the challenging SVT, SVTP, ICDAR2015, and CUTES0 to demonstrate the

influence of \.
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Table 4. Scene text recognition performance of PlugNet among various widely used
benchmarks. The methods marked with * indicate they use the character-level anno-
tations that will highly improve the performance in irregular text recognition datasets
like CUTESO.

Methods Data IIIT5K  SVT 1C03 IC13 IC15 SVTP  CUTES0
Jaderberg et al.[12] 90K - 7.7 89.6 81.8 - - -
Jaderberg et al.[13] 90K - 80.7 93.1 90.8 - - -
Shi et al.[32] 90K 81.9 81.9 90.1 88.6 - 71.8 59.2
Lee et al.[17] 90K 78.4 80.7 88.7 90.0 - - -
Wang et al.[30] 90K 80.8 81.5 91.2 - - - -
Cheng et al.[0] 90K, ST 87.4 85.9 94.2 93.3 70.6 - -
Cheng et al.[7] 90K, ST 87.0 82.8 91.5 - 68.2 73.0 76.8
Liu et al.[22] 90K, ST 92.0 85.5 92.0 91.1 74.2 78.9 -
Bai et al.[2] 90K, ST 88.3 87.5 94.6 94.4 73.9 - -
Liu et al.[23] 90K, ST 89.4 87.1 94.7 94.0 - 73.9 62.5
Luo et al.[25] 90K, ST 91.2 88.3 95.0 92.4 68.8 76.1 77.4
Liao et al.[19] 90K, ST 91.9 86.4 - 91.5 - - 79.9
Zhan et al.[17] 90K, ST 93.3 90.2 - 91.3 76.9 79.6 83.3
Yang et al.[12] 90K, ST* 94.4 88.9 95.0 93.9 78.7 80.8 87.5
Wan et al.[35] 90K, ST* 93.9 90.1 - 92.9 79.4 84.3 85.2
Liao et al. -Seg[14] 90K 94.0 87.2 93.1 92.3 73.8 76.3 82.6
Liao et al. -SAM][18§] 90K, ST* 93.9 90.6 95.2 95.3 77.3 82.2 87.8
Aster(Baseline)[33] 90K, ST 93.4 89.5 94.5 91.8 76.1 78.5 79.5
TextSR(SR-Aster)[39] 90K, ST 92.5 87.2 93.2 91.3 75.6 7.4 78.9
Ours 90K, ST 94.4 92.3 95.7 95.0 82.2 84.3 85.0

In Fig. 5, we set a baseline as training the whole network without the PSU.
Obviously, adding the PSU improves the recognition performance in all of the
datasets which also demonstrates the efficiency of PSU. From Fig. 5 (a)-(d), we
can observe that the recognition accuracy improves monotonically when the A is
smaller than 0.01. After that, with the increase of the , the recognition accuracy
decreased and will even have a negative impact. Obviously, 0.01 seems like a
best choice of A in most of the situation.

Based on this observation, we visualized the output feature maps of the
sharing CNN backbone and the output of PSU in Fig. 6 to analyze the influence
caused by the PSU. To visualize the feature maps, we calculate the average
among the channels to generate one-channel images to represent the feature
result. Since the Rectification Network will change the pixel distribution of each
image, we removed this part when visualizing for better comparison. It is clear
that by the increase of A, the super-resolution result shows a growing visual
quality. However, in the feature maps, there exist two types of effects: due to
the increase of A, the feature suffers much less noising, blur which helps the
recognition part. Meanwhile, the increase of A, let the sharing CNN backbone
focus more on low-level images to rebuild the super-resolution images which
makes a negative impact on the text recognition. These two types of effects
make the PlugNet be sensitive to the A in this work.
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4.5 Comparison with State of the Art

We also compare our PlugNet with previous state-of-the-art text recognition
methods on various widely used benchmarks to indicate the superiority of our
method. Table 4 summarizes the recognition result among 7 widely used datasets
including IIIT5K, SVT, 1C03, IC13, IC15, SVTP, and CUTES0. Herein, we
evaluated all the datasets without lexicon.

As Table 4 shows, our PlugNet outperforms all the previous state-of-the-art
performance in 6 datasets and achieves competitive accuracy to the state-of-the-
art techniques in the remain CUTESO datasets. Especially in two low-quality
text datasets as SVT and SVTP, our method shows a much robust performance.
The CUTES0 dataset focuses on the high-resolution curved text images, so those
methods that using the character level annotations to training the rectification
part will perform much better.

Our method shows a significant improvement in most of the cases by using the
combination of FSM, FEM and PSU. The PSU, FSM, and FEM are designed
to obtaining more robust feature maps with high efficiency and performance.
So, this constructure may also be useful for solving low-quality images in other
computer vision tasks.

5 Conclusion

In this paper, we proposed an end-to-end trainable degradation aware scene text
recognizer called PlugNet in short. The proposed method combined the pluggable
super-resolution unit (PSU) to solve the low-quality text recognition from the
feature-level. It only takes acceptable extra computation in the training stage
and no additional computation in the inference stage. With PSU our method
shows a significant improvement in a low-quality image feature representation
that in turn improves the recognition accuracy. Moreover, in this paper, we
further analyzed the important role of feature resolution in the text recognition
issue and proposed the FSM for a better connection between CNN and LSTM
for top-down recognition framework. Also, the FEM is attached to enhanced the
backbone features by introducing those low-level semantics. Experiments show
that FSM and FEM also improved performance markedly. Finally, our PlugNet
achieves state-of-the-art performance on various widely used text recognition
benchmark datasets, especially on SVT and SVTP which include many low-
quality text images.
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