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Abstract. Decision-based black-box adversarial attacks (decision-based
attack) pose a severe threat to current deep neural networks, as they only
need the predicted label of the target model to craft adversarial exam-
ples. However, existing decision-based attacks perform poorly on the l∞
setting and the required enormous queries cast a shadow over the prac-
ticality. In this paper, we show that just randomly flipping the signs of
a small number of entries in adversarial perturbations can significantly
boost the attack performance. We name this simple and highly efficient
decision-based l∞ attack as Sign Flip Attack. Extensive experiments on
CIFAR-10 and ImageNet show that the proposed method outperform-
s existing decision-based attacks by large margins and can serve as a
strong baseline to evaluate the robustness of defensive models. We fur-
ther demonstrate the applicability of the proposed method on real-world
systems.
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1 Introduction

Deep neural networks are susceptible to adversarial examples [6, 48, 51]. In terms
of image classification, an imperceptible adversarial perturbation can alter the
prediction of a well-trained model to any desired class [9, 44]. The effectiveness
of these maliciously crafted perturbations has been further demonstrated in the
physical world [4, 18, 30], leading to growing concerns about the security of widely
deployed applications based on deep neural networks, especially in sensitive ar-
eas, e.g., financial service, autonomous driving, and face verification. Developing
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Fig. 1. Examples of attacking the face verification API in Tencent AI Open Platform.
Q denotes the query number. D denotes the l∞ distance towards the original image.
True means the API classifies the two images as the same identity, and false means not
the same. Best viewed in color with zoom in.

adversarial attacks under various settings provides great insights to understand
and resistant the vulnerability of deep neural networks.

A broad range of existing works on adversarial attacks [21, 37] mainly focus
on the white-box setting, where the adversary is capable to access all the infor-
mation about the target model. While white-box attacks serve as an important
role to evaluate the robustness, nearly all the real-world models are not com-
pletely exposed to the adversary. Typically, at least the model structures and
internal weights are concealed. We refer to this case as the black-box setting. One
approach to make black-box attacks feasible is to utilize the transferability of
adversarial examples [33, 34, 38, 39, 46]. Whereas, these transfer-based black-box
attacks need a substitute model and suffer from a low attack success rate when
conducting targeted attacks. Instead of relying on the substitute model, some
methods successfully conduct both untargeted and targeted attacks via access-
ing the confidence scores or losses of the target model [11, 27, 28, 36]. Despite the
efficiency of these score-based black-box attacks, their requirements are still too
hard in some real-world cases. Perhaps the most practical setting is that only the
final decision (top-1 label) can be observed, noted as the decision-based black-
box setting [7]. Even under this rather restrictive setting, deep neural networks
are extremely vulnerable [7, 10, 12, 27]. However, the considerable query numbers
required by existing decision-based attacks diminish their applicability, not to
mention the poor performance on undefended and weak defensive models under
the l∞ setting. Designing a versatile and efficient decision-based l∞ adversarial
attack is still an open problem.
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In this paper, we focus on the challenging decision-based black-box l∞ setting
and consider deep neural networks used for image classification as the models
being attacked. Inspired by the cruciality of the sign vector of adversarial pertur-
bations, we propose a simple and highly efficient attack method and dub Sign
Flip Attack. Our method does not need to estimate gradients and works in
an iterative manner. In each iteration, we first reduce the l∞ distance by pro-
jection, then randomly flip the signs of partial entries in the current adversarial
perturbation. The core of our method is the novel random sign flip step, which
iteratively adjusts the sign vector of the current perturbation to get closer to a
good one. Extensive experiments on two standard datasets CIFAR-10 [29] and
ImageNet [15] demonstrate the superiority of our method. Results on 7 defen-
sive models indicate that our method can serve as a strong baseline to evaluate
the robustness. We further apply our method on real-world systems to show its
practical applicability. Examples of attacking a face verification API are shown
in Fig. 1.

2 Related Work

A variety of white-box attacks [9, 19, 21, 37, 40] have been developed since the
vulnerability of deep neural networks discovered by Szegedy et al. [44]. The
gradient-based nature of powerful white-box attacks is leveraged by quite a few
defenses. However, Athalye et al. [3] has shown that most of them can be de-
feated. Defenses based on robust optimization [32, 35, 53] are the most effective,
while still perform limited. In what follows, we will concentrate on the recent
advances of black-box attacks.

Transfer-based black-box attacks. One intriguing property of adversarial
examples is their good transferability [44]. Papernot et al. [39, 40] constructed a
local surrogate model by querying the target model, then used the resulting one
to generate adversarial examples. Liu et al. [34] showed that adversarial exam-
ples crafted on an ensemble of models have better transferability. Dong et al. [16]
integrated momentum into the iterative white-box attacks and achieved a superi-
or black-box attack performance. However, transfer-based black-box attacks are
not effective to generate targeted adversarial examples [11] and perform poorly
on Ensemble Adversarial Training [45]. Besides, it is arduous to find or train an
appropriate substitute model for a real-world deployed application.

Score-based black-box attacks. In the score-based black-box setting, the
adversary can obtain the corresponding predicted probability or loss by querying
the target model. Chen et al. [11] applied zeroth order optimization to craft ad-
versarial examples. A similar technique was used in [5], different from [11] they
used the estimated gradient to perform the fast gradient sign method (FGSM)
[21] and its iterative variant [30]. Ilyas et al. [27] used the natural evolutionary
strategy (NES) for gradient estimation, then performed the projected gradient
descent (PGD) [35]. The method can be further improved by exploiting two kind-
s of gradient priors [28]. Instead of gradient approximation, some attacks work
in a gradient-free manner [1, 2, 22, 36]. Recently, several works [14, 20, 23, 31, 42]
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consider additional models to improve query efficiency. Albeit effective, the ap-
plicability of these attacks is still restricted by their requirement of accessing the
continuous outputs of the target model.

Decision-based black-box attacks. Brendel et al. [7] proposed the first
effective decision-based black-box attack on deep neural networks, named the
Boundary Attack, which starts from an adversarial point and performs random
walks on the decision boundary while keeping adversarial. Ilyas et al. [27] extend-
ed their score-based method to this setting by estimating a proxy score. Cheng
et al. [12] reformulated the original problem to a continuous version and applied
zeroth order optimization. In [13], the same continuous problem was considered,
however it computes the sign of the directional derivative instead of the magni-
tude, which leads to fast convergences. Recently, Chen et al. [10] proposed an
unbiased estimate of the gradient direction at the decision boundary to improve
the Boundary Attack. In each iteration, the adversarial example first approach-
es the boundary via a binary search, then moves along the estimated gradient
direction to deviate from the decision boundary. In [17], an evolutionary attack
method was proposed against face recognition systems. These methods generally
require enormous queries and have poor performance under the l∞ setting.

3 Approach

In this section, we first introduce preliminaries about adversarial examples and
specify the threat model. Then, we present the proposed decision-based black-
box l∞ adversarial attack, which we dub Sign Flip Attack (SFA).

3.1 Preliminaries

We consider an image classifier f : Rd → Rk based on deep neural networks
as the target model. For a given image x ∈ [0, 1]d and its corresponding true
label y, f(x)i denotes the probability that x belongs to class i, and c(x) =
arg maxi∈{1,...,k} f(x)i refers to the predicted label. We only consider images
that are correctly classified. The goal of the adversary is to find an adversarial
perturbation δ ∈ Rd such that c(x+δ) 6= y (untargeted attacks) or c(x+δ) = t
(t 6= y, targeted attacks) , and ‖δ‖∞ ≤ ε. Here, ε refers to the allowed maximum
perturbation. We choose l∞ distance to depict the perceptual similarity between
the natural and adversarial images.

Suppose we have a suitable loss function L
(
f(x), y

)
, e.g., cross entropy loss,

then we can formulate the task of generating untargeted adversarial examples
as a constrained optimization problem:

max
δ

L
(
f(x+ δ), y

)
s.t. ‖δ‖∞ ≤ ε. (1)

The constrained problem in Eq. 1 can be efficiently optimized by gradient-based
methods under the white-box setting, such as PGD, which is an iterative method
using the following update:

xn = ΠB∞(x,ε)

(
xn−1 + ηsgn(∇xL(f(xn−1), y))

)
. (2)
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Here, B∞(x, ε) refers to the l∞ ball around x with radius ε and Π is the pro-
jection operator. Specifically, in this case, the projection is an element-wise clip:(

ΠB∞(x,ε)(x
′)
)
i

= min{max{xi − ε,x′i},xi + ε}. (3)

3.2 Threat Models

We consider adversarial attacks under the decision-based black-box setting, with
l∞ distance as the similarity constraint. That is, the adversary has no knowledge
about the network architecture, internal weights, intermediate outputs or the
predicted probability f(·), and can solely obtain the final decision c(·) of the
target model by querying. As the value of f(·) can not be directly obtained, we
consider the following constrained problem:

min
δ
‖δ‖∞ s.t. φ(x+ δ) = 1. (4)

Here, φ : Rd → {0, 1} is an indicator function, which takes 1 if the adversarial
constraint is satisfied, that is, c(x+δ) 6= y in untargeted attacks and c(x+δ) = t
in targeted attacks. φ(x) can be computed by querying the target model. The
goal of the adversary is to find a successful adversarial perturbation in as few
queries as possible. Thus in practice, we set a maximum distortion ε. Once
‖δ‖∞ ≤ ε, we stop the attack and report the query number.

3.3 Sign Flip Attack

The basic logic of our method is simple. For an image-label pair {x, y}, we start
from a perturbation1 δ with a large l∞ norm such that φ(x + δ) = 1, then
iteratively reduce ‖δ‖∞ while keeping adversarial. Next, we will mainly discuss
the targeted version of the proposed method, and t is the target label. The
extension to the untargeted setting is straightforward.

In each iteration, we first add a random noise η to the current perturba-
tion δ, then project the new perturbation onto a smaller l∞ ball, which can be
formalized as:

η ∼ {−α, α}d, δp = ΠB∞(0,ε′−α)(δ + η). (5)

Here, ε′ = ‖δ‖∞ and 0 < α < ε′. δp is the generated perturbation after the
project step. α is an adjustable hyperparameter, which controls the shrinking
magnitude of ‖δ‖∞. Intuitively, the project step often leads to decreases in f(x+
δ)t and increases in f(x+δ)y, as the adversarial example gets closer to a natural
image classified with a high probability. In Fig. 2 (a), we plot the distribution of
the probability increments ∆pft = f(x + δp)t − f(x + δ)t and ∆pfy = f(x +
δp)y − f(x + δ)y, it shows that ∆pft is always negative and ∆pfy is always

1 Finding an initial perturbation is easy, any image which is from a different
class(untargeted attacks) or a specific class(targeted class) can be taken as an initial
adversarial example.
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Fig. 2. Distribution of the relative prob-
ability changes on the target and origi-
nal label. We perform targeted SFA to
100 images from ImageNet on DenseNet-
121. (a) the project step. (b) the random
sign flip step. Note, we only consider the
relative probability changes on successful
trails, i.e., φ(x+δp) = 1 and φ(x+δs) =
1. For comparison, the success rates for
the random sign flip step and the project
step are 24.2% and 49.3% respectively.
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Fig. 3. Relationship between the sign
match rate and the predicted probabil-
ity. The experiments are conducted on
1,000 images from ImageNet. δadv is an
ε = 0.031 l∞ adversarial perturbation
generated by 20-step PGD. δrand is ran-
domly selected from {−ε, ε}d. “original la-
bel”, “target label” and “not original la-
bel” denote f(x+ δrand)y, f(x+ δrand)t
and maxi 6=y f(x+ δrand)i, respectively.

positive. If f(x + δp)t is less than f(x + δp)y or any other entry in f(x + δp),
we reject δp to hold the adversarial constraint.

As the project step always reduces f(x+ δ)t and increases f(x+ δ)y, we ex-
pect to get a new perturbation using a single query, denoted by δs, which satisfies
the following properties: 1) if δs does not violate the adversarial constraint, it
should have a high probability to acquire a positive ∆sft and a negative ∆sfy; 2)
the l∞ norm of δs is equal to ‖δ‖∞. It is not desirable to alleviate the probability
changes introduced by the project step at the cost of a greater l∞ norm.

Depicting the distribution of δs is arduous. Fortunately, adversarial examples
found by PGD frequently lie on the vertices of l∞ balls around natural images
[36] and one can modify the sign vector of a given adversarial perturbation to
generate a new one [28]. These discoveries suggest that searching among the
vertices of l∞ balls may have a higher success rate than searching in the l∞ ball-
s. Our experiments conducted on CIFAR-10 support this claim, the untargeted
attack success rates for these two random sampling strategies are 43.0% and
18.2% respectively. Thus, we conjecture that one has a high probability to get a
qualified δs by randomly changing the sign vector. Inspired by this, we propose
the random sign flip step. In each iteration, we randomly select partial coordi-
nates (e.g., 0.1%), then flip the signs of the corresponding entries in δ. Suppose
s ∈ {0, 1}d and p ∈ (0, 1)d, the random sign flip step can be formulated as:

si ∼ Bernoulli(pi), δs = δ � (1− 2s), (6)

where si and pi denote the i-th element of s and p respectively. � is the
Hadamard product. p is another crucial hyperparameter, which controls the
sign flip probability of each entry in δ. We will discuss how to adjust these two
hyperparameters later. Same as the project step, δs which violates the adver-
sarial constraint will be rejected. A simple illustration of the random sign flip
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Fig. 4. Illustration of the random sign flip
step. δs is the generated perturbation of δ
after the random sign flip step, which also
has a larger distance towards the decision
boundary.
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Fig. 5. The change of the sign match rate
between δadv and δ during querying. δadv
is generated by targeted PGD with the
last δ as the initial start. Each curve rep-
resents an image chosen from CIFAR-10.

step is shown in Fig. 4 . Clearly, the random sign flip step does not alter the l∞
norm, ‖δs‖∞ = ‖δ‖∞. In practice, we plot the distribution of ∆sft and ∆sfy
in Fig. 2 (b). It can be seen that δs generated by the random sign flip step does
have a certain probability to get a positive ∆sft and a negative ∆sfy.

Why does the random sign flip step work? Let r(δ1, δ2) = sgn(δ1)
Tsgn(δ2)
d

be the sign match rate of δ1 ∈ Rd and δ2 ∈ Rd. We find that,

1) There exist a large body of diverse adversarial sign vectors for most im-
ages. We choose 1,000 images from ImageNet. For each image-label pair
{x ∈ Rd, y ∈ R}, we generate 100 adversarial perturbations using 20-step
targeted PGD with random starts and calculate the maximum sign match
rate between any two of them. The results show that the maximum sign
match rate is lower than 0.1 for 87.8% of images (82.5% for untargeted at-
tacks).

2) For an image-label pair {x, y}, consider a random vector δrand ∈ {−ε, ε}d
and a “good” adversarial perturbation2 δadv ∈ [−ε, ε]d, r(δrand, δadv) has
a negative correlation with f(x + δrand)y and a positive correlation with
f(x+ δrand)t (or maxi 6=y f(x+ δrand)i), as presented in Fig. 3.

As a large number of diverse adversarial sign vectors exist, we assume that
there is a “good” adversarial perturbation δadv ∈ Rd which has a relatively high
sign match rate with the current perturbation δ ∈ Rd. Although we do not know
the actual δadv, we can alter the sign match rate between δadv and δ through
the random sign flip step. Then according to the second point mentioned above,
what we prefer is to get a new perturbation with a higher sign match rate. In
fact, once our method attacks successfully, we can use the resulting perturbation
as an initial start and perform targeted PGD to construct such a δadv. We plot
the change of the sign match rate between δadv and δ during querying in Fig.
5. It shows a clear uptrend. Thus, the random sign flip step serves as a tool to

2 f(x+ δadv)t (or maxi6=y f(x+ δadv)i) is very close to 1.
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make the sign match rate become higher. But how large is the probability of
acquiring a higher sign match rate after the random sign flip step?

Let r(δ, δadv) = r (r ∈ [−1, 1]) and m = (1− r) ·d/2 denote the total number
of coordinates where δ and δadv have reverse signs. We perform one random sign
flip step. That is, we randomly select k (k � min(m, d − m)) coordinates and
flip the corresponding signs in δ, resulting in a new vector δs. Then, we have

P (r(δs, δadv) > r) =

∑k
i=d k+1

2 e
(
m
i

)
·
(
d−m
k−i
)(

d
k

) , (7)

where
(·
·
)

is the binomial coefficient. It can be easily proven that P (r(δs, δadv) >
r) is smaller than P (r(δs, δadv) < r) when r is larger than 0. Thus, it is no
surprise that lots of δs are rejected during the optimization as mentioned in Fig.
2. Even though, our method performs much better than existing methods, see
Section 4 for detailed information.

The complete Sign Flip Attack (SFA) is summarized in Algorithm 1. SFA
works in an iterative manner. Given a correctly classified image, we first initialize
the perturbation which satisfies the adversarial constraint, then push the initial
adversarial example close to the original image through a binary search. In each
iteration, there are two steps requiring a total of 2 queries. One is the project step
described in Eq. 5 , which reduces the l∞ norm of the current perturbation. The
other is the random sign flip step described in Eq. 6 , which has a relatively high
probability to generate a better adversarial perturbation. We clip adversarial
examples to a legitimate range before querying the target model, and reject
unqualified perturbations. Next, we will discuss several techniques to improve
query efficiency.

Dimensionality reduction. In general, attacking deep neural networks
with high-dimensional inputs requires hundreds of thousands of queries under
the black-box setting. Several works [2, 11] have demonstrated that perform-
ing dimensionality reduction can boost attack efficiency. We adopt this strategy
into our method. To be specific, we define p and η in the lower dimensional-
ity, i.e., p ∈ (0, 1)d

′
, η ∈ {−α, α}d′ , d′ < d, and choose bilinear interpolation

T : Rd′ → Rd as the upscaling function. Then,

η ← T (η), si ∼ Bernoulli(pi), s← sgn(T (s)). (8)

With a suitable d′, we can obtain higher attack success rates under limited
queries. Note, our method works well even without dimensionality reduction.

Hyperparameter adjustment. Our method has two hyperparameters α
and p corresponding to two steps in each iteration. We dynamically adjust these
two hyperparameters according to the success rate of several previous trails.
For the project step, if the success rate is higher than 70%, we increase α by
multiplying a fixed coefficient (e.g., 1.5). If the success rate is lower than 30%,
we reduce α by dividing the same coefficient. For the random sign flip step, if the
success rate is higher than 70%, we increase p by adding a fixed increment (e.g.,
0.001). If the success rate is lower than 30%, we reduce p by subtracting the same
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Algorithm 1 Sign Flip Attack

Input: indicator function φ, original image x, threshold ε
1: Initialize δ ∈ Rd, α ∈ R+, p ∈ (0, 1)d;
2: δ ← BinarySearch(x, δ, φ)
3: ε′ = ‖δ‖∞
4: while ε′ > ε do
5: η ∼ {−α, α}d
6: δp = ΠB∞(0,ε′−α)(δ + η)
7: if φ(x+ δp) = 1 then
8: δ ← δp
9: end if

10: si ∼ Bernoulli(pi)
11: δs = δ � (1− 2s)
12: if φ(x+ δs) = 1 then
13: δ ← δs
14: end if
15: Adjust p, α
16: ε′ = ‖δ‖∞
17: end while
18: return x+ δ

increment. In practice, we adjust α and p once every 10 iterations. Besides, we
also adjust p after each successful random sign flip step by p← p+0.0001(1−2s).
In this way, we roughly adjust each entry in p. We set α = 0.004 (around one
pixel 1/255), and set the initial flip probability for each coordinate as pi = 0.001.
We bound p ∈ [0.0001, 0.01]d in each step, as we only want to flip a rather small
number of entries.

4 Experiments

We compare Sign Flip Attack (SFA) with a comprehensive list of decision-based
black-box attacks: Boundary Attack (BA) [7], Label-Only Attack (LO) [27], Hop-
SkipJumpAttack (HSJA) [10], Evolutionary Attack (EA) [17] and Sign-OPT At-
tack (Sign-OPT) [13]. We use the l∞ version of each baseline method if it exists.
For BA and EA, we use their original versions. All experiments are conducted
on two standard datasets, CIFAR-10 [29] and ImageNet [15].

The maximum l∞ distortion and limited query numbers will be specified
in each part. For our method, we use the same hyperparameters (described in
Section 3.3) across all images. For baseline methods, we use their default set-
tings. We quantify the performance in terms of three dimensions: attack success
rate (ASR), average queries (AQ) and median queries (MQ). Average queries and
median queries are calculated over successful trails. For some experiments, we al-
so provide the results achieved by strong white-box attacks, e.g., 100-step PGD.
Additional results are provided in the supplementary material.
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Fig. 6. Comparison of the attack success
rates over the number of queries of various
methods on CIFAR-10 with ε = 0.031.
(a) untargeted attacks. (b) targeted at-
tacks.

Table 1. Results on CIFAR-10. The
query limits for untargeted and targeted
attacks are 2,000 and 10,000, respective-
ly. For Lable-Only Attack (LO), we only
consider targeted attacks, since it is main-
ly designed for this setting. SFA wo/SF
indicates SFA without Random Sign Flip.

Method
Untargeted Targeted

ASR AQ MQ ASR AQ MQ

BA [7] 40.2% 809 660 47.5% 4,629 4,338
LO [27] - - - 0.2% 3,533 3,533

Sign-OPT [13] 19.7% 886 730 21.5% 5,515 5,438
EA [17] 19.4% 1,037 1,076 38.0% 4,139 3,611

HSJA [10] 87.1% 680 503 86.9% 3,731 3,197
SFA wo/SF 9.1% - - 0.2% - -
SFA(Ours) 95.4% 409 282 99.4% 1,807 1,246
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Fig. 7. Untargeted attack success rates versus numbers of queries on ImageNet
with four different model architectures. (a) ResNet-50. (b) VGG-16. (c) DenseNet-121.
(d)Inception-v3.

4.1 Attacks on Undefended Models

CIFAR-10 setup. We use the first 1000 images of the validation set. 953 of them
are correctly classified by our trained ResNet-18 [24]. For untargeted attacks, we
set the maximum queries to 2,000. For targeted attacks, we set the maximum
queries to 10,000. Following the protocol in [7], the target label is set to t =
(y+1) mod 10 for an image with label y. To ensure a fair comparison, we use the
same initial perturbation for all methods in targeted attacks. As a convention,
We bound the maximum l∞ distortion to ε = 0.031(8/255).
ImageNet setup. To verify the robustness of attack methods against differ-
ent network architectures, we consider four prevailing model, ResNet-50 [24],
VGG-16 [41], DenseNet-121 [25], and Inception-v3 [43]. For untargeted attacks,
we randomly select 1,000 images and set the maximum queries to 20,000. For
targeted attacks, we randomly select 200 images due to time concerns and set
the maximum queries to 100,000. The target label is randomly chosen across
1,000 classes. Again, the same initial perturbation is applied for all methods for
targeted attacks. We bound the maximum l∞ distortion to ε = 0.031. For our
method, we apply dimensionality reduction described in Section 3.3 . We simply
set d′ = d/4, e.g., d = 224× 224× 3, d′ = 112× 112× 3.
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Fig. 8. Targeted attack success rates versus numbers of queries on ImageNet with
four different model architectures. (a) ResNet-50. (b) VGG-16. (c) DenseNet-121.
(d)Inception-v3.

We report the results for CIFAR-10 in Table 1. Untargeted and targeted
attack results for ImageNet are shown in Table 2 and Table 3. The corresponding
cumulative attack success rates of the number of queries are presented in Fig. 6,
7 and 8, respectively. Compared with existing methods, our method consistently
achieves higher attack success rates across different datasets and various network
architectures for both untargeted and targeted settings while requiring half or
even fewer queries. In Table 3, we notice that the average and median queries of
EA are better than ours. This is due to the average and median queries can be
influenced by the attack success rates. As an instance, with Inception-v3 as the
target model, our method achieves a 95.8% attack success rate, 91.5% higher
than EA. On the 4.3% of images that EA attacks successfully, the average and
median queries of our method are 6,657 and 5,604, respectively. Our method
reduces more than 60% of queries compared to EA. A detailed comparison with
EA and HSJA is provided in the supplementary material.

The importance of Random Sign Flip. We study the effect of the random
sign flip step. In Table 1, it can be seen that the random sign flip step boosts
the attack success rate. With the random sign flip step, the success rates for
untargeted and targeted attacks are 95.4% and 99.4%. However, without it, the
attack success rates drop to 9.1% and 0.2%, even lower than random sampling.

Dimensionality reduction helps attack efficiency. We also study the
effect of dimensionality reduction. We provide the results without dimensionality
reduction in Table 2 and Table 3. The results show that, with the help of dimen-
sionality reduction, it is able to achieve a higher attack success rate with fewer
queries. Note that the results achieved by our method without dimensionality
reduction are still much better than existing methods.

4.2 Attacks on Defensive Models

To investigate the effectiveness of decision-based black-box attacks against de-
fenses, we conduct experiments on 7 defense mechanisms: Adversarial Training
[35], Thermometer Encoding [8], Bit Depth Reduction [50], FeatDenoise [49],
FeatScatter [52], KWTA [47] and TRADES [53]. For the first 3 defense mecha-
nisms, we compare our method with BA [7], Sign-OPT [13], EA [17] and HSJA



12 W. Chen et al.

Table 2. Results of untargeted attacks on ImageNet.The maximum number of
queries sets to 20,000. SFA wo/DR indicates SFA without dimensionality reduction.

Method
ResNet-50 [24] VGG-16 [41] DenseNet-121 [25] Inception-v3 [43]

ASR AQ MQ ASR AQ MQ ASR AQ MQ ASR AQ MQ

BA [7] 55.5% 6,547 4,764 63.7% 5,848 3,906 57.4% 6,285 4,170 45.3% 6,404 4,830
Sign-OPT [13] 31.8% 5,929 3,448 39.0% 4,984 3,624 35.7% 4,669 2,432 25.0% 6,548 5,153

EA [17] 65.7% 4,004 2,578 70.0% 3,016 2,886 70.6% 37,13 2,752 59.4% 4,247 2,836
HSJA [10] 96.1% 4,370 2,883 98.3% 3,044 1,554 96.3% 4,394 2,883 19.4% 5,401 2,538

SFA wo/DR 96.9% 3,193 1,570 99.0% 2,112 820 97.5% 2,972 1,652 91.1% 3,759 2,134
SFA(Ours) 98.2% 2,712 1,288 98.7% 1,754 636 98.6% 2,613 1,200 92.1% 4,501 2,602

Table 3. Results of targeted attacks on ImageNet. The maximum number of queries
sets to 100,000. SFA wo/DR indicates SFA without dimensionality reduction.

Method
ResNet-50 [24] VGG-16 [41] DenseNet-121 [25] Inception-v3 [43]

ASR AQ MQ ASR AQ MQ ASR AQ MQ ASR AQ MQ

BA [7] 11.4% 62,358 57,336 17.1% 62,480 67,658 12.8% 58,879 56,646 3.4% 84,266 85,202
Sign-OPT [13] 2.7% 54,523 51,319 1.9% 91,172 82,492 0.0% - - 0.0% - -

EA [17] 9.6% 19,682 20,435 8.5% 12,126 8,534 12.2% 17,820 7,195 4.3% 18,164 15,362
HSJA [10] 84.5% 44,188 41,205 77.8% 39,400 36,172 79.7% 41,319 36,964 0.0% - -

SFA wo/DR 98.6% 29,440 26,208 98.5% 23,216 21,076 98.6% 28,151 25,824 97.0% 37,169 38,056
SFA(Ours) 99.3% 22,538 19,380 99.2% 16,627 15,008 98.6% 20,331 17,762 95.8% 36,681 32,210

[10]. For other defense mechanisms, we only compare with the existing state-of-
the-art method HSJA [10].

The overall results are presented in Table 4 and Table 5. Because the average
and median queries can be affected by the attack success rate for an effective
method, we also report the results achieved by our methods on the images that
each baseline method successfully fools, please see the values in brackets. Our
method significantly outperforms the existing decision-based attacks by large
margins on nearly all evaluation metrics. In what follows, we will make a detailed
discussion.

Firstly, our method performs much more stable than state-of-the-art decision-
based attacks when confronting defenses that cause obfuscated gradients [3].
Thermometer Encoding [8] and Bit Depth Reduction [50] are two types of de-
fenses that leverage per pixel quantization to resistant adversarial examples.
Although these two defenses have been completely broken by current white-box
attacks, it is still difficult to defeat them for decision-based attacks. For untar-
geted attacks on Thermometer Encoding, our method achieves a 92.3% attack
success rate, while the highest achieved among existing methods is a mere 34.1%.

Secondly, our method can serve as a strong baseline to evaluate the robustness
of defensive models. FeatScatter [52] and KWTA [47] are two recently published
defenses. Both of them have shown superior resistance against white-box attacks
than Adversarial Training [35] and done certain sanity checks such as transfer-
based black-box attacks. However, according to our results, they reduce the
performance of the original Adversarial Training. As presented in Table 5, our
method has 52.3% and 74.7% attack success rates, around 29% and 41% higher
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Table 4. Attack performance against Adversarial Training [35], Thermometer Encod-
ing [8], and Bit Depth Reduction [50]. The limited query budgets set to 100,000, 50,000
and 50,000, respectively. The values in brackets denote results achieved by our method
on the images that baseline methods successfully fool.

Method
CIFAR-10 [29] ImageNet [15]

Adv. Training [35] Thermometer [8] Bit Depth [50]

ASR AQ MQ ASR AQ MQ ASR AQ MQ

BA [7] 5.6% 1,811(1,294) 880(242) 11.0% 286(208) 134(122) 13.5% 165(173) 142(90)
Sign-OPT [13] 6.3% 5,908(324) 2,505(202) 8.0% 3,583(262) 1,285(122) 15.1% 2,284(154) 179(90)

EA [17] 12.1% 7,675(4,442) 1,594(1,462) 34.1% 5,254(752) 4,459(310) 75.3% 9,689(3,245) 5,626(858)
HSJA [10] 34.0% 14,829(7,694) 4,450(2,972) 13.1% 5,030(200) 310(132) 8.4% 6,664(243) 159(76)

SFA(Ours) 41.6% 15,512 5,486 92.3% 7,024 3,386 91.2% 7,227 2,100

BPDA [3](white-box) 50.9% - - 100% - - 100% - -

Table 5. Attack performance against TRADES [53], FeatScatter [52], KWTA [47] and
FeatDenoise [49]. The limited query budgets set to 100,000. The values in brackets
denote results achieved by our method on the images that HSJA successfully fools.

Method
PGD(white-box) SFA(Ours) HSJA [10]

ASR ASR AQ MQ ASR AQ MQ

CIFAR-10 [29]
TRADES [53] 34.0% 29.8% 7,714 2,470 25.2% 13,115(4,372) 3,569(1,844)
FeatScatter [52] 23.2% 52.3% 10,254 3,956 42.0% 14,393(4,441) 5,222(2,318)
KWTA+AT [47] 33.6% 74.7% 16,935 3,660 35.4% 9,953(2,568) 2,187(688)

ImageNet [15] FeatDenoise [49] 88.0% 51.3% 18,616 7,848 44.0% 23,866(13,620) 13,151(5,478)

than PGD, respectively. Their model accuracies are actually lower than ones in
Adversarial Training.

Thirdly, for those defensive models which indeed increase the robustness, our
method obtains better results than other decision-based attacks while still falls
behind of white-box attacks. On CIFAR-10, for Adversarial Training [35] and
TRADES [53], our method is slightly worse than PGD. Whereas, on ImageNet,
the gap between our method and PGD is quite large. PGD achieves an 88.0% at-
tack success rate against FeatDenoise [49], around 31% higher than our method.
Attacking models with high dimensional inputs is arduous for all decision-based
attacks. Our method takes a steady step towards closing the gap.

4.3 Attacks on Real-world Applications

In this section, we investigate the applicability of decision-based attacks on real-
world systems.

The target models are the face verification3 API and food4 API in Tencent
AI Open Platform. For the face verification API, we set the similarity score
threshold to 70. If the output is larger than 70, the decision is True — the
two images are from the same identity, otherwise False. We choose 10 pairs of
images from the Labeled Face in the Wild [26] dataset. We bound the maximum

3 https://ai.qq.com/product/face.shtml#compare
4 https://ai.qq.com/product/visionimgidy.shtml#food
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Fig. 9. An example of attacking the food API in Tencent AI Open Platform. Q denotes
the query number. D denotes the l∞ distance towards the original image. Green means
the API classifies the image as food, red is otherwise. Best viewed in color with zoom
in.

l∞ distortion to ε = 0.062(16/255) and set the maximum query number to 5,000.
The numbers of successfully attacked pairs of BA, Sign-OPT, EA, LO, HSJA,
and our method are 1, 0, 5, 0, 2 and 9, respectively. The food API takes a single
image as input and determines whether the input is about food. Our method
successfully invades this API. We present an example in Fig. 9. The original and
initial images are chosen from ImageNet.

5 Conclusion

In this paper, we proposed the Sign Flip Attack, a simple and highly efficient
decision-based black-box l∞ adversarial attack to craft adversarial examples. We
introduced the novel random sign flip step to search for a better adversarial per-
turbation during the optimization, boosting the attack success rate and query
efficiency. Comprehensive studies on CIFAR-10 and ImageNet demonstrate that
our method has significantly outperformed existing methods. Experiments on
several defensive models indicate the effectiveness of our method in evaluating
the robustness. Additionally, we applied our method to attack real-world ap-
plications successfully. These promising results suggest that our method can be
viewed as a strong baseline to facilitate future research.
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