
Supplementary Material for “Knowledge
Transfer via Dense Cross-Layer

Mutual-Distillation”

Anbang Yao?B and Dawei Sun?

Intel Labs China
{anbang.yao,dawei.sun}@intel.com

1 Experimental Settings

In this section, we provide detailed settings of the experiments conducted on the
CIFAR-100 and ImageNet datasets.

1.1 Experimental Settings on CIFAR-100

As stated in Section 4.1 of the main paper, we consider two different scenarios
on the CIFAR-100 dataset when jointly training two CNNs from scratch: (1)
Two CNNs with the same backbone (e.g., WRN-28-10 & WRN-28-10); (2) Two
CNNs with the different backbones (e.g., WRN-28-10 & ResNet-110). Generally,
we follow the same settings as reported in the original papers [1,4,8,9]. Here, we
first describe the training hyper-parameters in the first scenario. At the training
phase, for ResNet-110/ResNet-164 and MobileNet, we use SGD with momentum,
and we set the batch size as 64, the weight decay as 0.0001, the momentum as 0.9
and the number of training epochs as 200. The initial learning rate is 0.1, and it is
divided by 10 every 60 epochs. For DenseNet-40-12, we use SGD with Nesterov
momentum, and we set the batch size as 64, the weight decay as 0.0001, the
momentum as 0.9 and the number of training epochs as 300. The initial learning
rate is set to 0.1, and is divided by 10 at 50% and 75% of the total number
of training epochs. For WRN-28-10/WRN-28-4, we use SGD with momentum,
and we set the batch size as 128, the weight decay as 0.0005, the momentum
as 0.9 and the number of training epochs as 200. The initial learning rate is set
to 0.1, and is divided by 5 at 60, 120 and 160 epochs. In the second scenario
of jointly training two CNNs with the different backbones, we use the training
hyper-parameters of WRN-28-10 to train both networks.

1.2 Experimental Settings on ImageNet

On the ImageNet dataset, we use popular ResNet-18/ResNet-50 [1] and Mo-
bileNetV2 [5] as the backbone networks, and consider two training scenarios

? Equal contribution. B Corresponding author. Experiments were mostly done by
Dawei Sun when he was an intern at Intel Labs China, supervised by Anbang Yao.



2 A. Yao and D. Sun

Fig. 1. Locations of the auxiliary classifiers added to the CNN architectures evaluated
on the CIFAR-100 dataset. The left figure is for ResNet-110/ResNet-164 and WRN-
28-10/WRN-28-4, and the middle figure is for DenseNet-40-12, and the right figure is
for MobileNet. The grey thick arrows indicate the locations where auxiliary classifiers
are added. For a backbone network, we denote the original classifier as C1, and denote
two auxiliary classifiers as C2 and C3 respectively.

which are the same as on the CIFAR-100 dataset. For all these CNN backbones,
we use the same settings as reported in the original papers. For the experiments
with ResNet backbones, two models with either the same depth configuration or
the different depth configurations are trained with SGD for 100 epochs. We set
the batch size as 256, the weight decay as 0.0001 and the momentum as 0.9. The
learning rate starts at 0.1, and is divided by 10 every 30 epochs. For the experi-
ment with MobileNetV2 backbone, two models with the same configuration are
trained with SGD for 150 epochs using batch size 256. The momentum is set as
0.9 and the weight decay is set as 4e-5. The learning rate initiates from 0.05 and
declines with a cosine function shaped decay strategy approximating to zero.

2 Structures of Auxiliary Classifiers

On the CIFAR-100 dataset, we test several kinds of prevailing CNN architectures
including ResNet-110/ResNet-164 [1], DenseNet-40-12 [4], WRN-28-10/WRN-
28-4 [8] and MobileNet [2]. As stated in the main paper, we append well-designed
auxiliary classifiers on top of certain different-staged down-sampling layers of a
CNN backbone when applying our method to CIFAR-100 and ImageNet dataset-
s. In this section, we provide the structures of our auxiliary classifiers.

2.1 Auxiliary Classifiers for CIFAR-100

In this sub-section, we describe the auxiliary classifiers used in the CIFAR-100
experiments.



Knowledge Transfer via Dense Cross-Layer Mutual-Distillation 3

Table 1. Details of the convolutional blocks of the auxiliary classifiers added to the
ResNet backbones evaluated on the CIFAR-100 dataset. In the table, every cell shows
the number of building blocks and the corresponding number of output channels.

ResNet-110 ResNet-164
C3 C2 C3 C2

conv1 - - - -
conv2 x - - - -

conv3 x

[
3 × 3, 32
3 × 3, 32

]
× 9 -

1 × 1, 128
3 × 3, 128
1 × 1, 128

× 9 -

conv4 x

[
3 × 3, 64
3 × 3, 64

]
× 9

[
3 × 3, 128
3 × 3, 128

]
× 18

1 × 1, 256
3 × 3, 256
1 × 1, 256

× 9

1 × 1, 512
3 × 3, 512
1 × 1, 512

× 18

Table 2. Details of the convolutional blocks of the auxiliary classifiers added to the
DenseNet backbone evaluated on the CIFAR-100 dataset. In the table, every cell shows
the number of building blocks and the corresponding growth rate.

DenseNet-40-12
C3 C2

conv1 - -
conv2 x - -
conv3 x

[
3 × 3, 12

]
× 12 -

conv4 x
[
3 × 3, 12

]
× 6

[
3 × 3, 36

]
× 12

Locations. In the experiments, we add 2 auxiliary classifiers to every backbone
network. We denote the original classifier (i.e., the top-most classifier added to
the last layer of a backbone network) as C1 and the auxiliary classifiers as C2

and C3 as shown in Fig. 1.

Structures. In each joint training experiment, every auxiliary classifier is com-
posed of the same building block (e.g., residual block in ResNet) as in the
backbone network. The differences lie in the numbers and parameter sizes of
convolutional layers. As empirically verified in [3,10,6], early layers lack coarse-
level features which are helpful for image-level classification. In order to address
this problem, we use a heuristic principle making the paths from the input to
all classifiers have the same number of down-sampling layers. We detail the
hyper-parameter settings of the convolutional layers of auxiliary classifiers w.r.t.
different backbone networks in Table 1, Table 2, Table 3 and Table 4 respectively.

2.2 Additional Auxiliary Classifiers regarding Experiments for
Analyzing How to Set Q.

As stated in Section 4.3 of the main paper, in order to analyze how to set Q in
our method, we first conduct ablative experiments to jointly train two WRN-
28-10 models considering different settings by adding auxiliary classifiers to at
most three down-sampling layers. Besides two basic auxiliary classifiers C2 and
C3 used in our DCM, one additional auxiliary classifier C4 is added after “conv1”



4 A. Yao and D. Sun

Table 3. Details of the convolutional blocks of the auxiliary classifiers added to the
WRN backbones evaluated on the CIFAR-100 dataset. In the table, every cell shows
the number of building blocks and the corresponding number of output channels. C4

is used as an additional auxiliary classifier for the analysis of how to set Q.

WRN-28-4 WRN-28-10
C3 C2 C4 C3 C2

conv1 - - - - -

conv2 x - -

[
3 × 3, 160
3 × 3, 160

]
× 4 - -

conv3 x

[
3 × 3, 128
3 × 3, 128

]
× 4 -

[
3 × 3, 320
3 × 3, 320

]
× 2

[
3 × 3, 320
3 × 3, 320

]
× 4 -

conv4 x

[
3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 512
3 × 3, 512

]
× 4

[
3 × 3, 640
3 × 3, 640

]
× 2

[
3 × 3, 640
3 × 3, 640

]
× 2

[
3 × 3, 1280
3 × 3, 1280

]
× 4

Table 4. Details of the convolutional blocks of the auxiliary classifiers added to the
MobileNet backbone evaluated on the CIFAR-100 dataset. In the table, every cell shows
the number of convolutional blocks and the number of output channels, and s2 denotes
the stride of the convolution operation in this layer is 2. Each convolutional block is
composed of a 3 × 3 depthwise convolution and a 1 × 1 pointwise convolution. Please
see Fig. 1 for different layer locations.

conv0 conv1 conv2 conv3 conv4 conv5 conv6 conv7-11 conv12 conv13

C3 - - - - - -

[
3 × 3, 256s2
1 × 1, 512

] [
3 × 3, 512
1 × 1, 512

] [
3 × 3, 512s2
1 × 1, 1024

] [
3 × 3, 1024
1 × 1, 1024

]
C2 - - - - - - - -

[
3 × 3, 512s2
1 × 1, 2048

] [
3 × 3, 2048
1 × 1, 2048

]

layer of WRN-28-10 as illustrated in Fig. 1, and its hyper-parameter setting of
the convolutional layers is provided in Table 3.

As for two additional kinds of auxiliary classifiers evaluated by DCM, namely
“APFC” and “Narrow”, their structures are: (1) “APFC” is composed of an
average pooling layer (with the spatial output size of 4 × 4), a fully connected
layer (with the output size of 100) and a softmax function; (2) “APFC” refers to
narrower versions whose growth rate (for DenseNet-40-12) or width (for WRN-
28-10) values are at half of our basic designs shown in Table 2 and Table 3
respectively.

2.3 Auxiliary Classifiers for ImageNet

On the ImageNet dataset, we use popular ResNet-18/ResNet-50 and MobileNetV2
as the backbone networks. In this sub-section, we describe their respective aux-
iliary classifiers.

Locations. The locations of the auxiliary classifiers for ResNet-18/ResNet-50
and MobileNetV2 are shown in Fig. 2 respectively.

Structures. The auxiliary classifiers added to all backbone networks have the
same macro-structure. Generally, we design these auxiliary classifiers with the



Knowledge Transfer via Dense Cross-Layer Mutual-Distillation 5

Fig. 2. Locations of the auxiliary classifiers added to the CNN architectures evaluated
on the ImageNet dataset. The left figure is for ResNet-18/ResNet-50, and the right
figure is for MobileNetV2. The grey thick arrows indicate the locations where auxiliary
classifiers are added. For a backbone network, we denote the original classifier as C1,
and two auxiliary classifiers as C2 and C3 respectively.

same building blocks as the backbone network. To guarantee that all the paths
from the input to different classifier outputs have the same down-sampling pro-
cess, we design the auxiliary classifiers according to the corresponding building
blocks in the backbone network. Taking ResNet-18/ResNet-50 as an example,
the auxiliary classifier C3 has its own conv 4x and conv 5x acting as down-
sampling stages, whose parameter size is smaller than that of the corresponding
stages in the backbone network. After these down-sampling stages, there are also
a global average pooling layer and a fully connected layer. Auxiliary classifiers
for MobileNetV2 are designed with the same principles. We show the details of
the convolutional blocks of the auxiliary classifiers for these backbone networks
in Table 5 and Table 6 respectively.

3 Advantages over KD and Its Variants

Recall that in this paper we focus on improving two-way knowledge transfer
design. Compared with conventional one-way KD and it variants (mostly relying
on hidden layer feature/attention distillation), our method has new properties:
(1) collaborative training of two models from scratch (no need of the pre-trained
and fixed teacher); (2) bidirectional cross-layer knowledge transfer (a smaller
model also improves a large model); (3) soft hidden layer knowledge obtained
in a supervised manner (no need of the layer-wise feature/attention matching
usually conducted with multi-step strategies due to different hidden layer map
dimensions between two models). Note that a direct performance comparison of
two-way DCM with one-way KD based methods is not fair due to their quite



6 A. Yao and D. Sun

Table 5. Details of the convolutional blocks of the auxiliary classifiers added to the
ResNet backbones evaluated on the ImageNet dataset. In the table, every cell shows
the corresponding number of convolutional blocks (including basic blocks for ResNet-18
and bottleneck blocks for ResNet-50) and their parameter sizes. For comparison with
the backbone networks, please refer to the Table 1 of the ResNet paper [1].

ResNet-18 ResNet-50
C3 C2 C3 C2

conv1 - - - -
conv2 x - - - -
conv3 x - - - -

conv4 x

[
3 × 3, 256
3 × 3, 256

]
× 1 -

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 3 -

conv5 x

[
3 × 3, 512
3 × 3, 512

]
× 2

[
3 × 3, 1024
3 × 3, 1024

]
× 2

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 2

1 × 1, 1024
3 × 3, 1024
1 × 1, 4096

× 3

Table 6. Details of the separable convolutional blocks of the auxiliary classifiers added
to the MobileNetV2 backbone evaluated on the ImageNet dataset. In the table, every
cell shows the parameter configuration of separable convolutional blocks, and (t,c,n,s)
denotes the expansion factor, the number of output channels, the repeated times of
bottleneck unit and the stride respectively. For comparison with the backbone network,
please refer to the Table 2 of the MobileNetV2 paper [5].

block0 block1 block2-3 block4-6 block7-10 block11-13 block14-16 block17 block18
C3 - - - - - - (6,160,3,2) (3,320,1,1) (-,1280,1,1)
C2 - - - - - - - (6,480,1,1) (-,1920,1,1)

different training paradigms. Recently, a comprehensive benchmark of fourteen
state of the art KD based methods on the CIFAR-100 dataset was published
in [7] from which we can observe: Merely considering the accuracy gain to the
smaller student model regardless of training paradigm differences, our results
reported in the main paper are mostly better than those one-way KD based
methods using the fixed teacher model.



Knowledge Transfer via Dense Cross-Layer Mutual-Distillation 7

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

2. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

3. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-
scale dense networks for resource efficient image classification. In: ICLR (2018)

4. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

5. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: CVPR (2018)

6. Sun, D., Yao, A., Zhou, A., Zhao, H.: Deeply-supervised knowledge synergy. In:
CVPR (2019)

7. Tian, y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: ICLR
(2020)

8. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)
9. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR

(2018)
10. Zhang, Z., Zhang, X., Peng, C., Cheng, D., Sun, J.: Exfuse: Enhancing feature

fusion for semantic segmentation. In: ECCV (2018)


