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1 Overview

The supplementary material is organized as below.

– In Sec. 2, we analyze how the time and space complexity are reduced by
solving the split reduced camera system (RCS) with our STBA in place of
the original RCS.

– In Sec. 3, we present ablation studies on the stochastic graph clustering algo-
rithm proposed in Sec. 4.4 of the main paper and the effect of the maximum
cluster size.

– In Sec. 4, the full algorithm of STBA is laid out.

2 Complexity Analysis

In this section, we will analyze how our STBA reduces the time and space
complexity by solving the split reduced camera system (RCS) (Eqs. 13 of the
main paper) in place of the original RCS (Eq. 5 of the main paper), whether the
exact or inexact linear solver is used, as shown in Table 1. Please note that the
analysis considers the most general case and does not presuppose any special
structures, e.g ., the extreme sparsity, of the RCS.

Table 1: The time and space complexity of LM and our STBA when solving
the reduced camera system. m denotes the camera number. Γ is the maximum
cluster size. κ and κ′ are the condition numbers of the Schur complement and split
Schur complement after preconditioning. r and r′ denote the edge number and the
sampled edge number of the camera graph, respectively.

Cholesky factorization Conjugate gradient

LM STBA LM STBA

Time complexity O(m3) O(mΓ 2) O(r
√
κ) O(r′

√
κ′)

Space complexity O(m2) O(mΓ ) O(r) O(r′)
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Cholesky factorization is known to have a cubic time complexity and a
quadratic space complexity in the camera number m when solving the RCS [3]. If
using Cholesky factorization to solve the split RCS exactly, the time and space
complexity of each sub-problem of STBA are O(Γ 3) and O(Γ 2), respectively,
where Γ is the maximum cluster size. Since there are O(m/Γ ) sub-problems,
the time and space complexity of STBA are O(mΓ 2) and O(mΓ ), respectively.
With Γ being a constant, the time and space complexity of STBA are linear
with m.

Besides the exact solvers, conjugate gradient is an inexact approach to solving
the linear equations iteratively. It is known to have a O(r

√
κ) time complexity

and a O(r) space complexity when solving the RCS [11], where r is the camera
connection number and κ is the condition number of the Schur complement S
(see Eq. 5 of the main paper). However, S is generally ill-conditioned, which
necessitates preconditioning to reduce the condition number κ [3, 9, 5, 8]. The
amount of decrease in κ depends on how accurately preconditioning can be
performed. If using conjugate gradient to solve the split RCS inexactly, STBA
reduces the time complexity to O(r′

√
κ′) and the space complexity to O(r′).

Here, r′ is the sampled camera connection number, and κ′ is the maximum
condition number of the split Schur complements {Si}li=1 (see Eqs. 10 of the main
paper) after preconditioning. Due to the sampling of the camera connections, r′

is smaller than r. In our experiments, r′ is less than one fifth of r when we set the
maximum cluster size Γ to 100. The condition number κ′ also should be smaller
than κ, because preconditioning the low-dimensional Si can be performed more
accurately and efficiently than the high-dimensional S.

3 Ablation Studies on Stochastic Graph Clustering

In Sec. 4.4 of the main paper, we have proposed a stochastic graph clustering
(SGC) algorithm to sample the chance constraints in each iteration. In this
section, we would like to conduct ablation studies on the clustering strategies
and the maximum cluster size Γ . First, we make comparisons with 3 clustering
methods below.

– KMeans which partitions the camera centers into k clusters by using the
K-Means algorithm. In order to introduce randomness, we randomly choose
k camera centers as the initial means in the first step.

– NCut which uses normalized cut for graph clustering as in the previous
works [10, 14, 13]. We turn the camera graph into a random one by keeping
its edges with the probability proportional to the edge weights and then run
normalized cut on it.

– NSGC is the abbreviation for non-stochastic graph clustering. It is a variant
of SGC which uses the classic greedy Louvain’s algorithm [4] rather than
joining clusters randomly as SGC.

Apart from the clustering strategies, we run all the algorithms with 6 different
maximum cluster sizes which are Γ = 1, 25, 50, 100, 200 and ∞. Here, “Γ = 1”
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Fig. 1: (a) Normalized final losses w.r.t. the maximum cluster size produced by
different clustering methods. The smaller the loss is, the better convergence is attained.
(b) Reconstructions of Gerrard Hall from the COLMAP dataset [1]. All the
methods except our SGC lead to layered facade reconstruction results, as marked by
the dashed circles.

means that each camera forms a cluster. And “Γ = ∞” means all the cameras
are grouped into a single cluster, in which case STBA is equivalent to the classic
LM algorithm without using clustering. We run all the methods on each problem
of 1DSfM [12] and KITTI [7] in the same way as Sec. 5.2 of the main paper. We
record the final losses of all the clustering algorithms and normalize them with
the division by the minimum loss that the algorithms attained. Therefore, the
smaller the normalized loss is, the better convergence is achieved. We show the
average normalized losses of different methods in Fig. 1(a).

First of all, the proposed SGC reaches the minimum losses at all the cluster
sizes, showing its efficacy compared with KMeans and NCut. The disadvantage
of KMeans is that it does not utilize the camera connectivity for clustering, as
opposed to NCut and SGC. In comparison with SGC, NCut partitions a graph
into clusters in a top-down manner. The downside of this strategy is that it
does not explicitly decide whether an edge at the bottom level will be selected
or discarded with a defined probability as SGC does (see Eq. 17 of the main
paper). Since NCut always stops once the cluster sizes are smaller than Γ , some
nodes may constantly stay in the same clusters without being exposed to the
cuts. Instead, the bottom-up strategy of SGC considers the selection of every
edge from the very beginning and contributes to the better convergence than
NCut in the end. Besides, the outperformance of SGC over NSGC indicates the
necessity of making the graph clustering randomized for better convergence.

Second, all of KMeans, NCut and SGC have better convergence as Γ in-
creases. It is reasonable because the larger Γ is, the more chance constraints can
be sampled, leading to a more accurate approximation by chance constrained
relaxation in Sec. 4.2 of the main paper. In the extreme case when Γ = 1, all the
chance constraints are neglected (i.e., the confidence level α = 0 in Eq. 12 of the
main paper). It induces poor approximations for the STBA iterations and hence
leads to very bad convergence. However, the final loss can be reduced by an order
of magnitude by just increasing Γ to 25. Besides, it is noteworthy that SGC is
the least sensitive to Γ compared against NCut and KMeans, as the loss does
not vary a lot when Γ changes from 25 to 200. Different from other methods,
NSGC gets the larger loss when Γ increases from 25 to 200. We found that it
is because NSGC uses fixed clusters and neglects the geometric constraints be-
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tween the clusters all the time, which would cause the inconsistency between the
geometries of different clusters. The problem is more severe when the cluster size
increases, as it is less flexible to align large clusters seamlessly than small clus-
ters. And the reduced flexibility of large clusters is more likely to cause layered
geometries at the cluster boundaries (see Fig. 1(b)). In Fig. 1(b), we show the
reconstruction results of Gerrard Hall from the COLMAP dataset [1] produced
by different graph clustering methods with Γ = 50. All the methods except our
SGC lead to layered facade reconstruction results.

4 Full Algorithm

Below we lay out the full algorithm of STBA for reference.
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Algorithm 1: Stochastic Bundle Adjustment (STBA)

Input: Visibility graph: G = (C ∪ P, E), initial pose and point parameters:
x = [cTpT ]T = x0

Output: x∗ minimizing F (x)
1 t = 0, tmax = 100, λ = 1e− 4, Γ = 100, ε = 1e− 6, stop=False
2 Build camera graph Gc = (C, Ec) from G
3 while (not stop) and t+ + < tmax do

/* Stochastic graph clustering */

4 {Φi}li=1 = StochasticGraphClustering(Gc, Γ ) // Γ is the maximum cluster

size

5 Build the equality constraint matrix A according to {Φi}li=1 // see Eq. 8 of

the main paper

/* Evaluations */

6 Evaluate reprojection errors f and Jacobian Jc,Jp,J
′
p,J

′ = [Jc,J
′
p]

7 C = Jp
TJp + λdiag(Jp

TJp), E = Jc
TJp, w = Jp

T f

8 B = Jc
TJc + λdiag(Jc

TJc)

9 C′ = J′p
T
J′p + λdiag(J′p

T
J′p)

10 E′ = Jc
TJ′p

11 g = −J′f
/* Steepest descent correction */

12 if λ ≥ 0.1 then

13 Hλ = J′
T
J′ + λD′TD′

14 H̃λ = diag(Hλ)

15 ν = (AH̃−1
λ AT )−1AH̃−1

λ g

16 g = g −ATν

17 g , [v′Tw′T ]T

18 S′ = B−E′C′
−1

E′
T , {Si}li=1

19 b′ = v′ −E′C′
−1

w′ , {bi}li=1

/* Solve pose steps in parallel */

20 for i = 1 to l do
21 Solve Si∆ci = bi

22 ∆c = [∆cT1 ...∆cTl ]T

23 ∆p = C−1(w −ET∆c)

24 x = [cTpT ]T , ∆x = [∆cT∆pT ]T

25 if (Cost tolerance < ε) or (Gradient tolerance < ε) or (Parameter tolerance
< ε) (see [2]) then

26 stop=True

27 if F (x) > F (x +∆x) then
28 λ = λ/3, c = c +∆c, p = p +∆p

29 else
30 λ = λ ∗ 3

31 x∗ = [cTpT ]T
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