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Abstract. Current bundle adjustment solvers such as the Levenberg-
Marquardt (LM) algorithm are limited by the bottleneck in solving the
Reduced Camera System (RCS) whose dimension is proportional to the
camera number. When the problem is scaled up, this step is neither ef-
ficient in computation nor manageable for a single compute node. In
this work, we propose a stochastic bundle adjustment algorithm which
seeks to decompose the RCS approximately inside the LM iterations to
improve the efficiency and scalability. It first reformulates the quadratic
programming problem of an LM iteration based on the clustering of
the visibility graph by introducing the equality constraints across clus-
ters. Then, we propose to relax it into a chance constrained problem
and solve it through sampled convex program. The relaxation is in-
tended to eliminate the interdependence between clusters embodied by
the constraints, so that a large RCS can be decomposed into indepen-
dent linear sub-problems. Numerical experiments on unordered Inter-
net image sets and sequential SLAM image sets, as well as distributed
experiments on large-scale datasets, have demonstrated the high effi-
ciency and scalability of the proposed approach. Codes are released at
https://github.com/zlthinker/STBA.

Keywords: Stochastic bundle adjustment, Clustering, 3D reconstruc-
tion

1 Introduction

Bundle Adjustment (BA) is typically formulated as a nonlinear least square prob-
lem to refine the parameters of cameras and 3D points. It is usually addressed
by the Levenberg-Marquardt (LM) algorithm, where a linear equation system
called Reduced Camera System (RCS) [25, 15] must be solved in each iteration.
However, when the problem is scaled up, solving the RCS has been a bottleneck
which takes a major portion of computation time (see the first bar of Fig. 1).
The dimension of the RCS is proportional to the camera number, and thus the
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Fig. 1. Per-iteration time of bundle adjustment w.r.t. the compute node
number. The Levenberg-Marquardt (LM) algorithm is limited by the bottleneck when
solving the reduced camera system (RCS). Our STBA splits the RCS into independent
sub-problems, which achieves a speedup on a single-threaded compute node. Besides,
STBA allows parallel and distributed computing with multiple compute nodes which
further improves the efficiency and scalability.

increase of cameras would ramp up the computation and memory consumption,
although methods have been proposed to use efficient linear solvers [2, 23, 13, 21,
34] and economize on matrix manipulations [2, 22, 34]. Furthermore, different to
other operations such as Jacobian or gradient evaluations, this step is indivisible,
making it hard to fit BA for parallel and distributed computing.

In order to accomplish efficient and scalable reconstructions, clustering has
been adopted as a useful practice to decompose a large problem into smaller,
more manageable ones. For example, a number of SfM approaches have been
developed in a divide and conquer fashion, which first reconstruct the partitioned
sub-maps independently and then merge the partial reconstructions together
[29, 37, 38, 17]. Although these methods are able to produce the initial sparse
reconstructions in an efficient and scalable way, a full bundle adjustment is still
indispensable to optimize the camera and point parameters globally. Therefore,
in the context of BA, the methods [16, 36] proposed to distribute the objectives
of BA to the split sub-models and optimize the sum of the objectives under
the distributed optimization frameworks [10, 5], which, however, involves extra
costly inner iterations and thus makes the optimization over-complicated.

In this work, we follow the direction of exploiting the clustering methods and
push forward the investigation on how to integrate a clustering scheme into the
BA problem systematically. Instead of applying a fixed, and one-time partition at
the pre-processing step, we derive a stochastic clustering-based strategy within
each LM iteration so as to decompose the RCS for efficiency and scalability.

– First, we reformulate the quadratic programming problem of an LM iteration
based on the clustering of the visibility graph. Such a formulation splits
the problem into the most elementary structures, but meanwhile introduces
additional equality constraints and raises the computational cost.

– Second, in order to make the above problem efficiently solvable, we propose
to relax the constraints into chance constraints [24] and then solve it with
sampled convex program [7]. The approach helps to eliminate the interdepen-
dence between different clusters by randomized constraint reduction, which
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hence decomposes the RCS into independent linear sub-problems related to
the clusters. In this way, an approximate step can be achieved efficiently.

– Third, we present an add-on technique which helps to correct the approxi-
mate steps towards the steepest descent direction within a small trust region
to improve the convergence.

Due to the stochastic process induced by the sampled convex program, we term
our algorithm STochastic Bundle Adjustment (STBA), which brings the follow-
ing tangible advantages. First, solving the split RCS in place of the original one
has achieved a great speedup thanks to the reduced complexity. Second, the
solving process can be made parallel and scalable to accommodate the growth
of camera numbers, since all the sub-steps of a BA iteration can be decomposed.
In Fig. 1, we visualize how the running time is reduced by distributing STBA
over multiple compute nodes.

2 Related Works

Bundle adjustment (BA) is typically solved by the Levenberg-Marquardt (LM)
algorithm [26], which approximately linearizes the error functions inside a local
trust region and then solves a linear normal equation for an update step. SBA [25]
first simplified the norm equation into a reduced camera system (RCS) through
Schur complement by taking advantage of the special problem structure. After
this, efforts were dedicated to solving the RCS faster in either exact or inexact
ways. The exact solvers apply Cholesky factorization to the reduced camera ma-
trix S, while exploiting variable ordering [3, 12] and supernodal methods [30, 12]
for acceleration. The inexact solvers are based on the Conjugate Gradient (CG)
method [19] coupled with various preconditioners [2, 20, 23], which attains inex-
act solutions with better efficiency. Apart from the algorithmic improvements,
[22, 34] presented well-optimized implementations of the LM solver to save the
memory usage and exploit the CPU and GPU parallelism. However, despite the
efforts above, solving a large and indivisible RCS will increasingly become the
bottleneck of a BA solver when the problem is scaled up.

In order to make large-scale reconstruction tractable, the clustering methods
are initially introduced into the structure from motion (SfM) domain. Basically,
a divide-and-conquer strategy is applied, which first partitions a large scene into
multiple sub-maps and then merges the partial reconstructions globally [29, 37,
38, 17]. In the formulation of these approaches, a reduced optimization problem
other than the original BA problem is addressed, thus leading to a sub-optimal
result. For example, [29, 38] factored out the internal variables inside the sub-
maps and [37] registered all the cameras with motion averaging [9] without the
involvement of points. In the realm of BA, [23] derived a block-diagonal pre-
conditioner for the RCS from the clustering of cameras, but the clustering did
not help to decompose the problem as it is done in the SfM algorithms [29, 37,
38, 17]. Instead, [16, 36] proposed to apply the distributed optimization frame-
works like the Douglas-Rachford method [10] and ADMM [5] onto the empirically
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clusterized BA problems towards large scales. Although built upon a theoret-
ical foundation, the methods required costly inner iterations and introduced a
plethora of latent parameters during optimization.

3 Bundle Adjustment Revisited

In this section, we first revisit the bundle adjustment problem and its LM solu-
tion to give the necessary preliminaries and terminologies. Henceforth, vectors
and matrices appear in boldface and ‖.‖ denotes the L2 norm.

A bundle adjustment problem is built upon a bipartite visibility graph G =
(C ∪ P, E). Here, C = {ci ∈ Rd}mi=1 denotes the set of m cameras parameterized
by d-dimensional vectors, P = {pi ∈ R3}ni=1 denotes the set of n 3D points, and
E = {qi ∈ R2}qi=1 denotes the set of q projections. The objective is to minimize
F (x) = ‖f(x)‖2, where f denotes a 2q-dimensional vector of reprojection errors
and x concatenates camera parameters c ∈ Rdm and point parameters p ∈ R3n,
i.e., x = [cT ,pT ]T .

The LM algorithm achieves an update step ∆x at each iteration by linearizing
f(x) as J(x)∆x + f(x) in a trust region around x, where J(x) = ∇xf(x) =
[J(c),J(p)] is the Jacobian matrix. Then the minimization of F (x) is turned
into

min
∆x
‖J(x)∆x + f(x)‖2 + λ‖D∆x‖2, (1)

whose solution comes from the normal equation below[
J(x)√
λD

]
∆x =

[
−f(x)

0

]
, (2)

where λ > 0 is the damping parameter and typically D = diag(JT (x)J(x))
1
2 . For

notational simplicity, we write J , J(x), Jc , J(c), Jp , J(p) and f , f(x).

After multiplying [JT ,
√
λDT ] at both sides of Eq. 2, we have

(JTJ + λDTD)∆x = −JT f , (3)

which can be re-written in the form[
B E
ET C

] [
∆c
∆p

]
=

[
v
w

]
, (4)

where B = JTc Jc + λdiag(JTc Jc), C = JTpJp + λdiag(JTpJp), E = JTc Jp, v =

−JTc f , and w = −JTp f . Eq. 4 can be simplified by the Schur complement [25],
which leads to

S∆c = v −EC−1w, (5)

∆p = C−1(w −ET∆c), (6)

where S = B−EC−1ET is the Schur complement of C. Here, S, known as the
reduced camera matrix, is a block structured symmetric positive definite matrix.
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Fig. 2. Illustration of point splitting/binding over the visibility graph (top)
and the corresponding structure of the reduced camera matrix (bottom).
Point splitting helps to reshape the reduced camera matrix into the block-diagonal
structure, while point binding does the inverse.

The block Sij ∈ Rd×d is nonzero iff cameras ci and cj observe at least one
common point. Although a variety of sparse Cholesky factorization techniques
[3, 12, 30] and preconditioned conjugate gradient methods [2, 20, 23] have been
developed to solve the reduced camera system (RCS) of Eq. 5, it still can be
prohibitive when the camera number m grows large.

4 Stochastic Bundle Adjustment

In this section, we present our stochastic bundle adjustment (STBA) method
that decomposes the RCS into clusters inside the LM iterations. In Sec. 4.1,
we first reformulate problem (1) based on the clustering of the visibility graph
G, yet subject to additional equality constraints. Next, in Sec. 4.2, we apply
chance constrained relaxation to the reformulation and solve it by sampled con-
vex program [7, 8]. It manages to decompose the RCS into cluster-related linear
sub-problems and yield an approximate STBA step efficiently. Third, a steep-
est correction step is proposed to remedy the approximation error of the STBA
steps in Sec. 4.3. Finally, in Sec. 4.4, we present a practical implementation of
the random constraint sampler required by the chance constrained relaxation.

4.1 Clustering Based Reformulation

In constrast to the previous methods [29, 37, 38, 17, 16, 36] that partition the
problem in the pre-processing stage, we present a reformulation of problem (1)
to decompose the RCS into clusters inside the LM iterations.

Particularly, we consider the most general case that every single camera forms
a cluster. In order to preserve all the projections E , we apply point splitting
to the physical points, as shown in Fig. 2. For a physical point pi viewed by vi
cameras, we split it into vi virtual points {pji}

vi
j=1, each assigned to one cluster.

Such a clustering will reformulate problem (1) equivalently as a new constrained
quadratic programming (QP) problem as below

min
∆x′

‖J′∆x′ + f‖2 + λ‖D′∆x′‖2, (7)

s.t. A∆x′ = 0. (8)



6 L. Zhou, Z. Luo, M. Zhen, T. Shen, et al .

Here, ∆x′ = [∆cT , ∆p′
T

]T is an expansion of ∆x which considers the update
steps for all the virtual points, and so is the Jacobian J′ = [Jc,J

′
p]. Accordingly,

D′ = diag(J′TJ′)
1
2 . The noteworthy distinction between problems (7) and (1) is

that the new equality constraints of Eq. 8 are imposed to enforce that the steps
of the same points in different clusters are identical. For example, ∆psi = ∆pti
(∀s, t ∈ {1, ..., vi}) for point pi and the corresponding j-th row of A appears in a
form as aj = [0..., 1, ...,−1, ...0]. Since a point pi introduces vi − 1 equations, A
has a row number of r =

∑n
i=1(vi − 1). Besides, A is full row rank, because the

rows each of which defines a unique equality constraint are linearly independent.
The constrained QP problem above can be easily solved by Lagrangian du-

ality, which turns the problem into

Hλ∆x′ = −(J′
T
f + ATν), (9)

where Hλ = J′
T
J′ + λD′TD′ and ν = −(AH−1λ AT )−1AH−1λ J′

T
f are the La-

grangian multipliers. Eq. 9 is in the similar format to Eq. 3, but has an additional
term ATν on the right hand side compared with Eq. 3. While J′

T
f includes the

gradients w.r.t. the independent virtual points, ATν acts as a correction term
to ensure that the solution complies with the constraints of Eq. 8.

The ultimate benefit of the clustering-based reformulation is revealed below.
By likewise applying Schur complement to Eq. 9, we have

S′∆c = v′ −E′C′−1w′, (10)

where E′ = JTc J′p, C′ = J′p
T
J′p + λdiag(J′p

T
J′p), S′ = B − E′C′−1E′T , and

[v′T ,w′T ]T = −(J′
T
f + ATν). Due to the fact that any two cameras do not

share any common virtual points, S′ now becomes a block-diagonal matrix,
i.e., S′ij = 0,∀i 6= j. Then Eq. 10 can be equivalently decomposed into m most
elementary linear systems each corresponding to one camera.

4.2 Chance Constrained Relaxation

The major problem with the clustering based reformulation above is the excessive
cost of evaluating the Lagrangian multipliers ν, because it requires the evaluation
of H−1λ . In order to make the problem practically solvable, we would like to
eliminate the need to evaluate the correction term ATν of Eq. 9 by means of
relaxation for problem (7).

We multiply a random binary variable θi with the i-th equality constraint of
Eq. 8, which results in θiai∆x′ = 0. It could be interpreted that, if θi = 1, the
constraint ai∆x′ = 0 must be satisfied; otherwise, the constraint is allowed to
be violated. In this way, Eq. 8 will be relaxed into chance constraints [24], which
leads to

min
∆x′

‖J′∆x′ + f‖2 + λ‖D′∆x′‖2, (11)

s.t. Prob(ai∆x′ = 0) = Prob(θi = 1) ≥ α, i = 1, ..., r, (12)
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where α ∈ (0, 1] is a predefined confidence level. It means that, instead of enforc-
ing the hard constraints, we allow them to be satisfied with a probability above
α. The advantage of the chance constrained relaxation is that we can determine
the reliability level of approximation by controlling α. The larger α is, the closer
the chance constrained problem (11) will be to the original deterministic prob-
lem (7). One approach to problem (11) is called sampled convex program [7, 8].

It extracts N independent samples Θ(α) = {θ(n)i |i = 1, ..., r, n = 1, ..., N} with

a minimum sampling probability of α for each variable θ
(n)
i and replaces the

chance constraints (12) with the sampled ones. Below we will elaborate on how
problem (11) can be solved given the samples Θ(α).

For a sample θ
(n)
i ∈ Θ(α), if θ

(n)
i = 0, the equality constraint ai∆x′ = 0 is

dropped; if θ
(n)
i = 1, it enforces the equality of the steps of two virtual points,

e.g ., ∆psj = ∆ptj . Here the virtual point psj belongs to the single-camera cluster
of camera cs and similarly ptj to ct. Then we merge psj and ptj into one point as
shown in Fig. 2, and we call the operation point binding as opposed to point
splitting introduced in Sec. 4.1. On the one hand, the point binding leads to
the consequence that the Lagrangian multiplier νi = 0, because the equality
∆psj = ∆ptj always holds. On the other hand, the block S′st of S′ (c.f . Eq. 10)
becomes nonzero, since the merged point is now shared by cameras cs and ct.
After applying point binding to all the virtual points involved in the sampled

constraints, i.e., {θ(n)i ∈ Θ(α)|θ(n)i = 1}, all the constraints will be eliminated
and there is no need to evaluate ν any more. Meanwhile, it will bring the cameras
sharing common points into the same clusters.

Since the cameras in different clusters have no points in common after the
point binding, the matrix S′ will appear in a block-diagonal structure which
we call cluster-diagonal, as illustrated in Fig. 2. It means that each diagonal
block of S′ corresponds to a camera cluster. In particular, we can intentionally
design the sampler Θ(α) in order to shape S′ into the desired cluster-diagonal
structures, as we will present in Sec. 4.4. As a result, this structure of S′ still
enables the decomposition of Eq. 10 into smaller independent linear systems each
relating to one camera cluster. Provided that there are l clusters, Eq. 10 can be
equivalently re-written as 

S′1∆c1 = b1,

...

S′l∆cl = bl,

(13)

where [∆cT1 , ...,∆cTl ]T = ∆c and [bT1 , ...,b
T
l ]T = v′ − E′C′

−1
w′. After Eqs. 13

are evaluated, we substitute ∆c into Eq. 9 to give

J′p∆p′ =

l∑
i=1

Jpi∆pi = −f − Jc∆c, (14)

where J′p = [Jp1 , ...,Jpl ] and ∆p′ = [∆p1, ...,∆pl] include the Jacobians and
virtual point steps w.r.t. the l clusters respectively and we omit D′ for ease of
notation. To give a uniform step for a physical point, we equalize the steps of its
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virtual points in different clusters by solving the linear system below in place of
Eq. 14:

l∑
i=1

Jpi∆p = −f − Jc∆c. (15)

Since
∑l
i=1 Jpi = Jp, Eq. 15 gives the same solution as the point steps in Eq. 6:

∆p = C−1(w −ET∆c).
So far we have presented how an update step of the camera and point pa-

rameters is determined approximately by STBA. Besides this, we keep the other
components of the LM algorithm unchanged [27]. For reference, we detail the
full algorithm in the supplementary material.

4.3 Steepest Descent Correction

The chance constrained relaxation in the last section effectively decomposes the
RCS, but leads to approximate solutions with decreased feasibility due to the
random constraint sampling. Below, we provide an empirical analysis on the
effect of the approximation and present a conditional correction step to remedy
the approximation error.

The LM algorithm is known to be the interpolation of the Gauss-Newton and
gradient descent methods, depending on the trust region radius controlled by the
damping parameter λ. When λ is small and the LM algorithm behaves more like
the Gauss-Newton method, the approximation induced by STBA in Sec. 4.2 is
admissible, in that problem (1) itself is derived from the first order approximation
of the error function f(x). And the LM algorithm can automatically contract the
trust region when the approximation leads to the increase of the objective.

When λ is large, i.e., the trust region is small, the LM algorithm is closer
to the gradient descent method, which gives a step towards the steepest descent
direction defined by the right hand side of Eq. 9, i.e., −(J′

T
f +ATν). However, a

problem with STBA is that the correction term ATν is eliminated approximately
by the chance constrained relaxation. As a consequence, the derived step would
deviate from the steepest descent direction and thus hamper the convergence.
Therefore, we propose to recover ATν to remedy the deviation in such a case.
Especially, when λ is large enough, the matrix Hλ in Eq. 9 will be dominated
by the diagonal terms, so that we can approximate Hλ by diag(Hλ). After that,

ATν = −AT (AH−1λ AT )−1AH−1λ J′
T
f can be evaluated efficiently because of the

sparsity of A. Since the approximation Hλ ≈ diag(Hλ) is not accurate unless λ
is large, in practice, we enable the steepest descent correction particularly when
λ ≥ 0.1. Fig. 3 visualizes the effect of the correction.

4.4 Stochastic Graph Clustering

The chance constrained relaxation in Sec. 4.2 necessitates an effective random
constraint sampler Θ(α). Among many of the possible designs, we propose a
viable implementation named stochastic graph clustering in this section.
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An LM step An STBA step A correction step

Fig. 3. Visualization of the steepest descent correction steps of sample camera
parameters when λ = 0.1. It shows that the deviations of approximate STBA steps
from the LM steps are effectively corrected.

The design of the clustering method considers the following requirements.
First, the sampler should be randomized with respect to the chance constraints
(12). Since (12) indicates that the expectation E(θi) should have E(θi) ≥ α
(i = 1, ..., r), the upper bound of the confidence level α is defined as minri=1 E(θi).
Therefore, the sampler should sample as many constraints as possible on average
to increase the upper bound of α. Second, the random sampler is intended to
partition the cameras into small independent clusters so that Eqs. 13 can be
solved efficiently.

Concretely, the stochastic graph clustering operates over a camera graph
Gc = (C, Ec), where the weight wij of an edge eij ∈ Ec between cameras ci and cj
is equal to the number of points covisible by the two cameras. At the beginning,
each camera forms an individual cluster as formulated in Sec. 4.1. Next, if ci and
cj are joined, a number of wij pairs of virtual points viewed by ci and cj will be
merged. Therefore, wij equality constraints will be satisfied. In order to join as
many virtual points as possible while yielding a cluster structure of Gc, we aim
at finding a clustering that maximizes the modularity below inspired by [6]: Q =
1
2s

∑
eij∈Ec δ(νi, νj)

(
wij − kikj

2s

)
, where s =

∑
eij∈Ec wij is the total sum of edge

weights, ki =
∑
j wij is the sum of weights of edges incident to camera ci, and νi

denotes the cluster of ci. δ(νi, νj) = 1 if νi = νj and 0 otherwise. The modularity
Q ∈ [−1, 1] measures the density of connections inside clusters as opposed to
those across clusters [6]. Therefore, a larger modularity generally indicates that
more virtual points are merged inside clusters. Maximizing the modularity is NP-
hard [31], but Louvain’s algorithm [6] provides a greedy strategy which greedily
joins the two clusters giving the maximum increase in modularity in a bottom-
up manner. It can be efficiently applied to large graphs since its complexity is
shown to be linear in the node number on sparse data [6].

However, Louvain’s algorithm [6] is deterministic due to its greedy nature.
To ensure that every pair of virtual points is likely to be merged, we instead join
clusters randomly according to a probability distribution defined based on the
modularity increments [11], which is

Prob(Nx ∪Ny) =
exp(β∆Q(Nx, Ny))∑
i

∑
j exp(β∆Q(Ni, Nj))

, (16)
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clustering 1 clustering 2 clustering 1 clustering 2

Fig. 4. Visualization of the random clustering results produced by stochastic
graph clustering. Cameras of different clusters are in different colors.

where β > 0 is a scaling parameter. Two neighboring clusters Nx and Ny
are more likely to join together if it leads to a larger modularity increment
∆Q(Nx, Ny). In order to limit the sizes of the sub-problems of STBA, we stop
joining clusters if their sizes exceed Γ . In Fig. 4, we visualize the stochastic
clustering results.

5 Experiments

5.1 Experiment Settings

Datasets. We run experiments on three different types of datasets: 1) 1DSfM
dataset [33] which is composed of 14 sets of unordered Internet images; 2) KITTI
dataset [18] containing 11 street-view image sequences; and 3) Large-Scale dataset
which is collected by ourselves due to the absence of publicly available large-scale
3D datasets. It includes 4 image sets each comprising more than 30,000 images.
The problem sizes all exceed the memory of a single compute node and thus we
use them particularly for distributed experiments.

Comparisons. On 1DSfM and KITTI datasets, we compare our method with
two standard trust region algorithms, Levenberg-Marquardt (LM) [25] and Dog-
leg (DL) [26]. For the LM algorithm, we use two variants: LM-sparse and LM-
iterative, which exploit the exact sparse method and inexact iterative method
[23] to solve the RCS (Eq. 5), respectively. For the distributed experiments on
the Large-Scale dataset, we compare our distributed implementation of STBA
against the state-of-the-art distributed solver DBACC [36]. The ablation studies
on steepest descent correction and stochastic graph clustering are presented in
Sec. 5.4 and the supplementary material, respectively.

Implementations. We implement LM, DL and STBA in C++, using Eigen
for linear algebra computations. All the algorithms are implemented from the
same code base, which means that they share the same elementary operations
so that they can be compared equitably. For robustness, we use the Huber loss
with a scale factor of 0.5 for the errors [35]. LM-sparse exploits the supernodal
LLT Cholesky factorization with COLAMD ordering [12] based on CHOLMOD,
which is well suited for handling sparse data like KITTI [18]. LM-iterative uses
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the conjugate gradient method with the advanced cluster-jacobi preconditioner
[23]. DL uses the same exact sparse solver as LM-sparse since it requires a rea-
sonably good estimation of the Gauss-Newton step [26]. Dense LLT factorization
is used to solve the decomposed RCS (Eqs. 13) for STBA due to the dense con-
nectivity inside camera clusters. Multi-threading is applied to the operations
including the reprojection error and Jacobian computation, the preconditioner
construction and the matrix-vector multiplications for all the methods as in [34].

Parameters. In the experiments, we assume that the camera intrinsics have
been calibrated as in [26, 25]. Camera extrinsics are parameterized with 6-d vec-
tors, using axis-angle representations for rotations. We set the initial damping
parameter λ to 1e-4 and the max iteration number to 100 for all the methods.
The iterations could terminate early if the cost, gradient or parameter tolerance
[1] drops below 1e-6. For STBA, we empirically set the scaling parameter β to
10 (Eq. 16) and the max cluster size Γ to 100.

Hardware. We use a compute node with an 8-core Intel i7-4790K CPU and a
32G RAM. The distributed experiments are deployed on a cluster with 6 compute
nodes.

5.2 Performance Profiles

Following previous works [14, 23], we evaluate the solvers with Performance Pro-
files over the total of 25 problems of 1DSfM [33] and KITTI [18]. We obtain the
SfM results for 1DSfM by COLMAP [32]3 and the SLAM results for KITTI
by stereo ORB-SLAM2 [28], while disabling the final bundle adjustment (BA).
Since the SfM/SLAM results are generally accurate because the pipeline uses
repeated BA for robust reconstruction, we make the problems more challenging
by adding Gaussian noise to the points and camera centers following [16, 20, 29].

First of all, we give a brief introduction of performance profiles [14]. Given
a problem p ∈ P and a solver s ∈ S, let F (p, s) denote the final objective the
solver s attained when solving problem p. Then, for a number of solvers in S,
let F ∗(p) = mins∈S F (p, s) denote the minimum objective the solvers S attained
when solving problem p. Next, we define an objective threshold for problem p
which is Fτ (p) = F ∗(p) + τ(F0(p)− F ∗(p)), where F0(p) is the initial objective
and τ ∈ (0, 1) is the pre-defined tolerance determining how close the threshold is
to the minimum objective. After this, we measure the efficiency of a solver s by
computing the time it takes to reduce the objective to Fτ (p), which is denoted
by Tτ (p, s). And the most efficient solver is the one who takes the minimum
time, i.e., mins∈S Tτ (p, s).

The method Performance Profiles regards that the solver s solves the problem
p if Tτ (p, s) ≤ αmins∈S Tτ (p, s), where α ∈ [1,∞). Therefore, if α = 1, only
the most efficient solver is thought to solve the problem, while if α → ∞, all
the solvers can be seen to solve the problem. Finally, the performance profile
of the solver s is defined w.r.t. α over the whole problem set P as ρ(s, α) =

3 Since one of the image sets Union Square has only 10 reconstructed images, we
replace it with another public image set ArtsQuad.
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(a) 𝝉 = 0.1 (b) 𝝉 = 0.01 (c) 𝝉 = 0.001

Fig. 5. Performance profiles [14] of different solvers when solving the total of
25 problems of 1DSfM [33] and KITTI [18].

(a) 1DSfM-Roman Forum (b) 1DSfM-Piccadilly (c) KITTI-00 (d) KITTI-01

Fig. 6. The convergence curves of 4 scenes from 1DSfM and KITTI.

100 ∗ |{p∈P|Tτ (p,s)≤αmins∈S Tτ (p,s)}|
|P| . It is basically the percentage of problems

solved by s and is non-decreasing w.r.t. α.

We plot the performance profiles of the solvers in Fig. 5. To verify the benefits
of using stochastic clustering, herein we also compare STBA with its variant
STBA-fixed which uses a fixed clustering as previous methods [23, 16, 36]. When
τ is equal to 0.1 and 0.01, our STBA is able to solve nearly 100% of the problems
for any α, because it always reaches the objective threshold Fτ (p) with less time
than LM and DL methods by a factor of more than 5. This is mainly attributed
to the reduced per-iteration cost as we can see from the convergence curves in
Fig. 6. When τ becomes 0.001 and the threshold Fτ (p) is harder to achieve,
STBA is less efficient but still performs on par with LM-iterative and LM-sparse
when α < 3 and better than DL for any α. On the contrary, the performance
of STBA-fixed drops drastically when τ decreases to 0.001. The performance
change for STBA and STBA-fixed when τ decreases is mainly caused by the
fact that the clustering methods come with the price of slower convergence near
the stationary points [16, 36]. Compared with the full second-order solvers such
as LM and DL, clustering methods only utilize the second order information
within clusters. However, as opposed to STBA-fixed which uses fixed clustering,
STBA has mitigated the negative effect of clustering by introducing stochasticity
so that different second-order information can be utilized to boost convergence
as the clustering changes. Despite the slower convergence rate, the benefit of
STBA that it can reduce most of the loss with the lowest time cost (e.g ., 99%
loss reduction with only 1/5 time of the counterparts when τ = 0.01 in Fig. 5(b))
is still supposed to be highlighted, especially for the real-time SLAM applications
where bundle adjustment is called repeatedly to correct the drift.
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   (a) LS-1                                                       (b) LS-2                                                    (c) LS-3                                                       (d) LS-4  

Fig. 7. Visualizations of SfM results (top) and convergence curves (bottom)
of the Larse-Scale dataset. Cameras are drawn as blue pyramids.

Table 1. Statistics of the distributed bundle adjustment solvers on the
Large-Scale dataset. DBACC [36] consume many more Jacobian and RCS evalu-
ations than STBA.

Data #images
#clusters RPE (pixel) #Jacobian/RCS evaluations Mean iteration time (s)

DBACC STBA DBACC STBA DBACC STBA DBACC STBA

LS-1 29975 300 340 0.823 0.818 1011/1080 49/100 912.5 71.0

LS-2 33634 336 386 0.766 0.783 854/860 48/100 934.8 79.3

LS-3 33809 339 391 1.083 1.056 1025/1100 49/100 1107.0 89.9

LS-4 44276 444 505 0.909 0.882 877/900 49/100 988.1 71.2

5.3 Results on Large-Scale Dataset

To evaluate the scalability, we conduct distributed experiments on the Large-
Scale (LS) dataset, which includes the urban scenes of four cities named LS-1,
LS-2, LS-3 and LS-4. We run a distributed SfM program of our own to produce
initial sparse reconstructions of the four scenes and add Gaussian noise with
a standard deviation of 3 meters to the camera centers and points. Then we
compare our distributed STBA against the state-of-the-art distributed bundle
adjustment framework DBACC [36].

We visualize the sparse reconstructions and the convergence curves of the
four scenes in Fig. 7 and report the statistics in Table 1. As we can see from
Fig. 7, STBA achieves faster convergence rates than DBACC by an order of
magnitude. The main cause of the gap is that DBACC, which is based on the
ADMM formulation [4], has to take inner iterations to solve a new minimization
problem in every ADMM iteration. Although we have set the maximum inner
iteration number to merely 10, DBACC still takes many more Jacobian and
RCS evaluations and thus has much longer iterations than STBA by an order of
magnitude, as shown in Table 1. Besides, as opposed to DBACC, our STBA is
free of too many hyper-parameters.

5.4 Ablation Study on Steepest Descent Correction

Here we perform an ablation study on steepest descent correction proposed in
Sec. 4.3 to validate its efficacy. We compare our STBA with its variant called
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(a) Yorkminster (b) V. Cathedral (c) KITTI-03 (d) KITTI-05

Fig. 8. Convergence curves of LM-sparse, STBA and STBA* which does not
use steepest descent correction (Sec. 4.3). Steepest descent correction helps to
correct the deviations between the STBA and LM steps.

STBA* which does not use the correction. We run STBA, STBA* and LM-sparse
on 1DSfM and KITTI. Since steepest descent correction is designed particularly
for a small trust region, we set the lower bound of the damping parameter λ to 0.1
in the experiments. We observe that by using the correction, STBA consistently
achieves a faster convergence than STBA* and performs on par with LM-sparse
on all the scenes. Visualizations of the sample convergence curves w.r.t. the
iterations are shown in Fig. 8, where STBA and LM-sparse have very close
convergence curves. It manifests that steep descent correction indeed facilitates
the correction of the approximation errors of the STBA steps and hence boosts
the convergence.

6 Conclusion

In this paper, we rethink the proper way of integrating the clustering scheme
into solving bundle adjustment by proposing STBA. First, STBA reformulates
an LM iteration based on the clustering of the visibility graph, but meanwhile
introduces additional equality constraints across the clusters. Second, we ap-
proximately relax the constraints as chance constraints and solve the problem
by sampled convex program which randomly samples the chance constraints with
the intention of splitting the large reduced camera system into small clusters.
Not only does it reduce the per-iteration cost, but also allows parallel and dis-
tributed computing to accommodate the increase of the problem size. Moreover,
we present a steepest descent correction technique to remedy the approximation
errors of the STBA steps for a small trust region, and provide a practical im-
plementation of stochastic graph clustering for constraint sampling. Extensive
experiments on Internet SfM data, SLAM data and large-scale data demonstrate
the efficiency and scalability of our approach.
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