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Abstract. In this paper, we propose an effective point cloud generation
method, which can generate multi-resolution point clouds of the same
shape from a latent vector. Specifically, we develop a novel progressive de-
convolution network with the learning-based bilateral interpolation. The
learning-based bilateral interpolation is performed in the spatial and fea-
ture spaces of point clouds so that local geometric structure information
of point clouds can be exploited. Starting from the low-resolution point
clouds, with the bilateral interpolation and max-pooling operations, the
deconvolution network can progressively output high-resolution local and
global feature maps. By concatenating different resolutions of local and
global feature maps, we employ the multi-layer perceptron as the gener-
ation network to generate multi-resolution point clouds. In order to keep
the shapes of different resolutions of point clouds consistent, we propose a
shape-preserving adversarial loss to train the point cloud deconvolution
generation network. Experimental results on ShpaeNet and ModelNet
datasets demonstrate that our proposed method can yield good perfor-
mance. Our code is available at https://github.com/fpthink/PDGN.

Keywords: Point cloud generation, GAN, deconvolution network, bi-
lateral interpolation

1 Introduction

With the development of 3D sensors such as LiDAR and Kinect, 3D geometric
data are widely used in various kinds of computer vision tasks. Due to the
great success of generative adversarial network (GAN) [10] in the 2D image
domain, 3D data generation [38,5,7,16,36,11,16,45,47] has been receiving more
and more attention. Point clouds, as an important 3D data type, can compactly
and flexibly characterize geometric structures of 3D models. Different from 2D
image data, point clouds are unordered and irregular. 2D generative models
cannot be directly extended to point clouds. Therefore, how to generate realistic
point clouds in an unsupervised way is still a challenging and open problem.
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Recent research efforts have been dedicated to 3D model generation. Based
on the voxel representation of 3D models, 3D convolutional neural networks (3D
CNNs) can be applied to form 3D GAN [40] for 3D model generation. Nonethe-
less, since 3D CNNs on the voxel representation require heavy computational
and memory burdens, 3D GANs are limited to generate low-resolution 3D mod-
els. Different from the regular voxel representation, point clouds are spatially
irregular. Therefore, CNNs cannot be directly applied on point clouds to form
3D generative models. Inspired by PointNet [20] that can learn compact repre-
sentation of point clouds, Achlioptas et al. [1] proposed an auto-encoder based
point cloud generation network in a supervised manner. Nonetheless, the gener-
ation model is not an end-to-end learning framework. Yang et al. [14] proposed
the PointFlow generation model, which can learn a two-level hierarchical distri-
bution with a continuous normalized flow. Based on graph convolution, Valsesia
et al. [37] proposed a localized point cloud generation model. Shu et al. [31] de-
veloped a tree structured graph convolution network for point cloud generation.
Due to the high computational complexity of the graph convolution operation,
training the graph convolution based generation models is very time-consuming.

In this paper, we propose a simple yet efficient end-to-end generation model
for point clouds. We develop a progressive deconvolution network to map the la-
tent vector to the high-dimensional feature space. In the deconvolution network,
the learning-based bilateral interpolation is adopted to enlarge the feature map,
where the weights are learned from the spatial and feature spaces of point clouds
simultaneously. It is desirable that the bilateral interpolation can capture the lo-
cal geometric structures of point clouds well with the increase of the resolution
of generated point clouds. Following the deconvolution network, we employ the
multi-layer perceptron (MLP) to generate spatial coordinates of point clouds.
By stacking multiple deconvolution networks with different resolutions of point
clouds as the inputs, we can form a progressive deconvolution generation network
to generate multi-resolution point clouds. Since the shapes of multi-resolution
point clouds generated from the same latent vector should be consistent, we for-
mulate a shape-preserving adversarial loss to train the point cloud deconvolution
generation network. Extensive experiments are conducted on the ShapeNet [3]
and ModelNet [11] datasets to demonstrate the effectiveness of our proposed
method. The main contributions of our work are summarized as follows:

— We present a novel progressive point cloud generation framework in an end-
to-end manner.

— We develop a new deconvolution network with the learning-based bilateral
interpolation to generate high-resolution feature maps.

— We formulate a shape-preserving loss to train the progressive point cloud
network so that the shapes of generated multi-resolution point clouds from
the same latent vector are consistent.

The rest of the paper is organized as follows: Section 2 introduces related work.
In Section 3, we present the progressive end-to-end point cloud generation model.
Section 4 presents experimental results and Section 5 concludes the paper.
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2 Related Work

2.1 Deep Learning on 3D Data

Existing 3D deep learning methods can be roughly divided into two classes. One

class of 3D deep learning methods [33,41,22,27] convert the geometric data to
the regular-structured data and apply existing deep learning algorithms to them.
The other class of methods [24,32,17,35,26,28] mainly focus on constructing

special operations that are suitable to the unstructured geometric data for 3D
deep learning.

In the first class of 3D deep learning methods, view-based methods represent
the 3D object as a collection of 2D views so that the standard CNN can be
directly applied. Specifically, the max-pooling operation across views is used
to obtain a compact 3D object descriptor [33]. Voxelization [41,22] is another
way to represent the 3D geometric data with regular 3D grids. Based on the
voxelization representation, the standard 3D convolution can be easily used to
form the 3D CNNs. Nonetheless, the voxelization representation usually leads to
the heavy burden of memory and high computational complexity because of the
computation of the 3D convolution. Qi et al. [27] proposed to combine the view-
based and voxelization-based deep learning methods for 3D shape classification.

In 3D deep learning, variants of deep neural networks are also developed
to characterize the geometric structures of 3D data. [32,35] formulated the un-
structured point clouds as the graph-structured data and employed the graph
convolution to form the 3D deep learning representation. Qi et al. [26] pro-
posed PointNet that treats each point individually and aggregates point features
through several MLPs followed by the max-pooling operation. Since PointNet
cannot capture the local geometric structures of point clouds well, Qi et al. [28]
proposed PointNet++ to learn the hierarchical feature representation of point
clouds. By constructing the k-nearest neighbor graph, Wang et al. [39] proposed
an edge convolution operation to form the dynamic graph CNN for point clouds.
Li et al. [19] proposed PointCNN for feature learning from point clouds, where
the x-transform is learned to form the y-convolution operation.

2.2 3D Point Cloud Generation

Variational auto-encoder (VAE) is an important type of generative model. Re-
cently, VAE has been applied to point cloud generation. Gadelha et al. [8] pro-
posed MRTNet to generate point clouds from a single image. Specifically, using
a VAE framework, a 1D ordered list of points is fed to the multi-resolution en-
coder and decoder to perform point cloud generation in unsupervised learning.
Zamorski et al. [40] applied the VAE and adversarial auto-encoder (AAE) to
point cloud generation. Since the VAE model requires the particular prior dis-
tribution to make KL divergence tractable, the AAE is introduced to learn the
prior distribution by utilizing adversarial training. Lately, Yang et al. [44] pro-
posed a probabilistic framework (PointFlow) to generate point clouds by mod-
eling them as a two-level hierarchical distribution. Nonetheless, as mentioned
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in PointFlow [14], it converges slowly and fails for the cases with many thin
structures (like chairs).
Generative adversarial network (GAN) has also achieved great success in the

field of image generation [2,6,21,29,23]. Recently, a series of attractive works [7,5,1°

ignite a renewed interest in the 3D object generation task by adopting CNNs.
Wu et al. [10] first proposed 3D-GAN, which can generate 3D objects from a
probabilistic space by using the volumetric convolutional network and GAN.
Zhu et al. [48] proposed a GAN-based neural network that can leverage informa-
tion extracted from 2D images to improve the quality of generated 3D models.
However, due to the sparsely occupied 3D grids of the 3D object, the volumetric
representation approach usually faces a heavy memory burden, resulting in the
high computational complexity of the volumetric convolutional network. To alle-
viate the memory burden, Achlioptas et al. [1] proposed a two-stage deep gener-
ative model with an auto-encoder for point clouds. It first maps data points into
the latent representation and then trains a minimal GAN in the learned latent
space to generate point clouds. However, the two-stage point cloud generation
model cannot be trained in an end-to-end manner. Based on graph convolution,
Valsesia et al. [37] focused on designing a graph-based generator that can learn
the localized features of point clouds. Shu et al. [31] developed a tree structured
graph convolution network for 3D point cloud generation.
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Fig. 1. The architecture of our progressive point cloud framework. The progressive
deconvolution generator aims to generate point clouds, while the discriminator distin-
guishes it from the real point clouds.

3 Owur Approach

In this section, we present our progressive generation model for 3D point clouds.
The framework of our proposed generation model is illustrated in Fig. 1. In
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Fig. 2. The constructed deconvolution operation. First, we define the similarity be-
tween point pairs in the feature space (a). We choose the k nearest neighbor points
(k-NN) in the feature space with the defined similarity in (b). Then we interpolate in
the neighborhood to form an enlarged feature map in (c). Finally, we apply the MLP
to generate new high-dimensional feature maps in (d). Note that we can obtain double
numbers of points through the deconvolution operation.

Section 3.1, we describe how to construct the proposed progressive deconvolution
generation network. In Section 3.2, we present the details of the shape-preserving
adversarial loss to train the progressive deconvolution generation network.

3.1 Progressive deconvolution generation network

Given a latent vector, our goal is to generate high-quality 3D point clouds.
One key problem in point cloud generation is how to utilize a one-dimensional
vector to generate a set of 3D points consistent with the 3D object in geometry.
To this end, we develop a special deconvolution network for 3D point clouds,
where we first obtain the high-resolution feature map with the learning-based
bilateral interpolation and then apply MLPs to generate the local and global
feature maps. It is desirable that the fusion of the generated local and global
feature maps can characterize the geometric structures of point clouds in the
high-dimensional feature space.

Learning-based bilateral interpolation. Due to the disordered and ir-
regular structure of point clouds, we cannot directly perform the interpolation
operation on the feature map. Therefore, we need to build a neighborhood for
each point on the feature map to implement the interpolation operation. In this
work, we simply employ the k-nearest neighbor (k-NN) to construct the neigh-
borhood of each point in the feature space. Specifically, given an input with NV
feature vectors x; € R?, the similarity between points i and j is defined as:

aiy = exp (~ 8}z — a;13) M

where (3 is empirically set as 8 = 1 in our experiments. As shown in Figs. 2 (a)
and (b), we can choose k nearest neighbor points in the feature space with the
defined similarity. And the parameter k is set as k = 20 in this paper.

Once we obtain the neighborhood of each point, we can perform the inter-
polation in it. As shown in Fig. 2 (c¢), with the interpolation, k points in the
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neighborhood can be generated to 2k points in the feature space. Classical inter-
polation methods such as linear and bilinear interpolations are non-learning in-
terpolation methods, which cannot be adaptive to different classes of 3D models
during the point cloud generation process. Moreover, the classical interpolation
methods does not exploit neighborhood information of each point in the spatial
and feature space simultaneously.

To this end, we propose a learning-based bilateral interpolation method that
utilizes the spatial coordinates and features of the neighborhood of each point to
generate the high-resolution feature map. Given the point p; € R? and k points
in its neighborhood, we can formulate the bilateral interpolation as:

k
> =1 ¢ (Pis pj) b1 (i x5) x50
k
> i—1 ¢ (Pispj) 1 (4, @)

Ti = (2)
where p; and p; are the 3D spatial coordinates, x; and x; are the d-dimensional
feature vectors, ¢ (p;,p;) € R? and ¢ (z;, z;) € R? are two embeddings in the
spatial and feature spaces, &;; is the I-th element of the interpolated feature Z;,
1=1,2,---,d. The embeddings ¢ (p;,p;) and ¢ (x;, x;) can be defined as:

@ (Pi;p;) = ReLUW,; (pi = p;)), ¢ (@i, ;) = ReLUW, ; (i — ;)  (3)

where ReLU is the activation function, Wy ; € R3*? and W, ; € R¥? are
the weights to be learned. Based on the differences between the points p; and
D; , pi —p; and x; — x;, the embeddings ¢ (p;, p;) and ¢ (x;, x;) can encode
local structure information of the point p; in the spatial and feature spaces,
respectively. It is noted that in Eq. 2 the channel-wise bilateral interpolation is
adopted. As shown in Fig. 3, the new interpolated feature &; can be obtained
from the neighborhood of x; with the bilateral weight. For each point, we per-
form the bilateral interpolation in the k-neighborhood to generate new k points.
Therefore, we can obtain a high-resolution feature map, where the neighborhood
of each point contains 2k points.

After the interpolation, we then apply the convolution on the enlarged feature
maps. For each point, we divide the neighborhood of 2k points into two regions
according to the distance. As shown in Fig. 2 (c), the closest k points belong
to the first region and the rest as the second region. Similar to PointNet [26],
we first use the MLP to generate high-dimensional feature maps and then use
the max-pooling operation to obtain the local features of the two interpolated
points from two regions. As shown in Fig. 2 (d), we can double the number of
points from the inputs through the deconvolution network to generate a high-
resolution local feature map Xj,.q;- We also use the max-pooling operation to
extract the global feature of point clouds. By replicating the global feature for
N times, where N is the number of points, we can obtain the high-resolution
global feature map X g;opq;. Then we concatenate the local feature map Xjoca
and the global feature map Xgopq; to obtain the output of the deconvolution
network X. = [Xjocai; ngobal]. Thus, the output X. can not only characterize
the local geometric structures of point clouds, but also capture the global shape
of point clouds during the point cloud generation process.
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Fig. 3. The illustration of the learning-based bilateral interpolation method. The points
in the neighborhood of the center point @; are colored. We interpolate new points by
considering the local geometric features of the points in the neighborhood. Wy ; and
Wy, 5 =1,2,3,4, are the weights in the spatial and feature spaces to be learned.

3D point cloud generation. Our goal is to progressively generate 3D point
clouds from the low resolution to the high resolution. Stacked deconvolution
networks can progressively double the number of points and generate their high-
dimensional feature maps. We use the MLP after each deconvolution network to
generate the 3D coordinates of point clouds at each resolution. Note that two
outputs of the DECONYV block are the same, one for generating 3D coordinates
of point clouds and the other as the features of the point clouds. We concatenate
the generated 3D coordinates with the corresponding features as the input to
the next DECONYV block.

3.2 Shape-preserving adversarial loss

Shape-consistent constraint. During the training process, different resolu-
tions of 3D point clouds are generated. With the increase of the resolution of the
output of the progressive deconvolution network, generated point clouds become
denser. It is expected that the local geometric structures of the generated point
clouds are as consistent as possible between different resolutions. Since our pro-
gressive deconvolution generation network is an unsupervised generation model,
it is difficult to distinguish different shapes from the same class of 3D objects
for the discriminator. Thus, for the specific class of 3D objects, the deconvolu-
tion generation networks at different resolutions might generate 3D point clouds
with different shapes. Therefore, we encourage that the means and covariances
of the neighborhoods of the corresponding points between different resolutions
are as close as possible so that the corresponding parts of different resolutions
of generated point clouds are consistent.

Shape-preserving adversarial loss. We employ the mean and covariance
of the neighborhoods of the corresponding points to characterize the consistency
of the generated point clouds between different resolutions. We use the farthest
point sampling (FPS) to choose centroid points from each resolution and find
the k-neighborhoods for centroid points. The mean and covariance of the neigh-
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borhood of the i-th centroid point are represented as:

.
> jen; Pi dien; Pj —wi) (P — 1)
pi=—"1"— Oi= 1 (4)

where N; is the neighborhood of the centroid point, p; € R3 is the coordinates
of the point cloud, u; € R? and o; € R**3 are the mean and covariance of the
neighborhood, respectively.

Since the sampled centroid points are not completely matched between adja-
cent resolutions, we employ the Chamfer distances of the means and covariances
to formulate the shape-preserving loss. We denote the centroid point sets at
the resolutions [ and [ + 1 by S; and S;41, respectively. The Chamfer distance
dy (S, Si4+1) between the means of the neighborhoods from the adjacent resolu-
tions is defined as:

1 1
d1(S1, S, = max —E min i— Mill2, —— E min L —
1( l l+1) { |Sl| < J€Sia1 HIJ’ IJ'JHQ |Sl+1| . €S, ||H’J 12 ”2
1€S] JESI+1
(5)

Similarly, the Chamfer distance d2(S;,S;+1) between the covariances of the
neighborhoods is defined as:

1 1
d2(S1, Si41) = max ¢ — g min ||o; —oj||r — E min ||o; — oil|F
’ 1S jes, 1S5 ' R /Y Pl ics 7 !
(6)

The shape-preserving loss (SPL) for multi-resolution point clouds is defined as:

M—-1

SPL(Gy,Giy1) = Y di(Si, Siy) + da(Si, Siv1) (7)

1=1
where M is the number of resolutions, G; and G;;; represents the [-th and
(I + 1)-th point cloud generators, respectively.

Based on Eq. 7, for the generator G; and discriminator D;, we define the
following shape-preserving adversarial loss:

L(D1) = Esnp,.qi(s)(l0g Di(s) +log(1 — Di(Gi(2))))
L(G1) = Eznp, (=) (log(1 — Di(Gi(2)))) + ASPL(Gi(2), Gi+1(2))

(®)

where s is the real point cloud sample, z is the randomly sampled latent vector
from the distribution p(z) and A is the regularization parameter. Note that we
ignore the SPL in L(G);) for | = M. Thus, multiple generators G and discrimi-
nators D can be trained with the following equation:

mazxp Zl]\il L(D;), ming Zil L(Gy) 9)

where D = {D1, Dy, -+ ,Dy} and G = {G1,Ga, - ,Gpr}. During the training
process, multiple generators GG and discriminators D are alternatively optimized
till convergence.
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4 Experiments

4.1 Experimental Settings

We evaluate our proposed generation network on three popular datasets includ-
ing ShapeNet [3], ModelNet10 and ModelNet40 [41]. ShapeNet is a richly an-
notated large-scale point cloud dataset containing 55 common object categories
and 513,000 unique 3D models. In our experiments, we only use 16 categories
of 3D objects. ModelNet10 and ModelNet40 are subsets of ModelNet, which
contain 10 categories and 40 categories of CAD models, respectively.

Our proposed framework mainly consists of progressive deconvolution gen-
erator and shape-preserving discriminator. In this paper, we generate four res-
olutions of point clouds from a 128-dimensional latent vector. In the generator,
the output size of 4 deconvolution networks are 256x32, 512x64, 1024x 128 and
2048x256. We use MLPs to generate coordinates of point clouds. Note that
MLPs are not shared for 4 resolutions. After the MLP, we adopt the Tanh ac-
tivation function. In the discriminator, we use 4 PointNet-like structures. For
different resolutions, the network parameters of the discriminators are differ-
ent. We use Leaky ReLU [12] and batch normalization [13] after every layer.
The more detailed structure of our framework is shown in the supplementary
material. In addition, we use the & = 20 nearest points as the neighborhood
for the bilateral interpolation. During the training process, we adopt Adam [15]
with the learning rate 10~# for both generator and discriminator. We employ an
alternative training strategy in [10] to train the generator and discriminator.
Specifically, the discriminator is optimized for each generator step.

4.2 Evaluation of point cloud generation

Visual results. As shown in Fig. 4, on the ShapeNet [3] dataset, we visualize
the synthesized point clouds containing 4 categories, which are “Airplane”, “Ta-
ble”, “Chair”, and “Lamp”, respectively. Due to our progressive generator, each
category contains four resolutions of point clouds generated from the same latent
vector. It can be observed that the geometric structures of different resolutions
of generated point clouds are consistent. Note that the generated point clouds
contain detailed structures, which are consistent with those of real 3D objects.
More visualizations are shown in the supplementary material.

Quantitative evaluation. To conduct a quantitative evaluation of the gen-
erated point clouds, we adopt the evaluation metric proposed in [1,20], including
Jensen-Shannon Divergence (JSD), Minimum Matching Distance (MMD), and
Coverage (COV), the earth mover’s distance (EMD), the chamfer distance (CD)
and the 1-nearest neighbor accuracy (1-NNA). JSD measures the marginal dis-
tributions between the generated samples and real samples. MMD is the distance
between one point in the real sample set and its nearest neighbors in the gen-
eration set. COV measures the fraction of point clouds in the real sample set
that can be matched at least one point in the generation set. 1-NNA is used as a
metric to evaluate whether two distributions are identical for two-sample tests.



10 L.Hui, R.Xu, J.Xie, J.Qian, J.Yang

Fig. 4. Generated point clouds including “Airplane”, “Table”, “Chair” and “Lamp”.
Each category has four resolutions of point clouds (256, 512, 1024 and 2048).

Table. 1 lists our results with different criteria on the “Airplane” and “Chair”
categories in the ShapeNet dataset. In Table. 1, except for PointFlow [44] (VAE-
based generation method), the others are GAN-based generation methods. For
these evaluation metrics, in most cases, our point cloud deconvolution generation
network (PDGN) outperforms other methods, demonstrating the effectiveness of
the proposed method. Moreover, the metric results on the “Car” category and
the mean result of all 16 categories are shown in the supplementary material.

Table 1. The results on the “Airplane” and “Chair” categories. Note that JSD scores
and MMD-EMD scores are multiplied by 10%, while MMD-CD scores are multiplied by
10°.

MMD (1) COV (%, 1) 1-NNA (%, 1)

Category Model JSD ({)
CD EMD CD EMD CD EMD
r-GAN [1] 7.44 0.261 5.47 42.72 18.02 93.50 99.51
LGAN (CD) [1] 462 0239 4.27 4321 21.23 86.30 97.28
LGAN (EMD) [1]  3.61  0.269 3.29 47.90 50.62 87.65 85.68
Airplane PC-GAN [13] 4.63 0.287 3.57 36.46 40.94 94.35 92.32
GCN-GAN [37] 8.30 0.800 7.10 31.00 14.00 - -
tree-GAN [31] 9.70 0.400 6.80 61.00 20.00 - -
PointFlow [44] 4.92 0.217 3.24 46.91 48.40 75.68 75.06
PDGN (ours) 3.32 0.281 2.91 64.98 53.34 63.15 60.52
r-GAN [1] 11.5 2,57 12.8 33.99 997 71.75 99.47
LGAN (CD) [1] 459 246 891 41.39 25.68 64.43 8527
LGAN (EMD) [1] 227 261 7.85 40.79 41.69 64.73 65.56
Chair PC-GAN [18] 3.90 2.75 820 36.50 38.98 76.03 78.37
GCN-GAN [37] 10.0 2.90 9.70 30.00 26.00 - -
tree-GAN [31] 119  1.60 10.1 58.00 30.00 - -
PointFlow [414] 1.74 2.24 787 46.83 46.98 60.88 59.89
PDGN (ours) 1.71 1.93 6.37 61.90 57.89 52.38 57.14

Different from the existing GAN-based generation methods, we develop a pro-
gressive generation network to generate multi-resolution point clouds. In order to
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generate the high-resolution point clouds, we employ the bilateral interpolation
in the spatial and feature spaces of the low-resolution point clouds to produce the
geometric structures of the high-resolution point clouds. Thus, with the increase
of resolutions, the structures of generated point clouds are more and more clear.
Therefore, our PDGN can yield better performance in terms of these evaluation
criteria. In addition, compared to PointFlow, our method can perform better on
point clouds with thin structures. As shown in Fig. 5, it can be seen that our
method can generate more complete point clouds. Since in PointFlow the VAE
aims to minimize the lower bound of the log-likelihood of the latent vector, it
may fail for point clouds with thin structures. Nonetheless, due to the bilateral
deconvolution and progressive generation from the low resolution to the high
resolution, our PDGN can still achieve good performance for point cloud gen-
eration with thin structures. For more visualization comparisons to PointFlow
please refer to the supplementary material.

PointFlow

Ours

Fig. 5. Visualization results on the “Airplane” and “Chair” categories.

Classification results. Following [40,44], we also conduct the classification
experiments on ModelNet10 and ModelNet40 to evaluate our generated point
clouds. We first use all samples from ModelNet40 to train our network with
the iteration of 300 epochs. Then we feed all samples from ModelNet40 to the
trained discriminator (PointNet) for feature extraction. With these features, we
simply train a linear SVM to classify the generated point clouds. The settings of
ModelNet10 are consistent with ModelNet40. The classification results are listed
in Table. 2. Note that for a fair comparison we only compare the point cloud
generation methods in the classification experiment. It can be found that our
PDGN outperforms the state-of-the-art point cloud generation methods on the
ModelNet10 and ModelNet40 datasets. The results indicate that the generator
in our framework can extract discriminative features. Thus, our generator can
produce high-quality 3D point clouds.

Computational cost. We compare our proposed method to PointFlow
and tree-GAN in terms of the training time and GPU memory. We conduct
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Table 2. Classification results on ModelNet10 (MN10) and ModelNet40 (MN40).

Model MN10 (%) MN40 (%)

SPH [11] 79.8 68.2
LFD [] 79.9 75.5
T-L Network [9] - 74.4
VConv-DAE [30]  80.5 75.5
3D-GAN [10] 91.0 83.3
PointGrow [34] - 85.7
MRTNet [5] 91.7 86.4
PointFlow [11] 93.7 86.8
PDGN (ours) 94.2 87.3

point cloud generation experiments on the “Airplane” category in the ShapeNet
dataset. For a fair comparison, both codes are run on a single Tesla P40 GPU
using the PyTorch [25] framework. For training 1000 iterators with 2416 samples
of the “Airplane” category, our proposed method costs about 1.9 days and 15G
GPU memory, while PointFlow costs about 4.5 days and 7.9G GPU memory,
and tree-GAN costs about 2.5 days and 9.2G GPU memory. Our GPU memory
is larger than others due to the four discriminators.

4.3 Ablation study and analysis

Bilateral interpolation. We conduct the experiments with different ways to
generate the high-resolution feature maps, including the conventional reshape
operation, bilinear interpolation and learning-based bilateral interpolation. In
the conventional reshape operation, we resize the feature maps to generate new
points. As shown in Fig. 6, we visualize the generated point clouds from differ-
ent categories. One can see that the learning-based bilateral interpolation can
generate more realistic objects than the other methods. For example, for the “Ta-
ble” category, with the learning-based bilateral interpolation, the table legs are
clearly generated. On the contrary, with the bilinear interpolation and reshape
operation, the generated table legs are not complete. Besides, we also conduct a
quantitative evaluation of generated point clouds. As shown in Table. 3, on the
“Chair” category, PDGN with the bilateral interpolation can obtain the best
metric results. In contrast to the bilinear interpolation and reshape operation,
the learning-based bilateral interpolation exploits the spatial coordinates and
high-dimensional features of the neighboring points to adaptively learn weights
for different classes of 3D objects. Thus, the learned weights in the spatial and
feature spaces can characterize the geometric structures of point clouds better.
Therefore, the bilateral interpolation can yield good performance.
Shape-preserving adversarial loss. To demonstrate the effectiveness of
our shape-preserving adversarial loss, we train our generation model with the
classical adversarial loss, EMD loss, CD loss and shape-preserving loss. It is noted
that in the EMD loss and CD loss we replace the shape-preserving constraint
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Fig. 6. Visualization results with different operations in the deconvolution network.

Table 3. The ablation study results on the “Chair” category.

MMD (}) COV (%,1) 1-NNA (%, )
CD EMD CD EMD CD EMD

PDGN (reshape) 8.69  3.38 9.30 55.01 44.49 82.60 80.43
PDGN (bilinear interpolation) 5.02  3.31 883 53.84 4835 69.23 68.18
PDGN (bilateral interpolation) 1.71  1.93 6.37 61.90 57.89 52.38 57.14

Model JSD (1)

PDGN (adversarial loss) 3.28 3.00 8.82 56.15 53.84 57.14 66.07
PDGN (EMD loss) 3.35 3.03 8.80 53.84 53.34 60.89 68.18
PDGN (CD loss) 3.34 3.38 9.53 55.88 52.63  59.52 67.65
PDGN (shape-preserving loss) 1.71 1.93 6.37 61.9057.89 52.38 57.14
PDGN (256 points) 5.57 5.12 9.69  39.47 42.85 67.56 70.27
PDGN (512 points) 4.67 4.89 9.67 47.82 51.17 7142 67.86
PDGN (1024 points) 2.18 4.53 11.0 56.45 55.46 64.71 70.58
PDGN (2048 points) 1.71 1.93 6.37 61.9057.89 52.38 57.14

(Eq. 7) with the Earth mover’s distance and Chamfer distance of point clouds be-
tween the adjacent resolutions, respectively. We visualize the generated points
with different loss functions in Fig. 7. One can see that the geometric struc-
tures of different resolutions of generated point clouds are consistent with the
shape-preserving adversarial loss. Without the shape-preserving constraint on
the multiple generators, the classical adversarial loss cannot guarantee the con-
sistency of generated points between different resolutions. Although the EMD
and CD losses impose the constraint on different resolutions of point clouds, the
loss can only make the global structures of point clouds consistent. On the con-
trary, the shape-preserving loss can keep the consistency of the local geometric
structures of multi-resolution point clouds with the mean and covariance of the
neighborhoods. Thus, our method with the shape-preserving loss can generate
high-quality point clouds. Furthermore, we also conduct a quantitative evalua-
tion of generated point clouds. As shown in Table. 3, metric results show that
the shape-preserving loss can obtain better results than the other three losses.
Point cloud generation with different resolutions. To verify the effec-
tiveness of our progressive generation framework, we evaluate the metric results
of generated point clouds in the cases of different resolutions. As shown in Ta-
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(c) CD loss (d) shape-preserving loss

Fig. 7. Visualization results of generated point clouds with different loss functions. For
each loss, four resolutions of point clouds (256, 512, 1024 and 2048) are visualized.

ble. 3, for the “Chair” category, we report the results in the cases of four resolu-
tions. One can see that as the resolution increases, the quality of the generated
point clouds is gradually improved in terms of the evaluation criteria. As shown
in Fig. 4, with the increase of resolutions, the local structures of point clouds be-
come clearer. This is because our progressive generation framework can exploit
the bilateral interpolation based deconvolution to generate the coarse-to-fine
geometric structures of point clouds.

5 Conclusions

In this paper, we proposed a novel end-to-end generation model for point clouds.
Specifically, we developed a progressive deconvolution network to generate multi-
resolution point clouds from the latent vector. In the deconvolution network, we
employed the learning-based bilateral interpolation to generate high-resolution
feature maps so that the local structures of point clouds can be captured during
the generation process. In order to keep the geometric structure of the gener-
ated point clouds at different resolutions consistent, we formulated the shape-
preserving adversarial loss to train the point cloud deconvolution network. Ex-
perimental results on ShapeNet and ModelNet datasets verify the effectiveness
of our proposed progressive point cloud deconvolution network.

Acknowledgments

This work was supported by the National Science Fund of China (Grant Nos.
U1713208, 61876084, 61876083), Program for Changjiang Scholars.



Progressive Point Cloud Deconvolution Generation Network 15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: ICML (2018)

Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint
arXiv:1701.07875 (2017)

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3d
model retrieval. CGF (2003)

Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In: ECCV (2016)

Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
alaplacian pyramid of adversarial networks. In: NeurIPS (2015)

Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object recon-
struction from a single image. In: CVPR (2017)

Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud
processing. In: ECCV (2018)

Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and
generative vector representation for objects. In: ECCV (2016)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NeurIPS (2014)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-maché
approach to learning 3d surface generation. In: CVPR (2018)

Gwak, J., Choy, C.B., Chandraker, M., Garg, A., Savarese, S.: Weakly supervised
3d reconstruction with adversarial constraint. In: 3DV (2017)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical har-
monic representation of 3d shape descriptors. In: SGP (2003)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kulkarni, N., Misra, I., Tulsiani, S., Gupta, A.: 3d-relnet: Joint object and rela-
tional network for 3d prediction. In: ICCV (2019)

Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with
superpoint graphs. In: CVPR (2018)

Li, C.L., Zaheer, M., Zhang, Y., Péczos, B., Salakhutdinov, R.: Point cloud gan.
arXiv preprint arXiv:1810.05795 (2018)

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
x-transformed points. In: NeurIPS (2018)

Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. In: ICLR (2016)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares
generative adversarial networks. In: ICCV (2017)

Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: IROS (2015)

Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model cnns. In: CVPR
(2017)



16

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

L.Hui, R.Xu, J.Xie, J.Qian, J.Yang

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N.; Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS (2019)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

Qi, C.R., Su, H., Niefiner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
multi-view cnns for object classification on 3d data. In: CVPR (2016)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS (2017)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

Sharma, A., Grau, O., Fritz, M.: Vconv-dae: Deep volumetric shape learning with-
out object labels. In: ECCV (2016)

Shu, D.W., Park, S'W., Kwon, J.: 3d point cloud generative adversarial network
based on tree structured graph convolutions. In: ICCV (2019)

Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: CVPR (2017)

Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3d shape recognition. In: ICCV (2015)

Sun, Y., Wang, Y., Liu, Z., Siegel, J.E., Sarma, S.E.: Pointgrow: Autoregressively
learned point cloud generation with self-attention. arXiv preprint arXiv:1810.05591
(2018)

Te, G., Hu, W., Guo, Z., Zheng, A.: Rgcnn: Regularized graph cnn for point cloud
segmentation. In: ACM MM (2018)

Tulsiani, S., Gupta, S., Fouhey, D.F., Efros, A.A., Malik, J.: Factoring shape, pose,
and layout from the 2d image of a 3d scene. In: CVPR (2018)

Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3d
point clouds via graph convolution. In: ICLR (2018)

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generating
3d mesh models from single rgb images. In: ECCV (2018)

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829 (2018)
Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In: NeurIPS
(2016)

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: CVPR (2015)

Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

Yang, B., Wen, H., Wang, S., Clark, R., Markham, A., Trigoni, N.: 3d object
reconstruction from a single depth view with adversarial learning. In: ICCV (2017)
Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: ICCV (2019)
Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: Point cloud auto-encoder via
deep grid deformation. In: CVPR (2018)

Zamorski, M., Zikeba, M., Nowak, R., Stokowiec, W., Trzcinski, T.: Adversar-
ial autoencoders for compact representations of 3d point clouds. arXiv preprint
arXiv:1811.07605 (2018)

Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In: CVPR
(2019)



Progressive Point Cloud Deconvolution Generation Network 17

48. Zhu, J., Xie, J., Fang, Y.: Learning adversarial 3d model generation with 2d image
enhancer. In: AAAT (2018)



	Progressive Point Cloud Deconvolution Generation Network

