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Abstract. Existing facial attribute editing methods typically employ
an encoder-decoder architecture where the attribute information is ex-
pressed as a conditional one-hot vector spatially concatenated with the
image or intermediate feature maps. However, such operations only learn
the local semantic mapping but ignore global facial statistics. In this
work, we focus on solving this issue by editing the channel-wise global
information denoted as the style feature. We develop a style skip con-
nection based generative adversarial network, referred to as SSCGAN
which enables accurate facial attribute manipulation. Specifically, we in-
ject the target attribute information into multiple style skip connection
paths between the encoder and decoder. Each connection extracts the
style feature of the latent feature maps in the encoder and then per-
forms a residual learning based mapping function in the global infor-
mation space guided by the target attributes. In the following, the ad-
justed style feature will be utilized as the conditional information for in-
stance normalization to transform the corresponding latent feature maps
in the decoder. In addition, to avoid the vanishing of spatial details (e.g.
hairstyle or pupil locations), we further introduce the skip connection
based spatial information transfer module. Through the global-wise style
and local-wise spatial information manipulation, the proposed method
can produce better results in terms of attribute generation accuracy and
image quality. Experimental results demonstrate the proposed algorithm
performs favorably against the state-of-the-art methods.
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1 Introduction

Given a facial photo, attribute editing aims to translate the image to enable tar-
get attribute transfer while preserving the image content, i.e., the identity infor-
mation, illumination, and other irrelevant attributes). During the past decades,
attribute guided facial manipulation has drawn considerable attentions [6, 12, 33,
23], and widely used in many real-world visual applications. However, it is very
challenging to generate high-quality and accurate facial editing results due to
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Fig. 1: Visualization of style features in different stages for attribute
eyeglasses and male. We use t-SNE [27] to visualize the distributions of style
features. Each point indicates a sample and different colors indicate whether
this sample exhibits this attribute. It is observed that the style features at some
specific stages are separated well, which means the style features could represent
the attributes accurately. In addition, the style features in stage 4 and stage 3
for eyeglasses and male are the most discriminative, respectively. Therefore, the
style features in different stages may capture different attribute information.

the high-dimensional output space, complex facial structure, and vague attribute
definitions. Besides, due to the absence of paired examples for training, it could
only be tackled through an unpaired manner resulting in more difficulties.

With the rapid development of Generative Adversarial Networks (GANs) [8],
there have been a large number of attempts [6,12,5,23,36] for facial editing.
Most existing methods employ an encoder-decoder architecture, and rely on
conditional GANs [28,29]. Specifically, the attribute information is represented
as a one-hot vector [6], where each bit indicates a specific attribute. This vector
is then expanded and concatenated with the input image or intermediate feature
maps [6,23,36] to guide the feature transformation. Furthermore, the attribute
information will be used as the supervised signals of the auxiliary loss combined
with the cycle consistency loss [41] and adversarial loss [8], as to compose the
overall objectives for stable and effective training.

However, providing the attributes in each spatial location and then manip-
ulating the feature maps locally may ignore the global structure which leads to
unsatisfactory performance. The channel-wise feature map manipulation is an
important and effective technique for harvesting the global information in many
visual tasks such as image classification [11] and semantic segmentation [40],
which has not been well explored in facial attribute editing. That motivated us
to perform attribute transfer via the manipulation of the global channel-wise
statistics of the latent feature maps.

Following [13, 18], we employ the channel-wise mean and variance of the
feature maps as the global information and denote them as the style feature. Here,
we take the advanced image generation method StyleGAN [18] as an example
to verify the relationship between the style feature and different attributes. To
be more specific, we leverage an efficient embedding algorithm [1] to compute
the style feature of the well-annotated facial attribute dataset CelebA [26] and
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then employ the Neighborhood Components Analysis [31] to perform supervised
dimensionality reduction for each attribute. Then we use t-SNE [27] to visualize
the distributions of style features in different stages of the decoder. As shown in
Fig. 1, we can observe that the style features at some specific stages are separated
well, which means the style features could represent the attributes accurately.
In addition, the style features in stage 4 and stage 3 for eyeglasses and male are
the most discriminative, respectively. Therefore, the style features in different
stages may control different attribute information.

Inspired by the good characteristic of the style feature on controlling fa-
cial attributes, we propose to edit the latent feature maps via style skip con-
nections, which modify the global channel-wise statistics to achieve attribute
transfer. Specifically, we leverage the style information in the encoder and tar-
get attributes to inference the desired statistic information of the latent feature
maps in the decoder. Then the manipulated style information is utilized as the
conditional input for instance normalization to adjust the distribution of the
corresponding latent feature maps in the decoder. However, we find the style
information is spatial invariant and may drop the spatial variations, which in
some cases describe the local details like the pupil locations or hair texture. To
address this issue, we further employ the spatial information based skip connec-
tions, which extract the spatial details from the latent feature maps and transfers
them to the decoder. In summary, the global-wise style manipulation can handle
the facial attribute transfer, and the local-wise spatial information transfer can
make up the local finer details.

The main contributions of this work are as follows. First, we introduce a
style skip connection based architecture to perform facial attribute editing which
manipulates the latent feature maps in terms of global statistic information.
Second, a spatial information transfer module is developed to avoid the vanishing
of finer facial details. Third, the visual comparisons and quantitative analysis on
the large-scale facial attribute benchmark CelebA [26] demonstrate that our
framework achieves favorable performance against the state-of-the-art methods.

2 Related Work

Image-to-image translation. Recent years have seen tremendous progress in
image-to-image translation, relying on generative adversarial networks [8,2]. To
model the mapping from input to output images, Pix2pix [15] utilizes a patch-
based adversarial loss which forces the generated images indistinguishable from
target images and achieves reasonable results. However, the paired training is
usually not available in real-world scenarios, CycleGAN [41], DiscoGAN [19],
and UNIT [24] constrain the mapping through an additional cycle consistency
loss. Furthermore, MUNIT [14] and DRIT [21] model the input images with
disentangled content and attribute representations and thus generate diverse
outputs. In addition, FUNIT [25] handles the few-shot image translation task
which only provides a few target images for learning the mapping. However,
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these methods could only tackle image translation between two domains, thus
they can not be applied to the facial attribute transfer task directly.

Facial editing. Most facial editing methods are based on conditional GANs [28,
29]. The conditional information can be facial attributes [6, 39,23, 36], expres-
sions [33,38], poses [12,3] or reference images [5,37]. Among them, facial at-
tribute editing has caused great attentions due to its wide applications. Ic-
GAN [32] generates the attribute-independent latent representation and then the
target attribute information is combined as input to the conditional GANs. To
achieve better multi-domain translation, StarGAN [6] and AttGAN [9] employ
an additional attribute classifier to constrain the output image. Furthermore,
STGAN [23] adopts a skip connection based architecture and transfers the fea-
ture maps selectively according to the desired attribute change which produces
visually realistic editing. Similar to STGAN [23], RelGAN [36] also leverages the
relative attribute differences for fine-grained control. Existing methods usually
modify the entire feature maps locally according to the desired attributes which
ignore the global information. Instead, we find that the statistical information
like mean and variance of the feature maps are very informative.

Style-based face generation. Recently, a number of improved GANs have
been proposed [35,17,4,18] which produce promising results with high resolu-
tion. StyleGAN [18] achieves impressive performance by adopting a style-based
generator relying on the conditional adaptive instance normalization [13]. That
has inspired several extensions [34, 1] to perform facial manipulation with Style-
GAN. However, these methods [34, 1] employ an optimization-based embedding
algorithm which uses 5000 gradient descent steps, taking about 7 minutes on
an advanced V100 GPU device. Also, they are constrained by the pretrained
StyleGAN model and could not be applied to other tasks flexibly.

3 Method

In this work, we introduce a facial attribute manipulation algorithm through
editing the intermediate feature maps via style and spatial information guided
skip connections. As shown in Fig. 1, the style features in multi-stages are re-
sponsible for different attributes, respectively. That inspired us to manipulate
the facial image by adjusting the global statistic information in the feature maps.
Different from existing methods that concatenate the target attribute informa-
tion with the latent feature maps to achieve local feature transformation, our
method aims to edit the facial attributes globally. As a result, the proposed
approach can achieve more effective and accurate manipulation.

The overall framework is based on an encoder-decoder architecture shown
in Fig. 2. Specifically, we leverage two kinds of skip connections between the
encoder and decoder to incorporate the target attribute information. The goal
of the first kind of skip connections is to obtain the style information of the
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Fig.2: Framework of the proposed algorithm. The overall framework is
based on an encoder-decoder architecture. We combine the style skip connec-
tions and spatial information transfer to achieve facial attribute editing. Specif-
ically, the style information in the encoder and target attributes are utilized to
inference the desired statistic information for adjusting the latent feature maps
in the decoder in a global way. Besides, we employ the spatial information based
skip connections to transfer spatial details to the decoder, so that the proposed
method can achieve local feature transformation and recovery for the pupil lo-
cations or hair texture.

latent feature maps in the encoder and then perform a residual learning based
style transformation under the instruction of the target attributes. After that,
we employ it as the conditional information for instance normalization on the
corresponding latent feature maps in the decoder. To make up the vanishing
of the facial details, we introduce a spatial information based skip connection
which reserves the spatial variations in the latent feature maps. To be more
specific, this information will be concatenated with the latent feature maps in
the decoder to perform the local feature transformation. In the following, we first
describe the network architecture. Next, we describe the style and spatial based
image manipulation module, Finally, we present the loss functions for training
and implementation details.

3.1 Multiple Skip Connections Architecture

Considering the style features in different stages control different attributes as
shown in Fig. 1, a skip connection at some specific stage is not general for var-
ious attributes. Also, as demonstrated in StyleGAN [18], the style information
in the low-resolution feature maps could represent coarse level attributes like
pose, face shape and eyeglasses. Instead, the high-resolution feature maps could
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control finer details like eyes open/closed, color scheme and micro-structure. As
a result, only using part of the skip connections may miss the control for some
specific attributes. In addition, the spatial details are also sensitive to differ-
ent resolutions. Therefore, we utilize multiple skip connections to manipulate
both the coarse facial structure and finer local facial information. Specifically,
we employ 6 stages for the encoder and decoder, respectively. Each stage in the
encoder/decoder has one residual block and down-samples/up-samples the fea-
ture maps by 2 times, respectively. Besides, it has the style and spatial based
skip connections sent to the corresponding stage in the decoder.

3.2 Style Skip Connections

In this section, we introduce the design methodology of the style manipulation
part. The goal is to modify the latent feature maps in the decoder globally to
enable accurate attribute transfer while preserving irrelevant facial information.
Suppose the architectures for the encoder and decoder are symmetric and both
have n stages. For simplicity, we denote the feature maps in the encoder and
decoder as f2, ., f2.., -+, 2, and £}, £3 f2 . Forte (1,2,---,n), the

enc’ ‘enc’ ec’ ‘dec’ """ ‘dec
feature maps %, and f2717% have the same spatial and channel sizes.

We first describe how to represent the channel-wise global information for
[t Inspired by the neural style transfer approaches [7,22], we leverage the fea-
ture distributions in f? . for representing the global facial statistics information.
We find the prevalent Gram Matrices of feature maps used in [7] are too large
and thus time-consuming compared to the statistics (i.e. mean and variance) of
Batch Normalization (BN) layers used in [22]. Therefore, we consider using the
mean and variance statistics in £}, as the style features for efficiency. Suppose
the size of the feature maps £, is RN**M: where N, is the number of the
feature maps in the layer ¢t and M; is the result of the height multiplying with
the width. Similar to [22], we adopt the mean ! and standard deviation o} of
the i-th channel among all the positions of the feature map in the layer ¢ to
represent the style:

1 &
t__ t ..
Hi = ﬁt Z;(fdec)w-
o (1)
2 1 M 2
t t
0-17'5 = ﬁt =~ ((fdec)iyj - Mz) .

Furthermore, we concatenate the u! and o into a (INy x 2)-d vector as the style
feature for feature maps ff_..

Next, a direct way is to utilize the attribute difference vector as input to
generate the style information for adjusting the latent feature maps in the de-
coder. However, this solution may ignore the original image content and produce
incorrect statistic information, which leads to a number of undesired changes in
the generated images. To achieve accurate facial attribute editing, we employ
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the attribute difference vectors and the style information calculated from the
latent feature maps in the encoder stage to produce the desired style informa-
tion. Note that we find the style features at some specific stage are separated
well, which means the style features in different stages could represent different
attributes accurately as shown in Fig. 1. Therefore, we perform style information
manipulation within the same stage of the encoder and decoder.

In the following, we describe how to perform style information based skip
connections between f£, . and fi:' %, The style feature extracted in f%, is con-
catenated with the attribute difference vector and fed into a 2 layer fully con-
nected neural networks to predict the residual information as shown in Fig. 2.
After that, we add it to the original style feature to obtain the desired style
information which can be used as the conditional input to manipulate the cor-
responding fg:cl_t. Taking efficiency into consideration, we utilize the Adaptive
Instance Normalization [13] (AdaIN) to manipulate the global statistic infor-
mation of the latent feature maps. For all style based skip connections used in
the proposed method, we adopt the same embedding way for the desired style

feature and network structure.

3.3 Spatial Information Transfer

Although the style features could carry most facial information like coarse struc-
ture and facial components, the local information may be dropped due to the
spatial invariant characteristic of style information and the low resolution of the
last encoder stage. For example, the spatial details like the hair texture and
pupil locations are very difficult to be embedded into the style features. There-
fore, if only use the style feature based skip connections, the generated images
may have accurate target attributes but look over smooth. As a result, they are
not realistic enough and can not achieve satisfactory performance.

To address the above problem, we develop a spatial information transfer
module to collect the spatial details and deliver them to the corresponding latent
feature maps. Since the target attribute editing could only need part of the
original facial image information, we also provide the attribute difference vector
to extract the spatial information more accurately. Specifically, we expand the
attribute difference vector spatially and concatenate it with the intermediate
feature maps in the encoder, and then we adopt a convolution operation to
generate a two-channel feature map. One of them is regarded as representing
the spatial details. During the decoder stage, we combine the spatial map with
the latent feature maps to predict the residual spatial information. The other
one is processed by a sigmoid activation function and then used as an attention
map because we want to avoid introducing noise from the residual information
through the attention mechanism [39,33]. In the following, the attention map
is leveraged to guide the fusion of the original intermediate feature maps and
the residual one. Based on the dedicated design, the spatial information transfer
module could benefit the editing and recovery of the local spatial details.
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3.4 Loss Functions

We combine multiple loss functions to train the model in an unpaired manner.
To better capture the translation information, we also employ the attribute
difference vector attrg; sy as the conditional information similar to STGAN [23]
and RelGAN [36]. Given an input image x, our framework can generate the
output image y as below:

y = G(X, attrdiff). (2)

To require the generated image y satisfying the objective of facial attribute
editing, we utilize three constraints: 1) the generated facial image should be
the same as input one when the attribute difference is none; 2) the generated
facial image should be realistic and similar to the real facial images; 3) the
generated image should exhibit the target attributes. Therefore, we employ three
loss functions based on the above-mentioned constraints to train the network.

Reconstruction loss. We set the attribute difference vector as 0 and fed it
with x into the network to obtain y ec:

Yrec = G(X7 0) (3>
Then we combine the pixel and feature level reconstruction loss as below:

Lree = Ex [Ll (Yreca X) + Eperceptual (Yrem X)} s (4)

where the perceptual loss Lperceptuar introduced in [16] can improve the image
quality as demonstrated in [14].

Adversarial loss. In addition, we adopt the adversarial loss [8] which is effective
in constraining the generated images looking realistic. The adversarial learning
framework consists of two sub-networks, including a generator and a discrim-
inator. Here we leverage the facial attribute editing network as the generator.
Given an input image x and target attribute difference attrg; s, our generator
can produce the output image y according to Eq. 2. The discriminator is a fully
convolutional neural network and required to distinguish the patches of the real
(x) and the generated images (y). Then, the goal of the generator is to fool
the discriminator via an adversarial loss denoted as L,4,. We employ the same
training scheme and loss functions as the Wasserstein GAN model [2] as below:

{ﬁdis = _Ex,attrdiff [IOg(l — Dreal (Y))] — Ex [10g D,cu (X)]a (5)

ﬁadv = *]Ex,attrdiff [log Dreal(y)];
where minimizing Lg4;s on the discriminator D,..,; tries to distinguish between

the real and synthesized images. And optimizing L4, leads to that the generator
G produces visually realistic images.
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Attribute generation loss. To achieve attribute transfer, we utilize an aux-
iliary attribute generation loss similar to StarGAN [6]. It is achieved by an
attribute classifier learned with the real images x and applied to the generated
images y as a deep image prior. We denote the attribute classification and gen-
eration loss functions as below:

Nattr
»CDattr = - Z [attri (log szttr(x)) + (1 - attri) IOg(]. - szttr (X))]v

i=1

Nattr (6)
EGattr = - Z [attrz(log DZttr(Y)) + (1 - attri) lOg(l - szttr (y))]a

=1

where the attribute classifiers D4, are trained on the real images and optimizing
La aims to require the generated images to satisfy the target attributes.

attr

Overall objectives. The overall objective function for the proposed facial at-
tribute editing network includes the reconstruction/adversarial loss to help gen-
erate high quality images, the attribute classification loss to ensure attribute
transfer:

Loverall = )\T‘CTGC + £adv + ‘CGatw- (7)

where the hyper-parameters A, is set to 20.

Implementation details The proposed framework is implemented with Py-
Torch [30] and trained with 1 Nvidia V100 GPU. During training, we adopt the
Adam [20] optimizer and set the batch size as 32. Similar to CycleGAN [41],
we set the initial learning rate as 0.0002 and fix it for the first 100 epochs, and
linearly decay the learning rate for another 100 epochs.

4 Results and Analysis

In this section, we first describe the basic experiment settings. Next, we per-
form extensive ablation studies to evaluate different components of the pro-
posed method, including the choices of style and spatial manipulation, embed-
ding manner and multiple skip connections. Finally, we conduct both qualitative
and quantitative experiments to compare the proposed algorithm with state-of-
the-art methods.

Datasets. Following [6, 23], we leverage the large scale facial attribution dataset
Celeba [26] for evaluation. It contains around 200k facial images and annotates
40 attributes. We randomly select around 180k images for train and validation,
and the rest is used as the test set. Besides, we choose 10 attributes to perform
facial attribute transfer.
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Table 1: Attribute generation accuracy for different skip connections.

Method Bald Bangs Hair Eyebrow Glasses Gender Mouth Mustache Pale Age Average
Spatial 38.63 95.43 88.07 92.33 99.07 79.57 9890 59.83 84.30 88.53 82.46
Style 69.60 99.93 99.83 97.97 99.97 98.20 99.87 61.83 97.13 98.30 92.26

SSCGAN 85.40 99.23 99.30 96.57 99.93 99.10 99.90 65.73 98.03 99.00 94.21

Evaluation metrics. To evaluate the facial attribute editing performance, we
take both the attribute generation accuracy and image quality into consideration.
Similar to STGAN [23], we utilize the training data to train an attribute classifier
and the average attribute classification accuracy on the test set is 95.55%. In
all experiments, we use this pretrained classifier to verify the accuracy of facial
editing results. In addition, we also follow ELEGANT [37] and RelGAN [36]
to employ the Frechet Inception Distance (FID) [10] to demonstrate the image
quality. FID aims to evaluate the distribution similarity between two datasets
of images. As shown in [10,18], it correlates well to the human evaluation of
image quality.

4.1 Ablation Study

Here, we investigate the effects of different algorithm designs by comparing the
attribute generation accuracy and observing the qualitative results. First, we
want to verify the effectiveness of style skip connections.

Style vs. Spatial. Based on the encoder-decoder architecture, we adopt the
style and spatial skip connections separately to demonstrate their influence.
Specifically, we have three settings, including SSCGAN-style, SSCGAN-spatial
and SSCGAN (both style and spatial). From Table 1, we can find that SSCGAN-
style achieves higher attribute generation accuracy compared with SSCGAN-
spatial. Furthermore, employing both kinds of skip connections could obtain the
best performance. We also present some qualitative results to demonstrate the
editing results. As shown in Fig. 3, we can observe that SSCGAN-spatial does
not change the lip color or eyebrow shape as it is not able to learn the global
distribution for female appearance. Although SSCGAN-style could change the
attributes well, the generated facial images are over smooth and can not maintain
some input image information like pupil locations and background. That means
the spatial skip connections are also very necessary.

Embedding style information. Different from the image generation method
StyleGAN [18] which utilizes a random noise vector to generate the style infor-
mation, the facial attribute editing task needs specific style information which
combines the input image content and target attributes. Therefore, it is a key
challenge to obtain plausible style information. We investigate 5 embedding ways
to generate the style information.
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Fig.3: An example of editing the attribute gender. We can observe that
SSCGAN-spatial does not change the lip color or the eyebrow shape as it is
not able to learn the global distribution for female appearance. In addition,
SSCGAN-style does not maintain the original spatial information such as the
pupil location and background.

Table 2: Attribute generation accuracy for different embedding settings.

Method Bald Bangs Hair Eyebrow Glasses Gender Mouth Mustache Pale Age Average
SSCGAN-att  88.40 98.63 99.43 87.47 99.73 85.60 99.67 51.17 95.77 94.43 90.03
SSCGAN-Im 52.20 98.10 96.33 93.23 99.83 89.67 99.80 52.00 95.33 94.40 87.08
SSCGAN-lmv ~ 61.40 98.57 96.60 93.33 99.53 93.07 99.60 47.90 94.60 96.17 88.07
SSCGAN-mm  55.73 98.63 98.77 95.37 99.63 92.17 99.57 49.13 93.40 93.63 87.60
SSCGAN 85.40 99.23 99.30 96.57 99.93 99.10 99.90 65.73 98.03 99.00 94.21

— SSCGAN-att: directly leveraging the attribute difference vector to predict
the style information through a 2 layer fully connected networks.
— SSCGAN-Im: computing the mean of the last stage in the encoder and con-
catenating it with attribute difference vector to obtain the style information.
— SSCGAN-Imv: calculating the mean and variance of the last stage and com-
bining it with attribute difference to generate the style information.
— SSCGAN-mm: extracting means for each block in the encoder which are
concatenated with attribute difference to predict the style information for
the corresponding block in the decoder.
— SSCGAN: utilizing a residual learning based network to generate the style
information for each block in the decoder.

We use the same experiment setting to train these variants and show their
performance in Table 2. We observe that the proposed SSCGAN achieves the best
attribute generation accuracy. And embedding style information with the feature
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Table 3: Attribute generation accuracy for different layers.

Method Bald Bangs Hair Eyebrow Glasses Gender Mouth Mustache Pale Age Average

SSCGAN-8 49.50 99.47 99.43 97.27 99.83 96.93 99.53 47.73 98.37 94.83 88.28
SSCGAN-16 71.57 99.47 99.93 97.93 99.97 97.77 99.90 74.27 98.80 96.77 93.63
SSCGAN-32 55.50 99.50 98.60 95.40 99.90 95.10 99.87 68.70 94.43 96.20 90.32
SSCGAN-64 34.60 97.93 95.33 93.83 99.83 87.37 99.47 45.57 90.43 88.70 83.30
SSCGAN-128  34.17 96.07 88.63 88.37 98.33 80.70 98.17 24.67 84.80 84.00 77.79
SSCGAN 85.40 99.23 99.30 96.57 99.93 99.10 99.90 65.73 98.03 99.00 94.21

Table 4: Comparisons of different methods on the attribute generation accuracy.

Method Bald Bangs Hair Eyebrow Glasses Gender Mouth Mustache Pale Age Average
StarGAN 13.30 93.20 68.20 84.05 94.96 75.60 98.94 12.23 75.01 86.07 70.15
AttGAN 21.20 89.80 76.27 68.17 98.17 68.03 95.43 18.87 87.07 70.03 69.30
STGAN 58.93 99.23 87.27 95.07 99.37 73.34 98.70 45.20 96.89 78.13 83.21
RelGAN 51.39 96.50 98.33 72.33 99.10 99.60 85.57 45.37 91.97 95.83 83.59

SSCGAN 85.40 99.23 99.30 96.57 99.93 99.10 99.90 65.73 98.03 99.00 94.21

Table 5: Comparisons of different methods on the FID scores.

Method StarGAN  AttGAN STGAN RelGAN Ours

FID 14.27 6.82 4.78 5.13 4.69

maps in different stages can surpass only using the last one. In addition, the
usage of both mean and variance information is helpful as SSCGAN-Imv obtains
better results than SSCGAN-Im. In summary, generating style information in a
residual learning manner for each style skip connection is the best way.

Multiple skip connections. Furthermore, we are interested in the influence
of multiple skip connections. Specifically, we investigate to only use a single
skip connection in the network architecture. Therefore, we can obtain 5 variants
which only perform feature manipulation at 8 x 8, 16 x 16, 32 x 32, 64 x 64,
128 x 128 scale level which are denoted as SSCGAN-8, SSCGAN-16, SSCGAN-32,
SSCGAN-64, SSCGAN-128. From Table 3, we can find that only using specific
skip connection degrades the overall performance. In addition, the experimental
results demonstrate that different scale level manipulations have different effects
on the performance of attribute editing.

4.2 Comparisons with State-of-the-Arts

In the following, we compare the proposed framework with several state-of-the-
art methods. We follow the pioneering STGAN [23] and RelGAN [36] to perform
quantitative and qualitative experimental evaluations.
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Fig.4: An example of editing the attribute bangs. Existing methods all
incorporate the attribute information through concatenating it with the feature
maps. That may lead to inaccurate changes or appearance inconsistent. Our
method based on global style manipulation could achieve better visual results.

Baselines. The recently proposed StarGAN [6], AttGAN [9], STGAN [23] and
RelGAN [36] are used as the competing approaches. They all use the encoder-
decoder architecture and the overall objectives are also similar. To compare these
existing methods under the same experimental setting including train/validation
data split, image cropping manner, image resolution and, selected attributes,
we use the official released codes and train these models under their default
hyper-parameters. We find that the performance of the state-of-the-art methods
AttGAN, STGAN and RelGAN on the attribute generation accuracy is close to
those reported in the original paper. Therefore, the following comparisons are
fair and convincing.

Quantitative results. From Table 4, we can observe that the proposed method
achieves the best average attribute generation accuracy (94.21%). STGAN [23]
and RelGAN [36] leverages attribute difference vectors as conditional informa-
tion, thus their results are better than StarGAN [6] and AttGAN [9]. However,
they all introduce the attribute information locally by concatenating it with the
intermediate feature maps in each spatial location, which leads to unsatisfactory
editing performance. In contrast, our method is able to learn global appearances
for different attributes which results in more accurate editing results. Further-
more, we compare the editing performance of these methods in terms of FID
scores which can indicate the image quality well. Here, we provide FID scores for
all generated images in Table 5. The experimental results demonstrate that our
method performs favorable against existing facial attribute editing approaches.

Qualitative results. In addition, we show an example to illustrate the facial
editing performance for bangs of different methods in Fig. 4. The proposed style
skip connections aim to manipulate the feature maps in a global channel-wise
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Fig.5: Results of different facial attribute editing methods. Existing
methods all introduce the attribute information locally, which leads to unsatis-
factory editing performance. Instead, through the global-wise style and local-wise
spatial information manipulation, the proposed method can achieve favorable
performance for most attributes.

manner, and thus both input and output of the style skip connections are compact
vectors which represent high-level semantics. In contrast, spatial concatenation
learns the mapping on complex local regions which is a more difficult scenario
than on the channel-wise vectors. As shown in the first row in Fig. 4, StarGAN
modifies the irrelevant facial region and RelGAN produces inconsistent bangs
compared with the hair. For the second row in Fig. 4, the results of AttGAN,
STGAN and RelGAN are not correct around the hair. Furthermore, we show an
example of the facial editing results for multiple attributes in Fig. 5.

5 Conclusions

In this work, we introduce a style skip connection based encoder-decoder archi-
tecture for facial attribute editing. To incorporate the target attributes with the
image content, we propose to edit the statistics information of the intermediate
feature maps in the decoder according to the attribute difference. The manipu-
lation in the style space could translate the facial image in a global way which is
more accurate and effective. Furthermore, a spatial information transfer module
is developed to avoid the vanishing of the spatial details. In experiments, visual
comparisons and quantitative results demonstrate that our method can generate
accurate and high-quality facial results against state-of-the-art methods. In the
future, we will investigate to apply the proposed algorithm to other visual tasks
such as semantic segmentation, image colorization, to name a few.
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