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Abstract. In pathological diagnosis, since the proportion of the ade-
nocarcinoma subtypes is related to the recurrence rate and the survival
time after surgery, the proportion of cancer subtypes for pathological
images has been recorded as diagnostic information in some hospitals.
In this paper, we propose a subtype segmentation method that uses
such proportional labels as weakly supervised labels. If the estimated
class rate is higher than that of the annotated class rate, we generate
negative pseudo labels, which indicate, “input image does not belong
to this negative label,” in addition to standard pseudo labels. It can
force out the low confidence samples and mitigate the problem of pos-
itive pseudo label learning which cannot label low confident unlabeled
samples. Our method outperformed the state-of-the-art semi-supervised
learning (SSL) methods.

Keywords: Pathological image, semantic segmentation, negative learn-
ing, semi-supervised learning, learning from label proportion

1 Introduction

Automated segmentation of cancer subtypes is an important task to help pathol-
ogists diagnose tumors since it is recently known that the proportion of the
adenocarcinoma subtypes is related to the recurrence rate and the survival time
after surgery [38]. Therefore, the proportional information of cancer subtypes has
been recorded as the diagnostic information with pathological images in some
advanced hospitals. To obtain an accurate proportion, in general, segmentation
for each subtype region should be required. However, a pathologist does not
segment the regions since it is time-consuming, and thus they roughly annotate
the proportion. The ratio of the subtypes fluctuates depending on pathologists
due to subjective annotation and this proportional annotation also takes time.
Therefore, automated semantic segmentation for cancer subtypes is required.

? Contributed Equally
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Many segmentation methods for segmenting tumor regions have been pro-
posed. Although the state-of-the-art methods accurately distinguish regions in
digital pathology images [12], most methods reported the results of binary seg-
mentation (normal and tumor) but not for subtype segmentation. Although some
methods [33] have tackled subtype segmentation tasks, the performance is not
enough yet. We consider that this comes from the lack of sufficient training data;
insufficient data cannot represent the complex patterns of the subtypes. To ob-
tain sufficient training data, it requires the expert’s annotations, and annotation
for subtype segmentation takes much more time than binary segmentation. In
addition, since the visual patterns of subtypes have various appearances depend-
ing on the tissues (e.g., lung, colon), staining methods, and imaging devices, we
usually have to prepare a training data-set for each individual case. Although it
is considered that the pre-recorded proportional information will help to improve
the segmentation performance, no methods have been proposed that use such
information.

Let us clarify our problem setup with the proportional information that is
labeled to each whole-slide images (WSI), which are widely used in digital pathol-
ogy. To segment subtype regions, a WSI cannot be inputted to a CNN due to the
huge size (e.g., 100,000 × 50,000 pixels). Thus, most methods take a patch-based
classification approach that first segments a large image into small patches and
then classifies each patch [12]. In this case, the proportional rates of each class
can be considered as the ratio between the number of patch images whose label
is the same class and the total number of patches. This proportional label with
a set (bag) of images (instances) can be considered as a weak-supervision. In our
problem setup, a small amount of supervised data and a large amount of weakly-
supervised data are given for improving patch-level subtype classification.

Semi-supervised learning (SSL) is a similar problem setup in which a small
amount of supervised data and a large amount of unlabeled data are given. It
is one of the most promising approaches to improve the performance by also
using unlabeled data. One of the common approaches of SSL is a pseudo label
learning that first trains with a small amount of labeled data, and then the con-
fident unlabeled data, which is larger than a predefined threshold, is added to
the training data and the classifier is trained iteratively [19]. This pseudo labeled
learning assumes that the high confidence samples gradually increase with each
iteration. However, the visual features in test data may be different from those
in the training data due to their various appearance patterns, and thus many
samples are estimated with low confidence. In this case, pseudo labels are not
assigned to such low confidence samples and it does not improve the confidences
(i.e., the number of pseudo samples does not increase). Therefore, the iteration
of pseudo labeling does not improve much the classification performance. If we
set a lower confidence threshold to obtain enough amount of pseudo labels, the
low confidence samples may contain the samples belong to the other class (noise
samples), and it adversely affects the learning. If we naively use the propor-
tional labels for this pseudo learning to optimize the threshold, this problem
still remains since the order of confidence in low confidence is not accurate.



Negative Pseudo Labeling using Class Proportion for Sem. Seg. in Pathology 3

In this paper, we propose a negative pseudo labeling that generates negative
pseudo labels in addition to positive pseudo labels (we call the standard pseudo
label as a positive pseudo label in this paper) by using the class proportional
information. A negative label indicates, “input image does not belong to this
negative label.” The method first estimates the subtype of each patch image
(instance) in each WSI (bag), and then computes the estimated label proportion
for each bag. If the estimated class rate is higher than that of the annotated
class rate (i.e., the samples of this class are over-estimated), we generate the
negative pseudo labels for this class to the low confidence examples in addition
to the standard pseudo labels. These positive and negative pseudo labels are
added to the training data and the classifier is trained iteratively with increasing
the pseudo labels. Our method can force out the low confidence samples in
over-estimated classes on the basis of the proportional label, and it mitigates
the problem of positive pseudo label learning that cannot label low confident
unlabeled samples.

Our main contributions are summarized as follows:

– We propose a novel problem that uses proportional information of cancer
subtypes as weak labels for semi-supervised learning in a multi-class seg-
mentation task. This is a task that occurs in real applications.

– We propose Negative Pseudo Labeling that uses class proportional infor-
mation in order to efficiently solve the weakly- and semi-supervised learning
problem. Furthermore, Multi Negative Pseudo Labeling improves the robust-
ness of the method in which it prevents the negative learning from getting
hung up on obvious negative labels.

– We demonstrate the effectiveness of the proposed method on a challenging
real-world task. Namely, we perform segmentation of subtype regions of lung
adenocarcinomas. The proposed method outperformed other state-of-the-art
SSL methods.

2 Related works

Segmentation in pathology: As data-sets for pattern recognition in pathol-
ogy have opened, such as Camelyon 2016 [5], 2017 [4], many methods have been
proposed for segmenting tumor regions from normal regions. As discussed above,
most methods are based on a patch-based classification approach that segments
a large image into small patches and then classifies each patch separately, since
a WSI image is extremely large to be inputted into a CNN [3, 7, 9, 22, 37, 41, 35,
13]. These methods use a fixed size patch image and thus they only use either the
context information from a wide field of view or high resolution information but
not both. To address this problem, multi-scale based methods have been pro-
posed [2, 18, 29, 33, 28]. Tokunaga et al. [33] proposed an adaptively weighting
multi-field-of-view CNN that can adaptively use image features from different-
magnification images. Takahama et al. [28] proposed a two-stage segmentation
method that first extracts the local features from patch images and then aggre-
gates these features for the global-level segmentation using U-net. However, these
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supervised methods require a large amount of training data in order to represent
the various patterns in a class, in particular, in the multi-class segmentation.

Negative label learning: Negative label learning [14, 17], also called comple-
mentary label learning, is a new machine learning problem that was first pro-
posed in 2017 [31]. In contrast to the standard machine learning that trains a
classifier using positive labels that indicate “input image belongs to this label,”
negative label learning trains a classifier using a negative label that indicates
“input image does not belong to this negative label.” Ishida et al. [31, 14] pro-
posed loss functions for this negative label learning in general problem setup.
Kim et al. [17] uses negative learning for filtering noisy data from training data.
To the best of our knowledge, methods that introduce negative learning into
semi- or weakly-supervised learning have not been proposed yet.

Semi-supervised learning (SSL): SSL is one of the most promising ap-
proaches to improve the performance of classifiers using unlabeled data. Most
SSLs take a pseudo label learning approach [6, 19, 16, 30]. For example, pseudo
labeling [19] (also called self-training [36]) first trains using labeled data and
then confident unlabeled data, which is larger than a predefined threshold, is
added to the training data and the classifier is trained iteratively. Consistency
regularization [21] generates pseudo labeled samples on the basis of the idea that
a classifier should output the same class distribution for an unlabeled example
even after it has been augmented. These methods generate only positive pseudo
labeled samples but not negative pseudo labels.

Learning from label proportions (LLP): LLP is the following problem set-
ting: given the label proportion information of bags that contains a set of in-
stances, estimating the class of each instance that is a member of a bag.

Rueping et al [26] proposed a LLP that uses a large-margin regression by
assuming the mean instance of each bag having a soft label corresponding to the
label proportion. Kuck et al [11] proposed a hierarchical probabilistic model that
generates consistent label proportions, in which similar idea were also proposed
in [23, 8]. Yu et al [39] proposed ∝SVM that models the latent unknown in-
stance labels together with the known group label proportions in a large-margin
framework. SVM-based method was also proposed in [25]. These methods as-
sume that the features of instances are given i.e., they cannot learn the feature
representation. Recently, Liu et al [15] proposed a deep learning-based method
that leverages GANs to derive an effective algorithm LLP-GAN and the effec-
tiveness was shown in using open dataset such as MNIST and CIFAR-10. The
pathological image has more complex features compared with such open dataset
and their method does not introduce the semi-supervised learning like fashion
in order to represent such complex image features.

Unlike these current methods, we introduce negative labeling for semi-supervised
learning using label proportion. It can effectively use the supervised data for LLP
and mitigates the problem of the standard pseudo labeling that cannot label low
confident unlabeled samples.
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3 Negative pseudo labeling with label proportions

In the standard Pseudo Labeling, if the maximum prediction probability (Confi-
dence) of an input image is higher than a set threshold, a pseudo label is assigned
to the image. On the other hand, in the problem setting of this study, the class
ratio (cancer type ratio) in the pathological image is known. In this section, we
propose a new pseudo labeling method using this information.

3.1 Pseudo Labeling

Pseudo Labeling [19] is an SSL technique that assigns a pseudo label to an unla-
beled input pattern if the maximum prediction probability (confidence) exceeds
a threshold. This is based on the assumption that a high probability predic-
tion is a correct classification result and can be used to augment the training
patterns. It functions by repeated steps of learning from supervised data, classi-
fying unlabeled data, and learning from the new pseudo labeled data. Notably,
the advantage of using Pseudo Labeling is that it only carries the aforementioned
assumption about the data and can be used with classifiers easily.

However, the downside of Pseudo Labeling is that it requires the unlabeled
training data to be easily classified [24]. Specifically, difficult data that does
not exceed the threshold is not assigned pseudo labels and data that is mis-
classified can actively harm the training. In addition, if the distributions of the
supervised data and the unsupervised data are significantly different, Pseudo
Labeling cannot perform accurate pseudo labeling and will not improve discrim-
ination performance.

3.2 Negative Pseudo Labeling

Pathological images differ greatly in image units even in the same cancer cell
class. Therefore, if there is only a small number of supervised data, the distri-
bution of supervised data and unsupervised data is significantly different and
the confidence is low, so Pseudo Labeling may not be performed. Therefore, we
propose Negative Pseudo Labeling, which assigns a pseudo label to data with
low confidence by utilizing the cancer type ratio.

In Negative Pseudo Labeling, in addition to normal pseudo labeling, nega-
tive pseudo labels are added to incorrectly predicted images using weak teacher
information of cancer type ratio. Figure 1 shows the outline of Negative Pseudo
Labeling. First, a training patch image is created from a small number of super-
vised data, and the CNN is trained (gray arrow, executed only the first time).
Next, a tumor region is extracted from weakly supervised data, and a patch im-
age is created from that region. At this time, a set of patch images created from
one pathological image has weak teacher information of the cancer type ratio.
Next, the patch image is input to the CNN trained with supervised data, and
the class probability is predicted. In the case of normal pseudo labeling, pseudo
labels are given only to patches whose confidence is greater than or equal to the
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Fig. 1. Overview of Negative Pseudo Labeling

threshold. In the proposed method, negative pseudo labels are assigned to those
with less than the threshold using cancer type ratio information.

By applying pseudo labeling not only for patch images but for whole patho-
logical images, the predicted value of the cancer type ratio can be calculated.
The correct answer and the predicted cancer type ratio are compared for each
class. If the predicted value is larger than the correct answer value, a negative
label is assigned to the corresponding image because the class is excessively in-
correctly predicted. For example, in Figure 1, the cyan class (Micro papillary)
was predicted to be 20%. However, the correct ratio is 5%. Thus, the excess
15% in reverse order of per patch confidence is added as a negative label. This
pseudo teacher is added to the training data, and the model is trained again.
These steps are repeated until the loss of the validation data converges.

Specifically, the assignment of the actual negative pseudo label is performed
according to the Negative Selectivity (NS) calculated by:

NSc = SAE ×max(0, PCRc − TCRc)× (1− TCRc/PCRc), (1)

where c is the class, the sum absolute error SAE is the distance between the
ratios, and TCRc and PCRc are the true cancer ratio and predicted cancer ratio,
respectively. SAE is defined by the following equation and indicates the sum of
errors between the ratios of one pathological image in the range of 0 to 1:

SAE = max(1,

C∑
c=1

|TCRc − PCRc|). (2)

Here, C represents the number of classification classes. The first term of Eq. (1)
selects pathological images with many incorrect predictions, the second term
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Fig. 2. Example of Negative Pseudo Label assignment. The color of the box is the
predicted class, the filled boxes are patches with positive pseudo labels, and the hatched
boxes are the patches with negative pseudo labels. By learning from the negative pseudo
label, the prediction class changes to a different class from green.

gives negative pseudo labels to only excessively incorrect classes, and the third
term gives negative pseudo labels to classes that are close to 0%.

In the proposed method, in addition to the positive pseudo label assigned
by normal Pseudo Labeling, the new negative pseudo labels are added to enable
effective learning. Fig. 2 shows an example of a negative and positive pseudo
label. From the ratio of correct cancer types, it can be seen that there should be
none classified as green and 10% blue. However, when observing the predicted
class in Iteration 1, it can be seen that blue and green occupy the majority
classifications. Thus, they are incorrectly over-predicted. Therefore, a negative
pseudo label (hatched box) is assigned to the patches in NS order. In Iteration 2,
learning from the pseudo labels is performed and new predictions changed to the
yellow class. In other words, negative pseudo labels are assigned to a patch that
has been predicted as a class that should not exist which causes the model to
change toward the correct class.

3.3 Multi Negative Pseudo Labeling

By giving a negative pseudo label, it is possible to change the prediction from one
class to another. However, in negative learning, the new class is not necessarily
the correct class. Fig. 3 shows an example in which the learning does not progress
because the negative label oscillates between the wrong classes. In the figure,
the true correct class is Micro papillary, but only the weakly supervised ratio is
known. When Negative Pseudo Labeling was performed, the patch was predicted
to be Acinar, which was judged to be an incorrect prediction class based on the
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Fig. 3. Example of a negative label oscillating between wrong classes. By storing past
label information, this can be prevented.

cancer type ratio. Therefore, a negative label of Acinar is assigned in Iteration 1.
When the class was predicted again by Iteration 2, this time, the prediction
was changed to another class which should not exist, Papillary. By repeating
Negative Pseudo Labeling, this situation can oscillate between incorrect classes.
In the case of Negative Pseudo Labeling, the loss function,

Lnegative = −
C∑

c=1

yc log (1− log f(c|x, θ)) , (3)

can get stuck by only minimizing alternating predictions between erroneous
classes.

Therefore, Negative Pseudo Labeling is extended to Multi Negative Pseudo
Labeling to prevent these oscillations. In Negative Pseudo Labeling, positive and
negative pseudo labels are added for each Iteration, and the past pseudo label
information is not used. Therefore, we accumulate the pseudo label information
given by each iteration and give a multi-negative pseudo label. However, simply
adding negative labels increases the scale of the loss, therefore, we propose a
loss function Lmulti−negative that performs weighting based on the number of
negative labels, or:

Lmulti−negative = − (C − |y|)
(C − 1)

C∑
c=1

yc log (1− log f(c|x, θ)) , (4)

where yc is a negative label for a sample, |y| is the number of negative labels for a
sample on the iteration, x is the input data, f(c|x, θ) is the predicted probability
of class c, and C is the number of classification classes. The loss Lmulti−negative

is the same with the loss (Eq. 3) for the single negative label when |y| is 1 (i.e.,
a single negative pseudo label is given in the iteration), and the weight linearly
decreases if the number of negative pseudo labels (|y|) increases.
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Fig. 4. Example of cancer type ratio information. When accurate prediction is per-
formed, the similarity between the predicted cancer type ratio of the set of patch
images and the correct cancer type ratio increases.

4 Adaptive Pseudo Labeling

Conventionally, Pseudo Labeling ignores the unlabeled data with low prediction
probabilities and through the introduction of Negative Pseudo Labeling, it now
is possible to use these inputs. However, in order to assign positive pseudo labels,
it still is necessary to manually set a threshold value above which the positive
pseudo label is assigned. In this section, we propose the use of Adaptive Pseudo
Labeling, which adaptively determines the criteria for positive pseudo labeling
based on the similarity of cancer types.

When an accurate prediction is made for a patch image and the predicted
cancer type ratio is close to the correct cancer type ratio, we consider the sim-
ilarity between the ratios as large. For example, in Figure 4, the correct cancer
type ratio is [5%, 70%, 15%, 0%, 10%] and the predicted cancer type ratio is
[7%, 64%, 14%, 0%, 14%], the similarity between the ratios is high. However, in
a single pathological image, it is not possible to judge that the class label of each
patch image is accurate just because the similarity between the ratios is high.
In Figure 4, even if the green and blue predicted patch images are switched, the
predicted cancer type ratio remains at 14% and the similarity does not change.
However, if there are multiple pathological images and the ratio of cancer types
differs for each pathological image, it is unlikely that the ratios will be the same
when predictions between different classes are switched. Therefore, the predic-
tion class of the patch image is considered reliable when the similarity of the
cancer type ratio is high.

This is represented as the Positive Selectivity (PS) of the patch being assigned
a pseudo label. PS is a parameter that determines how much of the images are
given a positive pseudo label, and is defined by:

PSc = (1− SAE)×min(TCRc, PCRc), (5)

where SAE is the distance between the ratios defined by Eq. (2), and TCRc and
PCRc are the true cancer ratio and predicted cancer ratio, respectively. Eq. (5)
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Fig. 5. Examples of 16 of the 42 pathological images and the ground truth regions.
Red, yellow, green, cyan, and blue indicate Lepidic, Acinar, Papillary, Micro papillary,
and Solid, respectively.

is calculated for each class of pathological image, and positive pseudo labels are
assigned to only PSc total patch images in the order of confidence.

Figure 4 shows an example of Adaptive Pseudo Labeling. In Pseudo Labeling,
pseudo labeling is performed with a fixed threshold regardless of the distance of
the cancer type ratio, so it is typical of pseudo labeling being only applied to a
small number of images. On the other hand, in Adaptive Pseudo Labeling, the
selection rate is dynamically determined for each pathological image according
to the distance of the ratio.

5 Experimental Results

5.1 Dataset

In the experiment, we use a real-world dataset consisting of 42 supervised patho-
logical images and 400 weakly supervised pathological images. Each pathological
image contains a slide of a tumor that is up to 108, 000 × 54, 000 × 3 pixels in
size and was annotated by two pathologists. The supervised images have pixel-
wise class labels and the weakly supervised images only have a general ratio
of cancer types. As shown in Fig. 5, the supervised images are annotated into
one non-cancer region and five cancer regions, Lepidic, Acinar, Papillary, Micro
papillary, and Solid. In addition, there are vague areas in the tumor area, indi-
cated in black, which were difficult for the pathologists to classify. These difficult
regions were excluded when evaluating the accuracy of the cancer type segmen-
tation. As for the weakly supervised images, the pathologists only provide an
estimated ratio of cancer type in percent.

In order to construct patch images, the WSI images are broken up using a
non-overlapping sliding window of size 224 × 224 × 3 pixels at a magnification
of 10× (a typical magnification used for diagnosis). As a result, there are a
total of 5,757, 2,399, 3,850, 3,343, and 4,541 labeled patches for Lepidic, Acinar,
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Papillary, Micro papillary, and Solid cancer cells, respectively. These patches are
separated five pathological image-independent sets for 5-fold cross-validation.
Specifically, each cross-validation labeled training set is created from patches of
33 to 34 of the original full-size images with 8 to 9 of the full-size images left out
for the test sets. From each labeled training set, 25% random the patch images
are taken and used as respective validation sets.

To extract patches for the pseudo labeled training set, patches of tumor
regions were extracted from the weakly supervised data. Due to the weakly
supervised data only containing the ratio of cancer types and not the full anno-
tations, we used a Fix Weighting Multi-Field-of-View CNN [33] to extract tumor
proposal regions in order to create patches. The Multi-Field-of-View CNN com-
bines multiple magnifications in order to accomplish segmentation. In this case,
we used the magnifications of 10×, 5×, and 2.5×. In total, 52,714 patches from
the weakly supervised data are used.

5.2 Experiment settings

For the base CNN architecture, the proposed method uses a MobileNetV2 [27]
with the weights pre-trained by ImageNet. During model training, the network
was fine-tuned with the convolutional layers frozen [1]. The training was per-
formed in two steps. First, the MobileNetV2 was trained using the supervised
data for 100 epochs with early stopping based on a validation loss plateau of
10 epochs. Second, the network was fine-tuned using the Pseudo Labeling for a
similar 100 epochs with early stopping. During the Pseudo Labeling step, the
positive learning loss Lpositive,

Lpositive = −
C∑

c=1

yc log f(c|x, θ), (6)

where yc is the correct label, x is input data, and f(·) is a classifier with pa-
rameter θ. For the Negative Pseudo Labeling, the multi-negative learning loss
Lmulti−negative from (4) is used. Furthermore, the network was trained using
mini-batches of size 18 with an RAdam [20] optimizer with an initial learning
rate of 10−5.

5.3 Quantitative Evaluation

The prediction results were quantitatively evaluated using three evaluations rec-
ommended for region-based segmentation [10], Overall Pixel (OP), Per-Class (PC),
and the mean Intersection over Union (mIoU). These metrics are defined as:

OP =

∑
c TPc∑

c (TPc + FPc)
, PC =

1

M

∑
c

TPc

TPc + FPc
,

mIoU =
1

M

∑
c

TPc

TPc + FPc + FNc
, (7)
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Table 1. Quantitative Evaluation Results

Method OP PC mIoU

Proposed 0.636 0.588 0.435
Supervised 0.576 0.527 0.373
Pseudo Labeling [19] 0.618 0.575 0.420
ICT [34] 0.461 0.430 0.289
Mean Teachers [32] 0.449 0.421 0.270
mixup [40] 0.529 0.476 0.324
VAT [21] 0.477 0.427 0.281

Table 2. Ablation Results

Positive Threshold Negative Labeling OP PC mIoU

Fixed at 0.95 – 0.618 0.575 0.420
Adaptive – 0.613 0.565 0.412
– Single label 0.563 0.508 0.348
– Multi label 0.551 0.478 0.336
Adaptive Single label 0.621 0.585 0.426
Adaptive Multi label 0.636 0.588 0.435

where M is the number of classes, and TPc, FPc, and FNc are the numbers of
true positives, false positives, and false negatives for class c, respectively.

The results of the quantitative evaluations are shown in Table 1. In this table,
we compare the results of using the proposed Multi Negative Pseudo Labeling
with Adaptive Positive Pseudo Labeling (Proposed) with state-of-the-art SSL
methods. As baselines, Supervised uses only the supervised training data and
Pseudo Labeling [19] is the standard implementation of using positive pseudo
labels with a threshold of 0.95. Interpolation Consistency Training (ICT) [34],
Mean Teachers [32], mixup [40], Virtual Adversarial Training (VAT) [21] are
other recent and popular SSL methods that we evaluated on our dataset. These
methods were trained under similar conditions as Proposed. It should be noted
that the SSL methods can only use the weakly supervised data as unlabeled
data. From the quantitative evaluation results, it can be seen that the Proposed
accuracy is better than the other SSL methods.

Furthermore, we performed ablation experiments to demonstrate the impor-
tance of the Negative Pseudo Labeling. These results are shown in Table 2. In the
result, the methods using only (Single/Multi) Negative Pseudo Labeling (NPL)
did not work well due to class imbalance because NPL can not directly use an
oversampling technique. When we use the Positive Labeling (PL) with NPL, the
class imbalance problem can be mitigated by oversampling in PL, and thus the
combination of PL and NPL improves the performance. In addition, Multi NPL
further improved the performance compared with using NPL.
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Fig. 6. Results from a sample test set.

5.4 Qualitative Evaluation

In order to evaluate the results using qualitative analysis, the patches are recom-
bined into the full pathological images. Fig. 6 shows the results from the first
cross-validation test set. The first two columns are the original image and ground
truth and the subsequent eight columns are the synthesized images with the col-
ors corresponding to the classes listed in Fig. 5. The figure is able to provide an
understanding of how the proposed method was able to have higher quantitative
results. For example, when comparing the fifth row of Fig. 6, the SSL methods,
including the proposed method, generally had much better results than just us-
ing the labeled data in Supervised. Furthermore, the performance improvement
from using Multi Negative Pseudo Labels can clearly be seen when compar-
ing the results from Proposed and Pseudo Labeling. The figure also shows that
many comparison methods were able to excel at particular images, even some-
times better than the proposed method. However, the proposed method had
more consistently accurate results for all of the images.

In a specific instance, Fig. 7 shows the process of using positive and nega-
tive pseudo labels to direct the classifier to use the unsupervised data correctly.
Before Iteration 1, the network is trained using only the supervised training set.
According to the training, most of the weakly supervised patches were incor-
rectly classified as blue. Over the course of a few iterations, the pseudo labels of
the patches shifted the distribution of classes to be more similar to the weakly
supervised ratio. Before, the pseudo labels would have harmed the supervised
training set. Now, instead, the pseudo labels are able to efficiently augment the
supervised data.
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Fig. 7. Example of the proposed negative and positive pseudo labeling. The color of
the box is the predicted class, the filled boxes are patches with positive pseudo labels,
and the hatched boxes are the patches with negative pseudo labels.

6 Conclusion

This paper tackles cancer type classification using massive pathological images.
A feature of using massive pathological images is that precise pixel-wise annota-
tions are difficult and costly to acquire. Therefore, we proposed a new method
of semi-supervised learning that incorporates positive and negative pseudo label
learning. In this model, we introduce Negative Pseudo Labeling and its extension
Multi Negative Pseudo Labeling. The Negative Pseudo Labeling assigns negative
pseudo labels to unlabeled weakly supervised data in order to guide the pseudo
label augmentation toward a ratio of classes provided by the weak supervision.
Multi Negative Pseudo Labeling extends this idea and weights past negative
pseudo labels in order to avoid getting stuck in alternating negative pseudo
labels. Furthermore, we introduce Adaptive Pseudo Labeling for the positive
pseudo labeling step, which dynamically selects the positive pseudo labels with-
out the need of determining the threshold traditionally used in Pseudo Labeling.
In order to evaluate the proposed method, we performed quantitative and quali-
tative analysis using pathological image-independent 5-fold cross-validation. We
are able to demonstrate that the proposed method outperforms other state-of-
the-art SSL methods. Through these promising results, we are able to show
that segmentation via patch classification augmented with weak supervision is
possible on real and large-scale pathological images.
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