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1 Prove properties of multi-view confidence.

Let p1,p2, ...,pn be the n predictions obtained from n views for a vertex v, where
pi = (pi1, pi2, ..., pim), m is the number of classes, and

∑m
j=1 pij = 1, pij ∈ [0, 1].

The final prediction of v is defined as

p = (p1, p2, ..., pm), (1)

where pj = 1
n

∑n
i=1 pij ,

∑m
j=1 pj = 1. Recall the confidence of v is defined as

c = max
j
pj , (2)

Our hypothesis is that c takes a high value only when predictions are consistent
and all with low entropy.

First, we prove that a high value of c implies predictions are consistent. Con-
sider n prediction values on dimension j, i.e., {p1j , p2j , ..., pnj}. We use variance
σ2
j to describe the consistency of predictions. The smaller σ2

j , the higher consis-

tency of predictions, and vice versa. σ2
j can be represented as

σ2
j =

1

n

n∑
i=1

p2ij − (
1

n

n∑
i=1

pij)
2 =

1

n

n∑
i=1

p2ij − p2j (3)

From Eq. 3 and pij ∈ [0, 1], we have,

pj =

√√√√ 1

n

n∑
i=1

p2ij − σ2
j ≤

√
1− σ2

j

pj =
1

n

n∑
i=1

pij ≥
1

n

n∑
i=1

p2ij = p2j + σ2
j ≥ σ2

j

(4)
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Thus, c is bounded by

σ2
k ≤ c ≤

√
1− σ2

k, (5)

where k = argmaxj pj . Hence, the bound of c depends on σk. When σk is 0, the
lower bound of c is 0 and the upper bound of c is 1. As σk increases, the lower
bound of c increases and the upper bound of c decreases. Therefore, one necessary
condition for c to take a high value is the small variance of the prediction values,
which indicates the high consistency of predictions.

Second, we prove that a high value of c implies predictions have low entropy.
Since we have proved that a high value of c implies predictions are consistent,
we only need to consider the entropy of final prediction (Eq. 1). The normalized
entropy E of p can be written as

E = −
∑
j

pj logm pj = −c logm c+ E′, (6)

where E′ includes m − 1 values except the maximum one. To normalize the
maximum value of entropy to 1, we use m as the base of log. For simplicity, we
do not mention it in the proof below. By Jensen’s inequality, we have

E′ = −
∑
j 6=k

pj log pj

≤ −(
∑
j 6=k

pj) log

∑
j 6=k pj

m− 1
= −(1− c) log

1− c
m− 1

(7)

From (6)(7), we have

E ≤ −c log c− (1− c) log
1− c
m− 1

, (8)

Let f(c) = −c log c− (1− c) log 1−c
m−1 . Taking the derivative of f(c), we have

∂f(c)

∂c
= log

1− c
c(m− 1)

≤ 0, (9)

where 1
m ≤ c ≤ 1, as c is the maximum value. Since Eq. 9 is consistently below 0,

it illustrates that f(c) monotonically decreases when c ∈ [ 1
m , 1]. When E takes a

small value, it implies that the lower bound of f(c) decreases and thus the upper
bound of c increases; When E takes a high value, it implies that the lower bound
of f(c) increases and thus the upper bound of c decreases. Therefore, another
necessary condition for c to take a high value is the small lower bound of f(c),
which indicates p has small entropy.

From previous discussions, we prove that c takes a high value only when
predictions are consistent and all with low entropy.
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Table 1: Performance comparison of transductive methods on noisy affinity graphs
in ImageNet. We randomly select classes and initial seeds for 5 times and report the
average results of 5 runs

ImageNet

Noise ratio ρ 0% 10% 30% 50%

LP [11] 77.74±2.65 70.51±2.27 59.47±1.8 51.43±1.48
GCN [4] 83.17±3.65 75.37±3.12 66.28±2.87 64.09±2.69
GAT [6] 83.93±3.36 75.99±2.56 66.3±3.12 63.34±2.06
GraphSAGE [2] 82.42±1.07 73.42±2.88 63.84±3.42 59.12±3.45

GraphSAGE† [2] 81.39±3.37 73.53±2.85 63.42±2.82 58.99±3.88
FastGCN [1] 81.34±3.84 74.08±3.24 63.79±3.24 58.81±2.76
SGC [7] 84.78±3.35 76.71±3.0 67.97±2.51 65.63±2.58

Ours 85.16±3.24 76.96±2.85 69.28±2.45 68.25±1.89

2 Experimental results with standard deviation

As introduced in Sec. 4.1 in the main text, we repeat our experiments by 5 runs.
For each run, we first randomly select 10 classes from Dall and randomly split
1% as the labeled initial seeds. Then, we randomly select ρ percent of images
not belong to the 10 classes as the noise. As shown in the two tables below, we
observe that the randomly selected 10 classes result in a large standard devi-
ation among different runs, but the proposed method consistently outperforms
previous approaches and thus achieving higher mean accuracy.

Table 2: Performance comparison of transductive methods on noisy affinity graphs in
Ms-Celeb-1M. We randomly select classes and initial seeds for 5 times and report the
average results of 5 runs

Ms-Celeb-1M (1%)

Noise ratio ρ 0% 10% 30% 50%

LP [11] 95.13±1.29 89.01±1.33 88.31±1.17 87.19±0.99
GCN [4] 99.6±0.11 99.6±0.38 96.37±0.42 96.3±0.36
GAT [6] 99.59±0.04 96.48±0.51 94.24±0.68 94.01±0.73
GraphSAGE [2] 99.57±0.1 95.68±0.28 92.21±0.58 91.06±0.48

GraphSAGE† [2] 99.59±0.08 95.62±0.37 92.38±0.4 91.19±0.46
FastGCN [1] 99.62±0.07 95.6±0.35 92.08±0.52 90.83±0.81
SGC [7] 99.63±0.07 97.43±0.35 96.71±0.32 96.5±0.31

Ours 99.66±0.05 97.59±0.34 96.93±0.25 96.81±0.24

3 More Details and Analysis

Details about experimental settings. All algorithms use the same affinity
graph constructed as follows. We regard each sample as a vertex and connect it
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with its K nearest samples. The edge weight ei,j is the cosine similarity between
vi and vj if (i, j) ∈ E , otherwise it is zero. G can be alternatively represented as a
sparse affinity matrix A, where the space complexity is O(NK). The experiments
show that the results are not sensitive to K when varying it from 30 to 80 on two
datasets. Therefore, we choose K = 30 to reduce memory overhead. For GCN,
we use a 2-layer GCN with 256 hidden units at each layer. For GraphSAGE, the
sample size of GraphSAGE is set to 15 for both two layers and the batch size is
set to 32. For FastGCN, we sample 6, 000 one-hop neighbors and 1, 000 two-hop
neighbors.

Details about efficiency of path extraction. We refer to visited times of
a vertex as the number of patches it belongs to. We conduct experiments on
ImageNet with 10K vertices with cτ = 0.9, ∆cτ = 500 and s = 3000. When
propagating 100 iterations, the average visited times of vertices are about 6.
Most samples are visited 2 times and only a very few samples are visited more
than 10 times. As the number of visited times increases, the ratio of incorrect
samples over correct ones increases, indicating that regions with low confidence
will be visited more times than those with high confidence.

Besides, at the end of the propagation, the high-confidence set contains about
45% of all the samples, while only 0.1% samples has been selected as the start
vertex. Since our patch extraction considers expected confidence gain, it will
ignore the start vertices which reside in the local patch that already has very
high confidence, which shows the effectiveness of our approach.

Details about active learning experiments. To test the effectiveness of in-
dictors in active learning, we use three different indicators to select the same
number of unlabeled samples for annotation. All methods annotate as much
unlabeled data as the initial labeled data. The unlabeled in-class samples are
annotated to their ground-truth classes and the unlabeled out-of-class samples
are annotated to -1. For a fair comparison, we train a standard GCN [4] using
the previous initial labeled samples in conjunction with the annotated sam-
ples, where the outliers are excluded in the training. Note that if applying the
proposed propagation algorithm, it can also exploit the annotated out-of-class
samples for confidence estimation.

The experimental setting is the same as the other ablation studies in the main
text, where the labeled ratio is 1% and the noise ratio is 50%. The number of
annotated samples is also 1%. As shown in Table. 4(a) in the main text, Baseline
indicates the accuracy of GCN before annotation. Random only brings a slight
performance gain as it may randomly select a lot of easy samples for annotation.
GCN improves accuracy through annotating some low confident samples, which
are hard for GCN to recognize in previous training. Our estimated confidence
addresses the noise issue on the unlabeled data, leading to larger performance
gain by annotating the same number of unlabeled data.

Except the out-of-sample noise in the real-world, the emergence of adversarial
samples become a new kind of possible noise source [5]. How to extend our
methods to boarder noise scenario remains to be studied in the future.
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Details about inductive learning experiments. We show that the proposed
method can be applied to inductive learning by providing the “pseudo labels”.
We compare with two methods for generating “pseudo labels” and apply them to
train face recognition model in a supervised manner. CDP [10] is a recent face
clustering method and does not require the labeled seeds. GCN [4] leverages
the initial labeled seeds and propagate the labels to the rest unlabeled samples.
Baseline refers to the result before training with pseudo labels.

For the experiment, we randomly select 1K person with 120K images from
Ms-Celeb-1M and randomly samples 1% as the labeled data. To simulate the
noisy setting, we then randomly sample 60K face images outside the selected
1K person. We use the same pretrained face model from [9] and regard its
performance as the Baseline. As shown in Table. 4(b) in the main text, without
confidence design, GCN only performs slightly better than the unsupervised sin-
gle version of CDP. Our method surpasses the previous two methods by providing
more accurate pseudo labels. As the face recognition model is well learned, it is
significant to improve ∼2% on the challenging MegaFace [3], using only 180K
noisy unlabeled data. In real practice, instead of discarding the identified noise,
we can further boost the performance by performing clustering algorithms [9, 8]
on the identified our-of-class samples, which may discover some new classes for
training.
The influence of graph patches with different scales. The scale of graph
patches affects the efficiency and accuracy of propagation. In our approach, the
scale of the graph patch is dynamic. Small patches would be extracted at the
beginning, since most of the samples are unlabeled and the expected confidence
gain is easy to achieve. As the propagation proceeds, the number of confident
vertices increases while the average expected confidence gain decreases, the al-
gorithm encourages more aggressive updates over larger patches. Although we

Table 3: Influence of maximum patch size

Maximum patch size (s) Accuracy Memory Runtime

100 64.63 6M 34s
500 65.41 28M 111s
1000 65.64 56M 158s
3000 65.83 168M 316s
5000 65.81 280M 564s
10000 65.92 561M 1077s

cannot directly control the scale of each graph patch in our approach, we can
change the maximum patch size, which would also show the influence of patch
size. We set ∆cτ = 500 and vary maximum patch size from 100 to 10000. As
shown in the table above, when the maximum size of graph patch is too small
(s = 100), the graph convolutional networks can only leverage a limited number
of neighbors for GCN prediction, resulting in the inferior performance. The ac-
curacy increases with the increase of s and it gradually saturates as s increases
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beyond 3000. When the maximum size of graph patch is close to the entire graph
size (s = 10000), it introduces a large amount of computational cost and memory
overhead but receives slightly performance gain.

Table 4: Design choices to include confidence into Eq.1

Design Accuracy Memory Runtime

(1) 61.5 168M 316s

(2) 65.9 205M 386s

Ours 65.8 168M 316s

Design choices to include confidence into Eq.1. We investigate two design
choices to include confidence into Eq.1. in the main text. First, we can apply
the suggested Hadamard product. As the initial confidence of unlabeled data is
small, their node features after multiplication is negligible in GCN’s prediction.
Ignoring neighbor information may potentially impair the initial predication and
the propagation later on. Second, we can concatenate the confidence distribution
p to vertex feature x. Although it does not suffer from initial confidence, the
vertex features would be a N × (D + M) matrix, where M is the number of
classes. When M is large, it introduces large computational cost and memory
demand.
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