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1 Details of the Ensemble

As the importance scores α for ensemble are essential to the MRED, we study
their values w.r.t. different resolutions. We observe that the learned values of
α stay almost unchanged in the last three epochs. The final results w.r.t. the
resolutions from 224×224 to 96×96 are {0.37, 0.29, 0.20, 0.12, 0.02} for ResNet18,
{0.32, 0.30, 0.23, 0.13, 0.02} for ResNet50, and {0.41, 0.30, 0.19, 0.09, 0.01} for Mo-
bileNetV2. In each network, the score w.r.t. the resolution 224 × 224 has the
largest ratio, and the ratio decreases with the decrease of resolutions.

2 Visualization of BNs.

Fig. 1 visualizes BN parameters, including scale γ, bias β, mean µ and variance
σ, in a parallel trained model on ResNet18. There are eight blocks and each has
two Conv layers. We plot the channel-wise means of BN parameters of every
first layer in the left four sub-figures and of every second layer in the right four
sub-figures. We observe that BN parameters are likely to be arranged in the
ascending order or the descending order of image resolutions.

3 Extension to Semantic Segmentation

Besides the experiments described in the main paper, we also apply our method
to semantic segmentation to further validate its generalization ability to handle
other visual recognition tasks beyond classification. We choose RefineNet [4], a
typical semantic segmentation model which achieves state-of-the-art results on
dataset NYUDv2 [5]. Following the original setting in [4], we use ResNet101 as
the backbone network. A schematic framework for training a RS-Net for seman-
tic segmentation is illustrated in Figure 2. During training, each logit outputted
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Fig. 1. BN parameters and statistics in ResNet18 blocks. The first layer of each block is
shown in the left four sub-figures, and the second is shown in the right four sub-figures.
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Fig. 2. Framework of training a RS-Net for semantic segmentation. Logits outputted
by the last Conv layer are denoted as ẑ1, ẑ2, · · · , ẑS . We resize these logits to the same
resolution of x1, which is the largest input resolution. We denote the resized logits
as z1,z2, · · · ,zS . The ensemble logit z0 is learned as a weighted mean of the resized
logits. During testing, each logit ẑs, s ∈ {1, 2, · · · , S} is uniformly resized to the original
image resolution for evaluation.

by the last Conv layer, denoted as ẑs, s ∈ {1, 2, · · · , S}, does not has the same
resolution with its corresponding input xs. For example, if we choose the multi-
resolution setting as S = {352× 352, 224× 224, 96× 96}, resolutions of ẑ1, ẑ2, ẑ3
will be 88×88, 56×56, 24×24 respectively. We uniformly resize ẑs to the largest
input resolution (for this example is 352× 352) before the ensemble distillation
process and calculating losses with labels. We do not use left-right flips or the
multi-scale technique during testing for additional performance promotion, and
each logit ẑs, s ∈ {1, 2, · · · , S} is uniformly resized to the original image resolu-
tion before calculating evaluation metrics.

Results on NYUDv2 are shown in Table 1. Following [4], we train on RGB
images with 40 classes, using the standard training and testing split with 795
and 654 images respectively. These results verify that our method can be applied
to the semantic segmentation task, maintaining the resolution switchable ability
while simultaneously improves performance. As far as we know, this is the first
resolution switching attempt for semantic segmentation, realizing a selectable
inference speed which is beneficial to efficient runtime model deployments. As
we can see in Table 1, RS-Net especially achieves performance gains over I-Nets
at low resolutions, e.g., with a significant IoU gain 14.0 at 96× 96.

In Fig. 3, we compare our RS-Net with an individual model which is trained
at 352 × 352. We evaluate performance at three resolutions during inference,
for proving that our model has better robustness against various resolutions.
Predictions w.r.t. 224×224 and 96×96 indicate that downsizing input resolution
leads to quick performance drops for an individual model. In contrast, our RS-
Net has milder performance drops toward downsizing the resolution.
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Table 1. Results comparison for semantic segmentation based on RefineNet with
ResNet101 as the backbone. We report pixel accuracies (%), mean accuracies (%)
and IoU of individual models (I-Nets) and our RS-Net. Note that no left-right flips
or multi-scale testing is performed. All experiments use the same data pre-processing
methods and training settings.

Resolution
I-Nets (base) Our RS-Net

Pixel Acc. Mean Acc. IoU Pixel Acc. Mean Acc. IoU

352× 352 72.3 56.7 43.9 72.3 (+0.0) 57.0 (+0.3) 44.1 (+0.2)

224× 224 69.6 52.2 40.5 71.4 (+1.8) 54.6 (+2.4) 42.6 (+2.1)

96× 96 50.4 26.5 18.1 63.0 (+12.6) 43.1 (+16.6) 32.1 (+14.0)

Total Params 118.20M× 3 = 354.60M 118.31M

Input image Ground truth 352×352
Prediction w.r.t. Prediction w.r.t. Prediction w.r.t.

An individually 
trained model
(single model)

Our RS-Net
(single model)

224×224 96×96

Fig. 3. Performance comparison of an individual model and our RS-Net. The rightmost
four sub-figures (with titles marked in red) verify that our model can better maintain
the performance when input resolution at inference is downsized for the sake of saving
inference time.

4 Comparison with FixRes

Although FixRes [7] and our work have both considered resolution adaptation,
they are different in motivation and design. FixRes focuses on improving ac-
curacy by operating models at much higher resolution at test time, relying on
manual fine-tuning for adaptation and test-time augmentations. However, our
method focuses on efficient and flexible resolution adaptation at test time with-
out additional latency such as fine-tuning. The accuracy comparison is possible
as we both consider experiments on ResNet-50. In Fig.5 of FixRes and Table 5
of its supplementary material, for a ResNet-50 model trained with 224×224 im-
ages, the top-1 accuracy drops 9.4% from 224×224 (77.1%) to 128×128 (67.7%),
while ours merely drops 3.0% from 224×224 (79.3%) to 128×128 (76.3%) (Table
1 of our main paper). Therefore, our method can better suppress the accuracy
drop when input image resolution is downsized, which is beneficial to the model
deployment in a resource-constrained platform. A more detailed comparison is
shown in Table 2, which indicates that our model has much better performance
at low resolutions, saving a large amount of FLOPs but even achieving higher
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Table 2. Top-1 accuracies (%) comparison at different testing resolutions. Our model
has better performance especially at low resolutions, which means being able to achieve
better accuracy-efficiency trade-offs at runtime. Note that the accuracy at 224 × 224
of RS-Net has already surpassed all results of FixRes.

Model \ Resolution 64 128 224 288 352 384 448

FixRes [7] 41.7 67.7 77.1 78.5 78.9 79.0 78.4
Our RS-Net 61.1 76.3 79.3 79.2 78.1 77.4 75.8

Multiply-Adds 338M 1.35G 4.14G 6.84G 10.22G 12.17G 16.56G

performance. For example, our accuracy at 224×224 surpasses the top accuracy
of FixRes at 384× 384, needing only 34% FLOPs. We conjecture that under the
permission of training resources, our RS-Net has the potential to achieve better
performance by adding larger resolutions (e.g. 384× 384 or larger) for training.

5 Discrepancy and Interaction Effects

We conduct an additional contrast experiment for verifying our analysis in Sec-
tion 3.2 of our main paper, where we propose that the multi-resolution inter-
action effects are highly correlated with the train-test discrepancy, which is a
kind of distribution shift caused by different data pre-processing methods during
training and testing. As a conclusion of our analysis, on account of the multi-
resolution parallel training, accuracies at higher resolutions tend to be further
improved, but the accuracy at the low resolution tends to be reduced. In this
part, we try to reduce the train-test discrepancy and observe if such interaction
effects are weakened.

The concept of the train-test discrepancy itself is revealed by [7]. We first re-
explain this discrepancy, based on our experiment setting as a specific example.
In Section 4.1 of our paper, we mention that during training, we randomly crop
the data for augmentation with an area ratio3 uniformly sampled in [0.08, 1.0],
which is a standard setting following [2,6,7,3]. Therefore the expectation of area
ratio for training is (0.08 + 1)/2 = 0.54. During testing, we first resize images to
the target resolution divided by 0.875 (following [3,1]), and then crop the central
regions with the target resolution. Therefore the expectation of area ratio for
testing is 0.8752 ≈ 0.77, which is larger than during training. As a larger crop
means a smaller apparent object size, so on average, the apparent object size in
testing is smaller than in training, which is the so-called train-test discrepancy
[7]. Note that the parameters [0.08, 1.0] and 0.875 are not always adopted by
all image recognition works, but the train-test discrepancy typically exists (in
different degrees) [7].

We alleviate the discrepancy by modifying [0.08, 1.0] to [0.3, 1.0], because the
expectation of area ratio for training becomes (0.3 + 1)/2 = 0.65, which is closer
to 0.77 in testing. Results of parallel training (without MRED) are illustrated

3 The area ratio means the ratio of the cropped image area to the original image area.
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Fig. 4. Absolute top-1 accuracy variations (%) (compared with individual models) of
parallel trainings, based on ResNet18, with two settings of the area ratio. The top-1
accuracy (%) of each individual model (from I-96 to I-224) is written in the bracket,
which is used as the baseline. We use single numbers to represent the image resolutions.

in Fig. 4, including top-1 accuracy variations over each individual model. We
can see that by alleviating the discrepancy, interaction effects are weakened, as
accuracy gains at high resolutions and accuracy drops at the lowest resolution
are both alleviated. Besides, in Fig. 4, we also provide the accuracy of each
individual model (see each number in the bracket). We observe that sampling
the area ratio in [0.08, 1.0] has better overall performance than [0.3, 1.0], which
also indicates why [0.08, 1.0] is a more popular choice for training on ImageNet.
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