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1 Overview

In the supplementary material, we provide proofs, experiment details and more
comprehensive experimental results.

2 Proofs

Confidence has contour lines where all class distributions on the line share the
same confidence. In the paper, we claim that confidence has high discriminability
for extremely confident and uncertain predictions, meaning that the contour line
for extremely high and low confidence should be short.

For each confidence, the length of contour line is proportional to the number
of possible value combinations of probabilities, i.e. the size of solution space,
satisfying the confidence. If the confidence is larger than 0.5, meaning that the
highest probability is higher than 0.5, and the sum of the rest probabilities is
smaller than 0.5. Let the three probabilities p;, (i = 1,...,n) without loss of
generality, we let p; be the largest probabilities. Then we have

p1>pi>0,(i=1,..,n)
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The solution is N
sz' =1-p1,
i=2

pi>0.(i=1,...n)

(2)

The solution space is proportional to 1 — p;. So the solution space increases from
confidence 1.0 to 0.5. The length of the contour line increase from confidence 1.0
to 0.5.

For the most uncertain prediction, i.e. every class has the same probability,
the number of class distributions is 1. Therefore, the contour line length roughly
first increases and then decreases when the confidence decrease from 1.0 to ‘C—ll,
where |C#| is the number of classes. So confidence has a shorter contour line for
extremely high and low confidence and is complementary to entropy.
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3 Experiment Details

3.1 Label Set Separation

Office-31 [I0] is a visual domain adaptation dataset with 31 categories in 3
visually distinct domains: Amazon(A), Dslr(D), Webcam(W). Following UAN
[13], we use the 10 classes shared by Office-31 and Caltech-256 [3] as the common
label set C. In alphabetical order, the next 10 classes are used as the C,, and the
rests are used as the C;. The class names in the common label set, the source
private label set and the target private label set are shown in the “Office-31” row
in Table [

Office-Home [I12] is a more diverse dataset consisting of 15,500 images in 65
classes in office or home settings. It consists of 4 domains: Artistic images (A),
Clip-Art images (C), Product images (P) and Real-World images (R). Following
UAN [13], in alphabet order, we use the first 10 classes as C, the next 5 classes
as C, and the rest as C;. The class names in the common label set, the source
private label set, and the target private label set are shown in the “Office-Home”
row in the Table[I] Since there are too many classes in the target private label
set, we show part of all classes.

VisDA [9] is a simulation-to-real dataset containing over 280K images across 12
classes. VisDA includes two domains: Synthetic and Real. Following UAN [I3],
in alphabet order, we use the first 6 classes as C, the next 3 classes as C, and the
rest as C;. The class names in the common label set, the source private label set
and the target private label set are shown in the “VisDA” row in Table [T}
DomainNet [§] is by far the largest domain adaptation dataset, consists of six
distinct domains: Clipart(C), Infograph(I), Painting(P), Quickdraw(Q), Real(R)
and Sketch(S). It contains over 0.6 million images across 345 classes. In alphabet
order, we use the first 150 classes as C, the next 50 classes as C, and the rest as
C;. The class names in the common label set, the source private label set, and
the target private label set are shown in the “DomainNet” row in the Table
Since there are too many classes in this dataset, we only show part of the classes
in the three label sets.

3.2 Data Preprocessing

We employ 5 extra classifiers (m = 5) in all the experiments. To make the
multiple classifiers more diverse, we apply different data preprocessing methods
to the data input to different classifiers. In detail, we use the following five data
preprocessing methods: (1) Random Affine and Random Grayscale ; (2) Random
Perspective and Color Jitter ; (3) Random Affine and Color Jitter ; (4) Random
Affine and Random Perspective ; (5) Random Perspective and Random Grayscale.
The classifier C' for prediction use no extra data preprocessing but only resizing
to fix size 256x256 and random cropping.
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Table 1. The specific class for each experiment. And due to a large number of classes,
some datasets only show some examples. All settings follow UAN [13] if the

dataset is used in UAN.

Dataset common label set source private label  target private label
set set
Office-31 back pack, bike, bike helmet, pen, phone, printer,
calculator, bookcase, bottle, punchers,
headphones, desk _ chair, ring binder, ruler,
keyboard, desk lamp, scissors, speaker,
laptop computer, desktop computer, stapler,
monitor, mouse, mug, file cabinet, tape_dispenser,
projector letter tray, trash can
mobile phone,
paper_notebook
VisDA aeroplane, bus, horse, truck, bicycle, car motorcycle, plant,
knife, person, train
skateboard
Office-Home alarm_ clock, chair, clipboards, eg: desk lamp, drill,
backpack, batteries, computer, couch, eraser, exit sign, fan,
bed, bike, bottle, curtains file cabinet, flipflops,
bucket, calculator, flowers, folder, fork,
calendar, candles glasses, hammer,
helmet, kettle,
keyboard, knives
DomainNet eg: aircraft carrier, eg: hot dog, eg: nose, ocean, owl,

hot_tub, ice cream, paintbrush, potato,
jacket, jail, key, knife, purse, rabbit, river,
lion, lipstick, lobster, rollerskates, sailboat,

lollipop, mailbox school bus, scissors

backpack, banana,
bandage, butterfly,
cactus, cake,
calculator, duck,
dumbbell, ear, elbow

3.3 Network Initialization

For the 5 different classifiers, we initialize them with different random initializa-
tions. We use ResNet-50 [4] pre-trained on ImageNet [I] as our backbone network,
we remove the original classifier and add multiple classifiers G;|7*; and G on the
layer before the classifier.

3.4 Hyperparameter

For optimizer parameters such as learning rate, we use cross-validation on source
data. For other hyperparameters, we use the reverse validation risk proposed
in DANN [2] to select hyper-parameters. In detail, we first randomly split the
labeled source and unlabeled target data into training sets (S’,T") respectively
containing 90% of the original examples and validation sets (S,,T;). We learn a
model n (consisting of F', G;|™,, and G) with S’ and T” based on our approach.
Then we learn a reverse model 7, using the self-labeled set (z,n(z)) by labeling
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T’ with i, where the classifier has one entry for each common class and one entry
for all the data labeled as open class by 7. Finally, we evaluate the H-score of
7 on source validation set S,, where all the source classes not existing in the
self-labeled set (z,7n(z)) are regarded as open class. This validation error is the
reverse validation risk and we select hyper-parameters to induce lower reverse
validation risk.

The base learning rate is 0.001 for VisDA, 0.01 for Office-31, Office-Home
and DomainNet. The decay strategy of learning rate is the same as DANN. The
batch size is 32. As for the threshold wg, we set it 0.5 on Office-31, VisDA and
Office-Home, 0.55 on DomainNet. The experiments run in 3 times.

4 Additional Experiment Results

4.1 Significance of Results

We show per-class accuracy on Office-Home for a fair comparison, which is not
present in the paper due to the space limit. We can observe that CMU consistently
outperforms previous methods. To demonstrate that CMU improves previous
methods including UAN significantly, we show the oracle results for per-class
accuracy on Office-31, VisDA, and Office-Home datasets. To obtain the oracle
results, we select out all the source and target data in the common label set and
perform closed set domain adaptation method DANN [2] on it, which is used
in both CMU and UAN and avoids the influence of other factors. The accuracy
of the open class is computed as 100% for the oracle. As shown in Table [2| and
on the Office-31 dataset, the performance gap between CMU and Oracle is
smaller than that between CMU and UAN, the state-of-the-art method for UDA,
while on the Office-Home and VisDA datasets, the gaps are comparable. The
results demonstrate that the improvement of CMU over UAN is significant. The
per-class accuracy is bounded by the based closed set domain adaptation method
and can be improved with better closed set domain adaptation, which is not the
focus of the paper.

Table 2. Tasks on Office-31 and VisDA2017 dataset

Office-31 (Acc) VisDA
A-W D->W WD A—-D D—-A WA Avg Acc  H-score

ResNet [4] 75.94 89.60 90.91 80.45 78.83 81.42 82.86 52.80 25.44
DANN [2] 80.65 80.94 88.07 82.67 74.82 83.54 81.78 52.94 25.65

Method

RTN [6] 85.70 87.80 88.91 82.69 74.64 83.26 84.18 53.92 26.02
IWAN [I4] 85.25 90.09 90.00 84.27 84.22 86.25 86.68 58.72 27.65
PADA [14] 85.37 79.26 90.91 81.68 55.32 82.61 79.19 44.98 23.05
ATI [7] 79.38 92.60 90.08 84.40 78.85 81.57 84.48 54.81 26.34
OSBP [11] 66.13 73.57 85.62 72.92 47.35 60.48 67.68 30.26 27.31
UAN [I1] 85.62 94.77 97.99 86.50 85.45 85.12 89.24 60.83 30.47
CMU 86.86 95.72 98.01 89.11 88.35 88.61 91.11 61.42 34.64

Oracle 89.32 96.65 98.77 90.22 89.47 89.27 92.28 66.42 -
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Table 3. Average class accuracy (%) on Office-Home dataset

Office-Home
A—-C A-»P A-R C—»A C—»P C-»R P—-A P—-C PR R—-A R —-C R—-P Avg

ResNet [4] 59.37 76.58 87.48 69.86 71.11 81.66 73.72 56.30 86.07 78.68 59.22 78.59 73.22
DANN [2] 56.17 81.72 86.87 68.67 73.38 83.76 69.92 56.84 85.80 79.41 57.26 78.26 73.17
RTN [6] 50.46 77.80 86.90 65.12 73.40 85.07 67.86 45.23 85.50 79.20 55.55 78.79 70.91
IWAN [I4] 52.55 81.40 86.51 70.58 70.99 85.29 74.88 57.33 85.07 77.48 59.65 78.91 73.39
PADA [14] 39.58 69.37 76.26 62.57 67.39 77.47 48.39 35.79 79.60 75.94 44.50 78.10 62.91
ATI [7] 52.90 80.37 85.91 71.08 72.41 84.39 74.28 57.84 85.61 76.06 60.17 78.42 73.29
OSBP [II] 47.75 60.90 76.78 59.23 61.58 74.33 61.67 44.50 79.31 70.59 54.95 75.18 63.90
UAN [II] 63.00 82.83 87.85 76.88 78.70 85.36 78.22 58.59 86.80 83.37 63.17 79.43 77.02

CMU 63.52 83.81 88.94 77.72 79.37 86.85 78.61 59.27 88.25 84.06 64.57 81.36 78.03
Oracle 66.46 85.59 89.43 80.52 81.56 87.26 81.20 64.35 89.25 85.27 66.78 82.42 80.01

Method

As for H-score, the oracle result for the open class accuracy is 100%, and then
the H-score for the oracle only changes with per-class accuracy. Thus, we do not
report the result since it provides no additional information.

4.2 Supplemental Ablation Study

To compensate for the ablation study in the main text for the performance of
each individual component, we use the three components of the criterion but still
use domain adversarial learning on Office-31. As shown in Table [4] 'CMU’ uses
all the criteria and the deep ensemble. "Ent’ only uses calibrated entropy; ’Conf’
only uses calibrated confidence; ’Cons’ only uses consistency.

Table 4. Supplemental Ablation Study tasks on Office-31 dataset

Method D—->W A—D W — A Avg (6 task)
Acc H-score Acc H-score Acc H-score Acc H-score

CMU 95.72 79.32 89.11 68.11 88.61 72.23 91.11 73.14

Ent 93.11 76.45 87.44 65.45 86.72 69.34 89.36 69.68

Conf 92.43 74.74 86.72 62.38 85.64 67.73 88.82 68.53

Cons 92.21 74.58 86.41 62.07 85.24 67.37 88.43 68.10

The deep ensemble of entropy is an out-of-distribution detection algorithm in
[5], without the domain adversarial learning. For Office-31, the mean accuracy is
88.33; the H-score is 68.30.

4.3 Variance

The average of the variances of six Office-31 tasks is +0.5 for Acc and 0.9 for
H-score. The average of the variances of twelve Office-Home tasks is £0.5 for Acc
and +1.0 for H-score. The small variance further demonstrates the significance
of the results.
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4.4 Examples of Classification Results

We show examples of classification results of CMU and UAN.

(a) bed T (b) bed S (c) 7 (e) alarm T (f) alarm S

Fig. 1. Images that are classified correctly by both methods. Which domain the image
belongs to is noted in the caption (S: source T': target). The source and target images
are quite similar when it can be classified correctly by both methods.

Fig. 2. Images that are classified correctly by CMU but incorrectly by UAN. Fig. (a)
shows a table in the target domain is mis-classified as bed by UAN. Fig. (c) shows a
notebook in the target domain is mis-classified as clipboards. Fig. (e) shows a laptop in
the target domain is mis-classified as computer. CMU can detect all these images as
open classes.

In Fig. [T we show images that are classified correctly by both CMU and
UAN. In general, images classified correctly by both domains are target domain
samples of the common class. Although they are different in background and
some details, they are overall very similar. Generally, such images can be easily
classified correctly by both methods.

In Fig. [2] we show images that are classified correctly by CMU but wrongly by
UAN. They are mostly from the open class images, but similar to some common
classes. The tables were misclassified into beds, as their structure is homologous.
The notebook was misclassified into clipboards, which are both the blue board
but have different elements on the surface. Such images need a transferability
measurement with stronger discriminability.

In Fig. [3] we show images that are classified wrongly by both CMU and UAN.
This part mostly composes of images from open classes that are really like source
classes but have different labels from source classes. For example, the soda image
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(a) soda T (b) bottle S (c) telephoneT (d) calculatorS (e) monitor 7' (f) computer S

Fig. 3. Images classified incorrectly by both methods. Fig. (a) shows a soda in the
target domain is mis-classified as bottle. Fig. (c) shows a telephone in the target domain
is mis-classified as calculator. Fig. (e) shows a monitor in the target domain is mis-
classified as computer. These open class images are quite similar to common classes so
they are difficult to classify even by supervised learning.

can be really regarded as a bottle. A monitor is part of a computer. Such images
are almost indistinguishable even by human beings.
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