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Abstract. Universal domain adaptation (UniDA) transfers knowledge
between domains without any constraint on the label sets, extending the
applicability of domain adaptation in the wild. In UniDA, both the source
and target label sets may hold individual labels not shared by the other
domain. A de facto challenge of UniDA is to classify the target examples
in the shared classes against the domain shift. A more prominent challenge
of UniDA is to mark the target examples in the target-individual label set
(open classes) as “unknown”. These two entangled challenges make UniDA
a highly under-explored problem. Previous work on UniDA focuses on
the classification of data in the shared classes and uses per-class accuracy
as the evaluation metric, which is badly biased to the accuracy of shared
classes. However, accurately detecting open classes is the mission-critical
task to enable real universal domain adaptation. It further turns UniDA
problem into a well-established close-set domain adaptation problem.
Towards accurate open class detection, we propose Calibrated Multiple
Uncertainties (CMU) with a novel transferability measure estimated
by a mixture of uncertainty quantities in complementation: entropy,
confidence and consistency, defined on conditional probabilities calibrated
by a multi-classifier ensemble model. The new transferability measure
accurately quantifies the inclination of a target example to the open
classes. We also propose a novel evaluation metric called H-score, which
emphasizes the importance of both accuracies of the shared classes and
the “unknown” class. Empirical results under the UniDA setting show
that CMU outperforms the state-of-the-art domain adaptation methods
on all the evaluation metrics, especially by a large margin on the H-score.
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1 Introduction

Domain adaptation (DA) relieves the requirement of labeled data in deep learning
by leveraging the labeled data from a related domain [28]. Most DA methods
constrain the source and target label sets to some extent, which are easily violated
in complicated practical scenarios. For example, we can access molecule datasets
∗Equal contribution
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with annotated properties [39]. However, when predicting unknown molecules, we
are exposed to two challenges: (1) The molecule structures such as scaffolds [13]
may vary between training and testing sets, causing large domain shift ; (2) Some
molecules have property values never existing in our dataset such as unknown
toxicity, which causes the category shift. To address the challenges, Universal
Domain Adaptation (UniDA) [41] is raised to remove all label set constraints.
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Fig. 1. (a) The UniDA Setting. There are 3 common, 2 source private and 2 target
private classes. The red cross means that the open class “microwave” is easily misclassified
to “computer”. (b) Comparison of per-class accuracy and H-score. Assuming that the
amount of samples in each category is equal. The classification accuracy of common
classes is 80%, and the accuracy of open classes is 50%.

As shown in Figure 1(a), in UniDA, given any labeled source domain and
unlabeled target domain, we need to classify target data correctly if it belongs
to the common label set or mark it as “unknown” otherwise. UniDA poses two
technical challenges: (1) Distribution matching is still needed but should be
constrained into the common label set; (2) As a new challenge, we need to detect
data of the target open classes without any target labeled data or prior knowledge.
Detecting open classes is the key to UniDA since it can directly solve the second
challenge, and if it is solved, the first challenge can be easily addressed by remove
the open class data and perform partial domain adaptation methods.

Universal Adaptation Network (UAN) [41] addresses the challenges by quanti-
fying the transferability of each sample based on the uncertainty and the domain
similarity. However, as we analyzed in Section 3.1, the transferability suffers from
two shortcomings. First, they use entropy to measure uncertainty and auxiliary
domain classifier to measure domain similarity. Entropy lacks discriminability for
uncertain and sharp predictions, especially with a large number of classes. The
predictions of the auxiliary domain classifier are mostly overconfident as shown in
Figure 4(b) in [41]. Second, the uncalibrated predictions make the transferability
unreliable. Thus, UAN cannot detect open classes clearly. Such failure is hidden
by the per-class accuracy used by UAN [41], which, as shown in Fig. 1(b), overly
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focuses on the common label set, especially under large-scale classes. How to
detect open classes and how to evaluate UniDA are still unsolved problems.

In this paper, we propose Calibrated Multiple Uncertainties (CMU)
with a novel measurement to quantify the transferability of each sample. We
improve the quality of the transferability over the previous work in two aspects.
1) We design a new uncertainty measurement by compensating entropy with
consistency and confidence for the lack of ability to tackle particular predictions;
2) The multi-classifier architecture for uncertainty computation naturally forms
an ensemble, which is the most suitable calibration method for the domain shift
setting. The new transferability can more accurately estimate the uncertainty
and more clearly differentiate different samples by uncertainty, which improves
the accuracy of open class detection. Furthermore, we propose a new evaluation
metric called H-score as the harmonic mean of the accuracy on common label set
and the accuracy of marking data in the target private label set as “unknown”.
As shown in Fig. 1(b), the new criterion is high only when target data in both
common and private label sets are classified accurately.

The main contributions of this paper are:
(1) We emphasize the importance of detecting open classes for UniDA. We

propose Calibrated Multiple Uncertainties (CMU) with a novel transferability
composed of entropy, consistency, and confidence. The three uncertainties are
complementary to discriminate different degrees of uncertainty clearly and are
well-calibrated by multiple classifiers, which distinguish target samples from
common classes and open classes more clearly.

(2) We point out that the evaluation metric: per-class accuracy, used by
UAN highly biases to common classes but fails to test the ability to detect open
classes, especially when the number of common classes is large. We design a
new evaluation protocol: H-score, as the harmonic mean of target common data
accuracy and private data accuracy. It evaluates a balance ability to classify
common class samples and filter open class samples.

(3) We conduct experiments on UniDA benchmarks. Empirical results show
that CMU outperforms UAN and methods of other DA settings on all evaluation
metrics, especially on the H-score. Deeper analyses show that the proposed trans-
ferability can distinguish the common label set from the open classes effectively.

2 Related Work

Domain adaptation settings can be divided into closed set, partial, open set
domain adaptation and universal domain adaptation based on the label set
relationship. Universal domain adaptation removes all constraints on the label
set and includes all other domain adaptation settings.

Closed Set Domain Adaptation assumes both domains share the same
label set. Early deep closed set domain adaptation methods minimize Maximum
Mean Discrepancy (MMD) on deep features [34,20,22]. Recently, methods based
on adversarial learning [8,33,21] are proposed to play a two-player minimax game
between the feature extractor and a domain discriminator. Adversarial learning
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methods achieves the state-of-the-art performance, which is further improved by
recent works [29,15,40,31,24,19,37,12,45,23,5,14] with new architecture designs.

Partial Domain Adaptation requires that the source label set contains
the target label set [2,44,3,4,11], which receives much more attention with access
to large annotated dataset such as ImageNet [6] and Open Image [36]. To solve
partial domain adaptation, one stream of works [2,3] uses target prediction to
construct instance- and class-level weight to down-weight source private samples.
Another stream [44,4] employs an auxiliary domain discriminator to quantify the
domain similarity. Recent work [11] integrates the two weighting mechanisms.

Open Set Domain Adaptation (OSDA) is proposed by Busto et al. [25]
to have private and shared classes in both domains but know shared labels. They
use an Assign-and-Transform-Iteratively (ATI) algorithm to address the problem.
Lian et al. [17] improves it by using entropy weight. Saito et al. [30] relaxed the
problem by requiring no source private labels, so the target label set contains
the source. Later OSDA methods [43,18,1] follow this more challenging setting
and attack it by image translation [43] or a coarse-to-fine filtering process [18].

However, closed set, partial, open set domain adaptation are all restricted by
label set assumptions. The latter two shed light on practical domain adaptation.

Universal Domain Adaptation (UniDA) [41] is the most general setting
of domain adaptation, which removes all constraints and includes all the previous
adaptation settings. It introduces new challenges to detect open classes in target
data even with private classes in the source domain. UAN [41] evaluates the
transferability of examples based on uncertainty and domain similarity. How-
ever, the uncertainty and domain similarity measurements, which are defined as
prediction entropy and output of the auxiliary domain classifier, are not robust
and discriminable enough. We propose a new uncertainty measurement as the
mixture of entropy, consistency and confidence and design a deep ensemble model
to calibrate the uncertainty, which characterizes different degrees of uncertainty
and distinguishes target data in common label set from those in private label set.

3 Calibrated Multiple Uncertainties

In Universal Domain Adaptation (UniDA), a labeled source domain Ds =
{(xs,ys)} and a unlabeled target domain Dt = {(xt)} are provided at training.
Note that the source and target data are sampled from different distributions p
and q respectively. We use Cs and Ct to denote the label set of the source domain
and the target domain. C = Cs ∩ Ct is the common label set shared by both
domains while Cs = Cs \ C and Ct = Ct \ C are the label sets private to source
and target respectively. pCs and pC are used to denote the distributions of source
data with labels in the label set Cs and C respectively, and qCt , qC are defined
similarly. Note that the target label set is not accessible at training and only used
for defining the UniDA problem. UniDA requires a model to distinguish target
data in C from those in Ct, as well as predict accurate label for target data in C.
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3.1 Limitations of Previous Works

The most important challenge for UniDA is detecting open classes. We compare
several state-of-the-art domain adaptation methods with open class detection
module in Table 1 including UniDA method, UAN [41], and open set DA methods,
STA [18] and OSBP [30]. STA and OSBP both use the confidence for an extra
class as the criterion to detect open classes. However, as stated below, confidence
alone lacks discriminability for particular predictions. In UAN, transferability
is derived from uncertainty and domain similarity. Optimally, uncertainty is a
well-established measurement to distinguish samples from C and from Cs and
Ct. But the uncertainty is measured by entropy, which lacks discriminability
for uncertain and extremely sharp predictions. For the domain similarity, the
auxiliary domain classifier is trained with domain label by supervised learning.
So the predictions are over-confident. All the open class detection criteria before
are unilateral and lack the discriminability for particular predictions.

Furthermore, the confidence for STA and OSBP and the uncertainty and
domain similarity for UAN are based on uncalibrated prediction, meaning the
prediction does not reflect the exact confidence, uncertainty or domain similarity
of the sample. So all the criteria before are not estimated accurately and thus
fail to distinguish target data in the common label set from the private label set.

Table 1. Comparison of open class detection criterion for different methods

Criterion Calibration Entropy Confidence Consistency Domain Similarity

OSBP [30] 7 7 3 7 7

STA [18] 7 7 3 7 7

UAN [41] 7 3 7 7 3

CMU 3 3 3 3 7

3.2 Multiple Uncertainties

We design a novel transferability to detect open class. We adopt the assumption
made by UAN: the target data in C have lower uncertainty than target data in
C̄t. A well-defined uncertainty measurement should distinguish different degrees
of uncertainty, e.g., distinguishing definitely uncertain predictions from slightly
uncertain ones. Then we can rank the uncertainty of target samples and mark the
most uncertain ones as open class data. We first analyze and compare different
uncertainty measurements on the discriminability of various predictions.

Entropy measures the smoothness of the class distribution, which is higher
for data in Ct and lower for data in C. We argue that entropy exhibits low
discriminability for highly uncertain and extremely sharp predictions. Fig. 2(a)
shows the value of entropy with respect to the probability of three classes. We
can observe that when the probability distribution is close to uniform, i.e. very
uncertain, the entropy is insensitive to probability changes. For sharp predictions,
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Fig. 2. Heatmap of entropy (a) and confidence (b) w.r.t. the probability values of three
classes. Each edge is the value range [0, 1]. The corner area represents class distributions
where one label is very likely, while the center area shows nearly uniform distribution.

the entropy change in few classes is non-negligible. When there are a large number
of classes, the relative difference of entropy values between sharp predictions
is very small compared with the range of entropy values. For example, with
m classes, the entropy values range is [0, log(m)] but the entropy difference
between prediction (1, 0, 0, ...) and (0.5, 0.5, 0, ...) is log(2). When m is large, such
difference can be ignored, but actually, the two predictions are quite different in
terms of uncertainty. So estimating the uncertainty only by the entropy will fail
to discriminate uncertain and extremely sharp predictions.

Confidence is higher for a more certain data point in C. As shown in Fig.
2(b), confidence value shows ternary contour lines, where the confidence, i.e. the
largest probabilities of three classes, is the same. We have the following statement
on the length of the contour line: The contour lines for extremely high and low
confidence are short. The proof is shown in the supplementary. On each contour
line, even the confidence of different class distributions are the same, the degrees
of uncertainty are different. For example, when the confidence is 0.5, the largest
probability is 0.5, and the other two probabilities could be (0.5, 0) or (0.25, 0.25).
It is obvious that (0.5, 0.5, 0) is more uncertain than (0.5, 0.25, 0.25). Therefore,
confidence lacks discriminability in each contour line. The longer the contour
line, the more class distributions in the contour line, the severer the problem of
confusing various class distributions. Thus, a shorter contour line exhibits higher
discriminability for predictions, which, opposite and complementary to entropy,
corresponds to extremely uncertain and confident predictions.

Based on the above analyses, confidence and entropy are complementary
to cover both smooth and non-smooth class distributions. However, confidence
suffers from prediction errors. If the classifier predicts an open class data as a
class in C with high confidence, the confidence will mistakenly select the data as a
common class sample. To compensate confidence, we employ Consistency built
on multiple diverse classifiers Gi|mi=1, which reflects the agreement of different
classifiers. The loss E(Gi) for the classifier Gi is defined as

E(Gi) = E(x,y)∼pL (y, Gi(F (x))) (1)
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Table 2. Comparison of Calibration Methods on Out-of-distribution Data

Method Extra Requirement Extra Computation

Temp Scaling [9] Target validation set Training calibration parameters

Dropout [7] Multiple dropout layers Multiple full passes

Ensembles [16] Multiple one-layer classifiers Multiple one-layer passes

SVI [38] Several times of model parameters Several times of computation

where i = 1, ...,m and L is the standard cross-entropy loss. To keep the diversity
of different classifiers, we do not back-propagate gradients from Gi|mi=1 to the
feature extractor F and initialize Gi with different random initialization. The
lower the consistency value, the more likely the data is in C. Consistency is more
robust to prediction errors since the probability that all classifiers make the same
mistake is low, which means all diverse classifiers predict a sample wrongly and
coincidentally into the same class. Therefore, consistency compensates confidence
for prediction errors. Confidence usually fails on smooth distribution because
they are close to each other and show high consistency though they are uncertain.

Based on the above comparison, we can conclude that entropy, confidence
and consistency all have their advantages and drawbacks and cannot individually
represent the uncertainty. But they are complementary to each other and can
collaborate to form an uncertainty measurement with high discriminability for
all types of class distributions. Therefore, we choose the mixture of the three
criteria. With each classifier Gi, (i = 1, ...,m) predicting a probability ŷ∗i for
x∗, (∗ = s, t) over the source classes Cs, we compute entropy went, confidence
wconf and consistency wcons as follows:

went(ŷ
t
i |mi=1) =

1

m

m∑
i=1

|Cs|∑
j=1

−ŷtij log
(
ŷtij
) , (2)

wconf(ŷ
t
i |mi=1) =

1

m

m∑
i=1

max(ŷt
i), (3)

wcons(ŷ
t
i |mi=1) =

1

|Cs|

∥∥∥∥∥∥ 1

m

m∑
i=1

(
ŷt
i −

1

m

m∑
i=1

ŷt
i

)2
∥∥∥∥∥∥
1

, (4)

where ŷtij is the probability of j-th class and max take the maximum entry in ŷt
i .

wcons is the standard deviation of all predictions. Multiple classifiers are employed
to calibrate the entropy and the confidence.

We normalize the went and wcons by minmax normalization to unify them
within [0, 1]. Then we compute wt by aggregating the three uncertainties,

wt =
(1− went) + (1− wcons) + wconf

3
, (5)
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where the higher the wt(x
t
0), the more likely xt

0 is in C.
For source weight, since our novel wt can distinguish target private data from

common data more clearly and common class data should have high probability
on one of the common classes, we sum the prediction of common data that are
selected by wt to compute weights V for source classes. Such class-level weight
is only high for source classes in C. Since source labels are available, the source
weight ws can be easily defined by taking the ys-th class weight:

V = avgwt(xt)>w0
ŷt and ws(xs) = Vys , (6)

where avg computes the average of ŷt and Vys is the ys-th entry of V.

3.3 Uncertainty Calibration

The transferability introduced above can estimate the uncertainty for all types of
predictions to detect open classes. However, the criterion is still not reliable enough
for UniDA. As shown in [16], overconfident predictions with low uncertainties
exist among data of the “unknown” class, i.e., out-of-distribution data. So the
uncertainty estimated from the prediction does not reflect the real uncertainty of
the data samples, which deteriorates the reliability of the transferability.

Calibration is a widely-used approach to estimate the uncertainty more
accurately, so we employ the most suitable calibration method for deep UniDA,
where large-scale parameters and the domain gap need consideration. We compare
existing calibration methods surveyed in [32]: Vanilla, Temp Scaling [9], Dropout
[7], Ensemble [16], SVI [38], in terms of performance on out-of-distribution data.
We do not include LL for the low performance in [32] and extra Bayesian Network.

As shown in Table.2, Temp Scaling requires a target validation set, which is
not available in UniDA, or otherwise we know the components of the ”unknown”
class. Dropout and SVI require far more computation on deep networks. SVI can
be embedded into particular network architectures. Ensemble naturally utilizes
the current multi-classifier architecture in our framework and introduce no extra
computation. From [32], we observe that when testing on out-of-distribution data,
Ensemble achieves the best performance on large-scale datasets. Thus, Ensemble is
the most suitable framework for UniDA and already embedded in our framework.

3.4 Calibrated Multiple Uncertainties Framework

We first introduce the framework of CMU, which is shown in Fig. 3. CMU consists
of a feature extractor F , a label classifier G, multiple classifiers G1, G2 ... Gm, and
a domain discriminator D. For a data point x, F extracts the feature z = F (x)
and G predicts a probability ŷ = G(z) for x. We derive the transferability
measurement ws and wt for source and target data from the output of multiple
classifiers as Equation (5) and (6), which is used to weight each data sample in
distribution matching. We train the F , G on D as [8] to enable classification and
feature distribution matching where the losses are defined as:

E(G) = E(x,y)∼pL (y, G(F (x))) (7)
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Fig. 3. The architecture of Calibrated Multiple Uncertainties (CMU). An input x is
fed to F to output a feature, which is then input to a classifier G for prediction. The
feature is also input to m classifiers Gi|mi=1 for ensemble. Three uncertainties: entropy,
consistency and confidence are defined on the output of Gi|mi=1, to produce target weight
wt, which is used to decide a target data is “unknown” or not. The blue solid/dot lines
represent the mechanism judging the “unknown” class. Target data with wt ≥ w0 is
common class data and is given a class prediction, and otherwise it is classified as
“unknown”. The source weight ws is derived from class-level weight V based on the
prediction ŷ of target common class data. ws and wt are used to weighting samples in
distribution matching. The part in the gray square is only used in the training phase.

E(D) =− Ex∼pw
s(x) logD (F (x))− Ex∼qw

t(x) log (1−D (F (x))) (8)

where L is the cross-entropy loss. Combined with the loss for multiple classifiers
in (1), the optimization of the new architecture can be defined as follows,

max
D

min
F,G
E(G)− λE(D)

min
Gi|mi=1

m∑
i=1

E(Gi).
(9)

In the testing phase, given each input target sample x0, we first compute
wt(x0) and then predict the class of y(x) with a validated threshold w0 as:

y(x0) =

{
unknown wt(x0) ≤ w0

argmax (ŷ0) wt(x0) > w0

(10)

which either rejects the x0 as “unknown” class or classifies it to a common class.
Our new transferability measurement consists of three complementary uncer-

tainties covering all class distributions. We carefully compare and employ the most
suitable calibration method to improve the quality of the uncertainty estimation.
The proposed calibrated multiple uncertainties (CMU) can discriminate target
data in C̄t from target data in C more clearly, which in turn helps discriminate
source data in C̄s from source data in C. Thus, CMU can simultaneously match
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the distributions of common classes and detect samples from open classes, which
achieves high performance on both classifying common class and open class data.

4 Experiments

We conduct a thorough evaluation of CMU on universal domain adaptation bench-
marks. Code is at https://github.com/thuml/Calibrated-Multiple-Uncertainties.

4.1 Setup

DatasetsWe perform experiments onOffice-31 [28],Office-Home [35],VisDA
[27] and DomainNet [26] datasets. For the first three datasets, we follow the
same setup as [41]. DomainNet is by far the largest domain adaptation dataset,
consists of six distinct domains: Clipart(C), Infograph(I), Painting(P), Quick-
draw(Q), Real(R) and Sketch(S) across 345 classes. In the alphabet order, we use
the first 150 classes as C, the next 50 classes as Cs and the rest as Ct. We choose
3 domains to transfer between each other due to the large amount of data.

Compared Methods. We compare the proposed CMU with (1) ResNet [10],
(2) close-set domain adaptation: Domain-Adversarial Neural Networks (DANN)
[8], Residual Transfer Networks (RTN)[22], (3) partial domain adaptation: Im-
portance Weighted Adversarial Nets (IWAN) [44], Partial Adversarial Domain
Adaptation (PADA) [3], (4) open set domain adaptation: Assign-and-Transform-
Iteratively (ATI) [25], Open Set Back-Propagation (OSBP) [30]. (5)universal
domain adaptation: Universal Adaptation Network (UAN) [41].

Evaluation Protocols Previous work [41] uses the per-class accuracy as
the evaluation metric, which calculates the instance accuracy of each class and
then average. However, in per-class accuracy, the accuracy of each common class
has the same contribution as the whole “unknown” class. So the influence of the
“unknown” class is small, especially when the amount of common classes is large.
As shown in Fig. 1(b), with a large number of classes, only classifying common
class samples correctly can achieve fairly high per-class accuracy. Inspired by the
F1-score, we propose the H-score: the harmonic mean of the instance accuracy
on common class aC and accuracy on the “unknown” class aCt as:

h = 2 ·
aC · aCt
aC + aCt

. (11)

The new evaluation metric is high only when both the aC and aCt are high. So
H-score emphasizes the importance of both abilities of UniDA methods.

Implementation Details We implement our method in PyTorch framework
with ResNet-50 [10] backbone pretrained on ImageNet [6]. The hyperparameters
are tuned with cross-validation [42] and fixed for each dataset. To enable more
diverse classifiers in deep ensemble, we use different data augmentations and
randomly shuffled data in different orders for different classifiers.
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Table 3. Average class accuracy (%) and H-score (%) on Office-31

Method
Office-31

A → W D → W W → D A → D D → A W → A Avg

Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

ResNet [10] 75.94 47.92 89.60 54.94 90.91 55.60 80.45 49.78 78.83 48.48 81.42 48.96 82.86 50.94
DANN [8] 80.65 48.82 80.94 52.73 88.07 54.87 82.67 50.18 74.82 47.69 83.54 49.33 81.78 50.60
RTN [22] 85.70 50.21 87.80 54.68 88.91 55.24 82.69 50.18 74.64 47.65 83.26 49.28 83.83 51.21
IWAN [44] 85.25 50.13 90.09 54.06 90.00 55.44 84.27 50.64 84.22 49.65 86.25 49.79 86.68 51.62
PADA [44] 85.37 49.65 79.26 52.62 90.91 55.60 81.68 50.00 55.32 42.87 82.61 49.17 79.19 49.98
ATI [25] 79.38 48.58 92.60 55.01 90.08 55.45 84.40 50.48 78.85 48.48 81.57 48.98 84.48 51.16
OSBP [30] 66.13 50.23 73.57 55.53 85.62 57.20 72.92 51.14 47.35 49.75 60.48 50.16 67.68 52.34
UAN [41] 85.62 58.61 94.77 70.62 97.99 71.42 86.50 59.68 85.45 60.11 85.12 60.34 89.24 63.46

CMU 86.86 67.33 95.72 79.32 98.01 80.42 89.11 68.11 88.35 71.42 88.61 72.23 91.11 73.14

Table 4. Tasks on DomainNet and VisDA dataset

Method DomainNet (H-score) VisDA

P → R R → P P → S S → P R → S S → R Avg Acc H-score

ResNet [10] 30.06 28.34 26.95 26.95 26.89 29.74 28.15 52.80 25.44
DANN [8] 31.18 29.33 27.84 27.84 27.77 30.84 29.13 52.94 25.65
RTN [22] 32.27 30.29 28.71 28.71 28.63 31.90 30.08 53.92 26.02
IWAN [44] 35.38 33.02 31.15 31.15 31.06 34.94 32.78 58.72 27.64
PADA [44] 28.92 27.32 26.03 26.03 25.97 28.62 27.15 44.98 23.05
ATI [25] 32.59 30.57 28.96 28.96 28.89 32.21 30.36 54.81 26.34
OSBP [30] 33.60 33.03 30.55 30.53 30.61 33.65 32.00 30.26 27.31
UAN [41] 41.85 43.59 39.06 38.95 38.73 43.69 40.98 60.83 30.47

CMU 50.78 52.16 45.12 44.82 45.64 50.97 48.25 61.42 34.64

4.2 Results

The classification results of Office-31, VisDA, Office-Home and DomainNet are
shown in Table 3, 4 and 5. For a fair comparison with UAN, we compute per-class
accuracy on Office-31 and VisDA. CMU outperforms UAN and all other methods.
We compare H-score on all datasets and CMU consistently outperforms previous
methods with a large margin on all datasets with various difficulties of detecting
open classes. Some domain adaptation methods for other settings perform even
worse than ResNet due to the violation of the label space assumption.

In particular, UAN performs well on per-class accuracy but not well on H-
score, because the sub-optimal transferability measurement of UAN causes it
unable to detect open classes clearly. The low accuracy of the “unknown” class
pulls down the H-score. CMU outperforms UAN on H-score with a large margin,
which demonstrates that CMU has higher-quality transferability measurement to
more accurately detect target open classes Ct. This boosts the accuracy of the
“unknown” class and further improves the quality of ws, which further constrains
feature distribution alignment within C and improves the common class accuracy.
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Table 5. H-score (%) of tasks on on Office-Home dataset

Method Office-Home

A→C A→P A→R C →A C→P C→R P→A P→C P→R R→A R→ C R→P Avg

ResNet [10] 44.65 48.04 50.13 46.64 46.91 48.96 47.47 43.17 50.23 48.45 44.76 48.43 47.32
DANN [8] 42.36 48.02 48.87 45.48 46.47 48.37 45.75 42.55 48.70 47.61 42.67 47.40 46.19
RTN [22] 38.41 44.65 45.70 42.64 44.06 45.48 42.56 36.79 45.50 44.56 39.79 44.53 42.89
IWAN [44] 40.54 46.96 47.78 44.97 45.06 47.59 45.81 41.43 47.55 46.29 42.49 46.54 45.25
PADA [44] 34.13 41.89 44.08 40.56 41.52 43.96 37.04 32.64 44.17 43.06 35.84 43.35 40.19
ATI [25] 39.88 45.77 46.63 44.13 44.39 46.63 44.73 41.20 46.59 45.05 41.78 45.45 44.35
OSBP [30] 39.59 45.09 46.17 45.70 45.24 46.75 45.26 40.54 45.75 45.08 41.64 46.90 44.48
UAN [41] 51.64 51.7 54.3 61.74 57.63 61.86 50.38 47.62 61.46 62.87 52.61 65.19 56.58

CMU 56.02 56.93 59.15 66.95 64.27 67.82 54.72 51.09 66.39 68.24 57.89 69.73 61.60

4.3 Analysis

Varying Size of Cs and Ct Following UAN, with fixed |Cs∪Ct| and |Cs∩Ct|, we
explore the H-score with the various sizes of Ct (Cs also changes correspondingly)
on task A → D in Office-31 dataset. As shown in Figure 4(a), CMU outperforms
all the compared methods consistently with different Ct, proving that CMU is
effective and robust to diverse Cs and Ct. In particular, when Ct is large (over
10), meaning there are many open classes, CMU outperforms other methods with
a large margin, demonstrating that CMU is superior in detecting open classes.

Varying Size of Common Label C Following UAN, we fix |Cs ∪ Ct| and
varying C on task A → D in Office-31 dataset. We let |Cs| + 1 = |Ct| to keep
the relative size of Cs and Ct and vary C from 0 to 31. As shown in Figure 4(b),
CMU consistently outperforms previous methods on all size of C. In particular,
when the source domain and the target domain have no overlap on label sets,
all the target data should be marked as “unknown”. CMU achieves much higher
H-score, indicating that CMU can detect open classes more effectively. When
|C| = 31 , the setting degrades to closed set domain adaptation, CMU and UAN
perform similarly, because there is no open class to influence the adaptation.
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Fig. 4. (a)(b) H-score with respect to Ct and C. In (a), we fix |Cs ∪ Ct| and |Cs ∩ Ct|
; In (b), we fix |Cs ∪ Ct|. (c) Relationship between different metrics and w0. (d) The
class ratio of predicted labels (used to compute ws) of target data in all source labels.
Classes 0-9 are source commons and 10-19 are source privates.
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Ablation Study We go deeper into the efficacy of the proposed method
by evaluating variants of CMU on Office-31. (1) CMU w/o cons is the variant
without using the consistency component in the uncertainty in Eq. (4) but still
using multiple classifiers to calibrate the entropy and confidence; (2) CMU w/o
conf is the variant without integrating the average confidence of classifier in Eq.
(3). (3) CMU w/o ent is the variant without integrating the average entropy
of classifier into the criterion in Eq. (2). (4) CMU w/o ensemble is the variant
without calibrating entropy and confidence but still using single classifier G
to compute entropy and confidence while multiple classifiers are still used to
compute consistency. (5) CMU w/ domain sim is the variant by adding the
domain similarity as another component in the transferability like UAN [41].

Table 6. Ablation Study tasks on Office-31 dataset

Method D → W A → D W → A Avg (6 task)

Acc H-score Acc H-score Acc H-score Acc H-score

CMU 95.72 79.32 89.11 68.11 88.61 72.23 91.11 73.14

w/o cons 95.01 78.65 88.74 67.25 87.82 71.44 90.43 72.23
w/o conf 95.23 78.84 88.92 67.48 88.04 71.71 90.62 72.52
w/o ent 94.11 75.68 86.81 63.97 87.24 68.66 89.07 69.78
w/o ensemble 93.68 74.43 86.39 63.81 88.67 72.26 88.93 69.50
w/ domain sim 95.70 79.30 89.63 68.14 88.67 72.26 91.28 73.15

As shown in Table 6, CMU outperforms CMU w/o cons/conf/ent, especially
w/o entropy, indicating the contribution of the multiple uncertainties is comple-
mentary to achieve a more complete and accurate uncertainty estimation. CMU
outperforms CMU w/o ensemble, proving the calibration from the ensemble
can more accurately estimate the uncertainty. CMU w/ domain sim performs
similarly to CMU, indicating that domain similarity has little effect on detecting
open classes, and thus we do not include it in the uncertainty estimation.

Comparison of Multiple Metrics To justify our new H-score, we visualize
the relationship between different metrics w.r.t. w0 in Figure 4(c). We can observe
that the open class accuracy increases with w0 increasing while the common class
accuracy decreases with w0 increasing. This is because, with higher w0, more data
are marked as “unknown” and more common data are misclassified to “unknown”.
Per-class accuracy varies in the same trend of common class accuracy, indicating
that per-class accuracy bias common class accuracy while nearly neglect the open
class accuracy. H-score is high only when both common class and “unknown”
accuracies are high, which more comprehensively evaluates UniDA methods.

Threshold sensitivity We investigate the sensitivity of CMU with respect
to threshold w0 in task A → D. As shown in Figure 4(c), with w0 varying in a
reasonable range [0.45, 0.60], the H-score changes little, which proves that the
performance is not very sensitive to the threshold w0.
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Fig. 5. Density of each criterion within common and open class data.

Hypotheses Justification To justify that our new transferability measure-
ment distinguishes data in the common label set from those in the private label
sets, we plot the estimated probability density function for different components of
weights ws(x) in Eq. (6) and wt(x) in Eq. (5) on A → D task of Office-31. Figure
5(a)-5(d) show that the three uncertainties: entropy, consistency and confidence
all distinguish target data in C and Ct clearly, proving that the multi-classifier
ensemble model can calibrate the uncertainty and estimate it more accurately.
Figure 4(d) (0-9 is the common class) proves that the source class-level weight
could assign high weights for common classes, which in turn demonstrates that
the selected data to compute source weight are mostly common classes.

5 Conclusion

In this paper, we propose a novel approach: Calibrated Multiple Uncertainties
(CMU) and a new evaluation metric: H-score for Universal Domain Adaptation
(UniDA). We design a novel transferability consisting of entropy, confidence
and consistency, calibrated by a deep ensemble model. The new transferability
exploits complementary characteristics of different uncertainties to cover all types
of predictions. The calibration more accurately estimates the uncertainty and
improves the quality of the transferability. The advanced transferability, in turn,
improves the quality of source weight. CMU achieves a balanced ability to detect
open classes and classify common class data correctly. We further propose a novel
H-score to compensate for the previous per-class accuracy for ignorance of open
classes. A thorough evaluation shows that CMU outperforms the state-of-the-art
UniDA method on both the common set accuracy and the “unknown” class
accuracy, especially with a large margin on detecting open classes.
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