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Abstract. Weakly supervised object localization (WSOL) is a task of
localizing an object in an image only using image-level labels. To tackle
the WSOL problem, most previous studies have followed the conven-
tional class activation mapping (CAM) pipeline: (i) training CNNs for a
classification objective, (ii) generating a class activation map via global
average pooling (GAP) on feature maps, and (iii) extracting bounding
boxes by thresholding based on the maximum value of the class acti-
vation map. In this work, we reveal the current CAM approach suffers
from three fundamental issues: (i) the bias of GAP that assigns a higher
weight to a channel with a small activation area, (ii) negatively weighted
activations inside the object regions and (iii) instability from the use
of the maximum value of a class activation map as a thresholding ref-
erence. They collectively cause the problem that the localization to be
highly limited to small regions of an object. We propose three simple
but robust techniques that alleviate the problems, including thresholded
average pooling, negative weight clamping, and percentile as a standard
for thresholding. Our solutions are universally applicable to any WSOL
methods using CAM and improve their performance drastically. As a
result, we achieve the new state-of-the-art performance on three bench-
mark datasets of CUB-200-2011, ImageNet-1K, and OpenImages30K.

Keywords: Weakly Supervised Object Localization (WSOL), Class Ac-
tivation Mapping (CAM)

1 Introduction

Many recent object detection algorithms such as Faster R-CNN [27], YOLO [25],
SSD [22], R-FCN [7] and their variants [11, 26, 20] have been successful in chal-
lenging benchmarks of object detection [10, 21]. However, due to the necessity
of heavy manual labor for bounding box annotations, weakly supervised object
localization (WSOL) has drawn great attention in computer vision research [40,
31, 5, 39, 38, 6, 36]. Contrast to fully-supervised object detection, the models for
WSOL are trained for the objective of classification solely relying on image-level
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labels. They then utilize the feature map activations from the last convolutional
layer to generate class activation maps from which bounding boxes are estimated.

Since CAM approach [40] was initially introduced, most of previous studies
on WSOL have followed its convention to first generate class activation maps and
extract object locations out of them. However, this approach suffers from severe
underestimation of an object region since the discriminative region activated
through the classification training is often much smaller than the object’s actual
region. For instance, according to the class activation map (Mk) in Fig. 1, the
classifier focuses on the head of the monkey rather than its whole body, since
the activations of the head are enough to correctly classify the image as monkey.
Thus, the bounding box reduces to delineate the small highly activated head
region only. To resolve this problem, recent studies have devised architectures
to obtain larger bounding boxes; for example, it erases the most discriminative
region and trains a classifier only using the regions left, expecting the expansion
of activation to the next most discriminative regions [1, 34, 31, 5, 17, 38, 18, 35,
13, 6]. These methods have significantly improved the performance of WSOL as
well as other relevant tasks such as semantic segmentation.

In this work, however, we propose an approach different from the previous
researches; instead of endeavoring to expand activations by devising a new ar-
chitecture, we focus on correctly utilizing the information that already exists in
the feature maps. The major contribution of our approach is three-fold.

1. We discover three underlying issues residing in the components of the CAM
pipeline that hinder from properly utilizing the information from the feature
maps for localization. Our thorough analysis on CAM reveals the mechanism
of how each component of CAM negatively affects the localization to be
limited to small discriminative regions of an object.

2. Based on the analysis, we propose three simple but robust techniques that
significantly alleviate the problems. Since our solution does not introduce
any new modules but replaces some of existing operations for pooling, weight
averaging and thresholding with better ones, it is easily applicable to any
CAM-based WSOL algorithms.

3. In our experiments, we show that our solutions significantly improve multiple
state-of-the-art CAM-based WSOL models (e.g . HaS [31] and ADL [6]).
More encouragingly, our approach achieves the new best performance on
two representative benchmarks: CUB-200-2011 [33] and ImageNet-1K [28],
and one recently proposed one: OpenImages30K [2, 4].

2 Approach

In this section, we first outline three fundamental problems of CAM-based ap-
proach to WSOL that cause the localization to be limited to small discriminative
regions of an object. To this end, three phenomena are visualized with feature
maps in P1–P3 of Fig. 1, and the corresponding modules where the problems
occur related to the phenomena are described in M1–M3.
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Fig. 1. Overview of the CAM pipeline. We investigate three phenomena of the feature
maps (F). P1. The areas of the activated regions largely differ by channel. P2. The
activated regions corresponding to the negative weights (wc < 0) often cover large parts
of the target object (e.g . monkey). P3. The most activated regions of each channel
largely overlap at small regions. The three modules of CAM in gray boxes (M1–M3)
do not take these phenomena into account correctly. It results in localization being
limited to small discriminative regions.

(i) Global Average Pooing. In practice, the areas of the activated regions
largely differ by feature map channel. But, Global Average Pooling (GAP) is
biased to assign a higher weight to a channel with small activated area. It results
in the small region to be more focused when generating a class activation map.

(ii) Weighted Averaging. Ideally, the activated regions in the channel of
a feature map corresponding to a negative weight are supposed to be no-object
regions (e.g . background); however, they often occur inside the object, especially
less import regions (e.g . monkey ’s body). As a result, less important object re-
gions are further suppressed in the class activation map.

(iii) Thresholding. The most activated regions largely overlap across dif-
ferent channels. Since a class activation map is generated by weighted-averaging
all the channels and a bounding box is determined based on the threshold pro-
portional to the maximum value of the class activation map, small overlapped
regions with too high activations become overdominant to the localization.

Before presenting our solutions to the problems, we first review the class ac-
tivation mapping (CAM) pipeline in section 2.1. We then elaborate the problems
and our solutions one by one in the following section 2.2–2.4.

2.1 Preliminary: Class Activation Mapping (CAM)

The current CAM approach based on the CNN trained for classification, gener-
ates a class activation map and localizes an object in the following way (Fig. 1).

Let the feature map be F ∈ RH×W×C
≥0 where R≥0 is a non-negative real

number. Fc ∈ RH×W
≥0 denotes c-th channel of F where c = 1, . . . , C. First, F is

passed into a global average pooling (GAP) layer that averages each Fc spatially
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and outputs a pooled feature vector, pgap ∈ RC
≥0 as

pgapc =
1

H ×W
∑
(h,w)

Fc(h,w), (1)

where pgapc denotes a scalar of pgap at c-th channel, and Fc(h,w) is an activation
of Fc at spatial position (h,w).

The pooled feature vector is then transformed into K-dim logits through an
FC layer where K is the number of classes. We denote the weights of the FC
layer as W ∈ RC×K . Hence, the class activation map Mk for class k becomes

Mk =

C∑
c=1

wc,k · Fc, (2)

where Mk ∈ RH×W and wc,k is an (c, k) element of W. For localization, M′
k

is first generated by resizing Mk to the original image size. Then a localization
threshold is computed as

τloc = θloc ·max M′
k, (3)

where θloc ∈ [0, 1] is a hyperparameter. Next, a binary mask Bk identifies the
regions where the activations of M′

k is greater than τloc: Bk = 1(M′
k > τloc).

Finally, the localization is predicted as the bounding box that circumscribes the
contour of the regions with the largest positive area of Bk.

2.2 Thresholded Average Pooling (TAP)

Problem. In a feature map (F), the activated areas largely differ by channel as
each channel captures different class information. The GAP layer, however, does
not reflect this difference. It naively sums all the activations of each channel and
divides them by H ×W without considering the activated area in the channel
as in Eq.(1). The difference in the activated area per channel is, however, not
negligible. As an example in Fig. 2, suppose i-th channel Fi in (a) captures
the head of a bird while j-th channel Fj captures its body. Although the area
activated in Fi is much smaller than that in Fj , the GAP layer divides both of
them by H×W , and thus the pooled feature value pgapi of Fi is also much smaller
than pgapj . However, it does not mean the importance of Fi for classification is
less than Fj . For the GT class k (bird), to compensate this difference, the FC
weight wi,k corresponding to Fi is trained to be higher than wj,k. As a result,
when generating a class activation map (Mk), small activated regions of Fi are
highly overstated due to the large value of wi,k, which causes localization to be
limited to small regions as localization depends on the maximum value of Mk.

A batch normalization (BN) layer [16] can partially alleviate this issue through
normalization as it forces the distributions of the activations to be similar by
channel. However, it may also distort the activated area of a channel. For ex-
ample, when a channel captures a small region like ears of a monkey, the BN
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Fig. 2. An example illustrating a problem of the GAP layer. (a) Fi and Fj are the
features capturing the head and body of a bird, respectively. (b) When the two features
are passed to the GAP layer, although their max values are similar, the pooled feature
values, pgapi and pgapj , are significantly different (2.5, 9.9). Despite the similar contribu-
tions of two features to the logit (z) as (0.100, 0.099), the FC weights, wi,k and wj,k,
are trained to be highly different to compensate the difference introduced by the GAP
layer. (c) In the localization phase, the weighted feature with a small activated region,
wi,k · Fi, is highly overstated.

layer expands its originally activated area through normalization, and as a re-
sult, localization can be expanded to the background if the channel is activated
at the edge of the object. On the other hand, our proposed solution alleviates
this problem without distorting the originally activated area.
Solution. To alleviate the problem of the GAP layer, we propose a thresholded
average pooling (TAP) layer defined as

ptapc =

∑
(h,w) 1(Fc(h,w) > τtap)Fc(h,w)∑

(h,w) 1(Fc(h,w) > τtap)
, (4)

where τtap = θtap · max Fc is a threshold value where θtap ∈ [0, 1) is a hyper-
parameter. That is, our solution is to replace the GAP layer with the TAP
layer (i.e. using Eq.(4) instead of Eq.(1)). The TAP layer can be regarded as
a generalized pooling layers in between global max pooling (GMP) and global
average pooling (GAP). Although GAP has an advantage over GMP for WSOL
to expand the activation to broader regions, GMP also has an useful trait that
it can precisely focus on the important activations of each channel for pooling.
The TAP layer inherits the benefits of both GMP and GAP. By including much
broader spatial areas than GMP, it can have the loss propagate to wider fea-
ture map activations than GMP which highlights only the most discriminative
part [40]. Also, by excluding inactive or less active regions, the pooled channel
value ptapc can better represent the core unique activations of each channel.

2.3 Negative Weight Clamping (NWC)

Problem. When CNNs are trained for classification, a large number of the
weights from the FC layer are negative. Since feature map channels correspond-
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Fig. 3. An example illustrating the characteristics of the feature map channels with
negative weights. (a) The activated regions of the i-th and j-th feature map channel
for two different images. GT and w denote the ground truth class and sign of the
corresponding weight. The less important regions (e.g . body) can be activated in mul-
tiple classes regardless of the weight sign due to their resemblance between different
classes. (b) Intersection over Area (IoA) between the GT boxes and class activation
maps generated from only the features corresponding to positive and negative weights,
respectively, on both CUB-200-2011 and ImageNet-1K. It indicates how much activated
regions and actual object regions are overlapped.

ing to negative weights only decrease the final logit of the GT class for classifi-
cation, ideally they should not be activated for the sake of classification, which
is not the case in general. According to the underlying assumption of the CAM
method from Eq.(2), since only depreciating the values in a class activation map
(Mk), they should be activated in no-object regions like background. However,
in reality, they are activated inside the object region, especially less important
region for classification (P2 in Fig. 1). As a result, it causes the localization to
be limited to the discriminative region of an object further.

To better understand why this happens, we first take an example in Fig. 3(a).
For the image of the first column whose GT class is cat, i-th and j-th channel
of feature maps, Fi and Fj , have positive weights for the class cat and they
successfully capture the body and head of cat, respectively. Contrarily, for the
image of the second column whose GT class is dog, the two channels have negative
weights for the class dog and they are supposed to be activated in no-dog regions.
However, the body of dog is activated in Fi, because of the resemblance between
the body of cat and dog. This phenomenon is very common in practice as less
important object regions for classification are similar between different classes.

To make sure that this phenomenon commonly happens in WSOL bench-
mark datasets, we obtain the distributions of Intersection over Area (IoA) be-
tween the GT boxes and class activation maps generated from only the features
corresponding to positive and negative weights, respectively, on CUB-200-2011
and ImageNet-1k, as described Fig. 3(b). Surprisingly, the distributions of the
positive and negative weights are almost identical on both datasets, and it is
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highly prevalent that GT boxes are overlapped with the activated regions of
negatively weighted features.
Solution. To mitigate the aforementioned problem, we simply clamp negative
weights to zero to generate a class activation map. Hence, Eq.(2) is redefined as

Mk =

C∑
c=1

1(wc,k > 0) · wc,k · Fc. (5)

By doing this, we can secure the activations on less important object regions
that are depreciated by the negative weights. One may think that this negative
clamping may increase the chance of background selection if the feature with
a negative weight correctly activates background. In our experiments, however,
this method does not introduce further background noise, mainly because the
features corresponding to positive weights are mostly activated in the object
regions and their strengths are sufficiently large. Consequently, the activations
in the background are still far below the threshold and can be easily filtered out.

2.4 Percentile as a Standard for Thresholding (PaS)

Problem. As shown in Eq.(3), the thresholding of CAM is simply based on
the maximum value of a class activation map. If high activations largely overlap
across feature map channels, due to the extremely high maximum value of Mk,
the region where activations are greater than the localization threshold is limited
to a very small region. The top row in Fig. 4 shows such a case, where the
values of a generated class activation map follow Zipf’s law in Fig. 4(b) and the
values in the discriminative region are exponentially larger than those in non-
discriminative regions. On the other hand, when the activations are not solely
concentrated in a small region as in the bottom case, the distribution of the
activations follows a linearly decreasing pattern as shown in the bottom of (b),
and the localization tends to cover the whole region of an object. While the
thresholding of CAM works well with the bottom case but fails with the top
one, our solution is designed to work robustly with both cases.
Solution. To alleviate the problem of having too large maximum value, a per-
centile can be employed as a substitute for the maximum value. The percentile is
one of the simplest but the most robust metrics that are not sensitive to outliers
nor exponential distributions of activations. Hence, Eq.(3) for the localization
threshold τloc is redefined as

τloc = θloc · peri(M
′
k), (6)

where peri is an i-th percentile. Although any value in [0, 1] is available for θloc,
for percentile i, due to small object cases where even 80-th percentile of a class
activation map is close to zero, we constraint the possible values for i to [80, 100].

Fig. 4(c) shows the same distributions as those in (b) except 90-th percentile
is used as a standard. When using the maximum as a standard in Fig. 4(b),
the thresholded percentiles (i.e. the value of x-axis at the threshold) in the top
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Fig. 4. An example illustrating the problem of the overlap of high activations. (a) In
the problematic case (top), when high activations (activation > τ0.8) are concentrated
in the small discriminative region, the localization threshold τloc in Eq.(3) becomes
too high due to the high maximum value of the class activation map, which results
in localization being limited to a small region. (b) and (c) are the distributions of
class activation map values in the descending order when using the maximum and
percentile as thresholding standards, respectively. (d) illustrates the resulting class
activation maps. The boxes in red, green and yellow represent the GT, prediction
based on the maximum as a standard, and prediction based on the percentile as a
standard, respectively.

and the bottom are significantly different (e.g . 23% in top and 40% in bottom).
Contrarily, by using 90-th percentile in Fig. 4(c), they are almost similar around
35%. Fig. 4(d) shows the localization results are better when using the proposed
percentile (e.g . yellow boxes) than using the maximum (e.g . green boxes).

3 Related Work

We review two directions of a related research: (i) CAM-based WSOL methods
that attempt to resolve the problem of limited localization and (ii) spatial pooling
methods for object localization in weakly supervised setting.

3.1 CAM-Based WSOL Methods

The major challenge of WSOL is to capture a whole object region rather than
its most discriminative one. Since a CNN backbone is trained for classification,
a class activation map is highly activated on the discriminative region not the
whole region of an object. Hence, the expansion of the activation beyond the
discriminative region in a feature map has been a major research topic for WSOL.
Image masking. Bazzani et al . [1] improve localization by masking out the
regions of which classification scores largely drop. Hide-and-Seek (HaS) [31] ran-
domly hide patches in an image to make a classifier seek other regions. Choe et



Rethinking CAM for Weakly Supervised Object Localization 9

al . [5] improve HaS using GoogleNet Resize (GR) augmentation. Wei et al . [34]
propose an adversarial erasing that progressively erases the most discriminative
parts using multiple classifiers and combines them for final localization.
Feature masking. Instead of masking in the image level, Kim et al . [17] and
SeeNet [13] propose two-phase feature-level erasing methods, and ACoL [38]
designs an end-to-end parallel adversarial architecture where two classifiers are
learned to detect complementary regions via adversarially erasing feature maps.
ADL [6] is an attention-based dropout layer that randomly generates masks on
feature maps to expand the activations to less discriminative regions of an object.
Other methods. SPG [39] uses highly discriminative regions from the latter
layers as a mask supervision to the earlier layers. DANet [36] trains intermedi-
ate layers using the classes obtained from knowledge graphs of class hierarchy
expecting the expansion of activations to the common object regions.

Unlike the previous methods, we aim at fully and correctly leveraging the
information that already exists in the CAM pipeline. Thus, instead of endeav-
oring to devise a new architecture as done previously, we focus on discovering
problematic steps of CAM and proposing simple but robust solutions.

3.2 Spatial Pooling Methods

Due to the absence of bounding box annotations, WSOL relies on the activations
of feature maps to localize an object. Several approaches have been proposed to
deal with how to extract the information from feature maps.
Representation pooling. Oquab et al . [23] and Pinheiro et al . [24] respectively
propose to use the max pooling and log-sum-exp layers as pooling methods for
CAM. Although the max pooling accurately tells the most discriminative region
of an object, its localization is highly limited to the small regions. Zhou et al .
[40] use a GAP layer proposed in Lin et al . [19] as a replacement for max pooling
since the loss for average pooling benefits all the activated regions.
Gradient-based pooling. To utilize the GAP layer, the last layer of CNNs has
to be converted to a FC layer following the GAP layer, which does not align with
the structure of many of well-known classification CNNs [30, 12, 14, 32]. Because
of this limitation, GradCAM [29] and GradCAM+ [3] propose gradient-based
methods to obtain a class activation map. Although gradient-based methods are
applicable to any classification model with no modification of architecture, they
are overwhelming in terms of the computation and memory cost without much
improvement on the performance. Thus, using the GAP layer is still a de facto
standard approach to WSOL, including recent works such as [13, 39, 6, 36].
Score Pooling. Instead of pooling information only from the maximum scoring
regions, WELDON [9] and WILDCAT [8] include the minimum scoring regions
to regularize the class score. The score pooling (SP) proposed in WILDCAT is
the closest idea to our TAP layer but they are fundamentally different in that
SP is applied to a fixed number of activations on the class map to consider both
positive and negative regions for classification, whereas TAP adaptively includes
activations for pooling for every channel of the feature map to correctly estimate
a weight for each channel in localization.
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4 Experiments

We evaluate the proposed approach on two standard benchmarks for WSOL:
CUB-200-2011 [33] and ImageNet-1K [28], and one recently proposed bench-
mark: OpenImages30K [2, 4]. Our approach consistently improves the perfor-
mance with various CNN backbones and WSOL methods; especially, we achieve
the new state-of-the-art performance on all three datasets.

4.1 Experiment Setting

Datasets. CUB-200-2011 [33] consists of 200 bird species. The numbers of im-
ages in training and test sets are 6,033 and 5,755, respectively. ImageNet-1K [28]
consists of 1,000 different categories; the numbers of images in training and val-
idation sets are about 1.3 million and 50,000, respectively. We use bounding
box annotations of the datasets only for the purpose of evaluation. OpenIm-
ages30K [2, 4] consists of 29,819, 2,500 and 5,000 images for training, validation,
and test sets, respectively, with binary mask annotations.
Implementation. To validate the robustness of our methods, we employ four
different CNN backbones: VGG16 [30], ResNet50-SE [12, 15], MobileNetV1 [14]
and GoogleNet [32]. For VGG16, we replace the last pooling layer and two
following FC layers with a GAP layer as done in [40]. We add SE blocks [15]
on top of ResNet50 to build ResNet50-SE for CUB-200-2011 and ImageNet-1K
following ADL [6], and leave ResNet50 as it is for OpenImages30K following
Choe et al . [4]. For GoogleNet, we replace the last inception block with two
CONV layers based on SPG [39]. For the threshold τtap of TAP layer in Eq.(4),
we set θtap = 0.1 for VGG16 and MobileNetV1 and θtap = 0.0 for ResNet50-SE
and GoogleNet. Also, localization hyperparameters, i and θloc, in Eq.(6) are set
to θloc = 0.35, i = 90, which are fixed regardless of the backbones or datasets.
The detailed hyperparameter tuning is described in the appendix.
Evaluation metrics. We report the performance of models using Top-1 Cls,
GT Loc, and Top-1 Loc on CUB-200-2011 and ImageNet-1K, and PxAP on
OpenImages30K. Top-1 Cls is the top-1 accuracy of classification, and GT Loc
measures the localization accuracy with known ground truth classes. For Top-1
Loc, the prediction is counted as correct if the predictions on both classification
and localization (i.e. IoU ≥ 0.5) are correct. Pixel Average Precision (PxAP) [4]
is the area under a pixel precision and recall curve. As precision and recall are
computed for all thresholds, PxAP is independent to the choice of a threshold.

4.2 Quantitative Results

Comparison with the state-of-the-arts. As the proposed solutions are ap-
plicable to any CAM-based WSOL algorithms, we validate their compatibility
with two recent state-of-the-art models. We select HaS [31] and ADL [6] as they
are two of the best performing models for WSOL.

Table 1 provides the comparison of the proposed methods on HaS and ADL
with various backbone structures and the state-of-the-art models: ACoL [38],
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Table 1. Comparison of the proposed methods applied to ADL and HaS-32 with other
state-of-the-art algorithms. The methods with * indicate the scores are referred from
the original paper. – indicates no accuracy reported in the paper.

Backbone Method
CUB-200-2011 ImageNet-1K

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

VGG16

ACoL* 71.90 – 45.92 67.50 – 45.83
SPG* 75.50 – 48.93 – – –
DANet* 75.40 – 52.52 – – –
HaS-32 66.10 71.57 49.46 62.28 61.23 41.64
HaS-32 + Ours 70.12 78.58 57.37 66.21 61.48 43.91
ADL 69.05 73.96 53.40 68.03 59.24 42.96
ADL + Ours 75.01 76.30 58.96 68.67 60.73 44.62

ResNet50

HaS-32 71.28 72.56 53.97 74.37 62.95 48.27
HaS-32 + Ours 72.51 75.34 57.42 73.75 63.84 49.40
ADL 76.53 71.99 57.40 75.06 61.04 48.23
ADL + Ours 75.03 77.58 59.53 75.82 62.20 49.42

MobileNetV1

HaS-32 65.98 67.31 46.70 65.45 60.12 42.73
Has-32 + Ours 71.16 75.04 55.56 65.60 62.22 44.31
ADL 71.90 62.55 47.69 67.02 59.21 42.89
ADL + Ours 73.51 78.60 59.41 67.15 61.69 44.78

GoogleNet

ACoL* – – – – – 46.72
SPG* – – 46.64 – – 48.60
DANet* 71.20 – 49.45 72.50 – 47.53
Has-32 75.35 61.08 47.36 68.92 60.55 44.64
Has-32 + Ours 74.25 67.03 50.64 67.86 62.36 45.36
ADL 73.37 66.81 51.29 74.38 60.84 47.72
ADL + Ours 73.65 69.95 53.04 74.25 64.44 50.56

SPG [39] and DANet [36]. We validate the proposed approaches further improve
both HaS and ADL on CUB-200-2011 and ImageNet-1K. Especially, ADL with
our approaches significantly outperforms all the state-of-the-art algorithms on
CUB-200-2011, and obtain the comparable results on ImageNet-1K. To the best
of our knowledge, Baseline + Ours with VGG16 and ResNet50-SE that are
shown in Table 2 are the new state-of-the-art performance on CUB-200-2011
and ImageNet-1K, respectively.
Results with different backbones. To validate the robustness of our solu-
tions, we experiment our approach with different backbones. Table 2 summarizes
the results on CUB-200-2011 and ImageNet-1K. In terms of Top-1 Loc regarded
as the most important metric for WSOL, our approach improves the baseline,
which refers to Vanilla CAM [40], with significant margins (CUB: 14.18, Im-
ageNet: 2.84 on average). The results are compatible or even better than the
state-of-the-art methods on both datasets as shown in Table 1.
Results with different components. We further investigate the effectiveness
of each of the proposed solutions using VGG16 on CUB-200-2011 and ImageNet-
1K. Due to space constraint, we defer the results of the other backbones to
the appendix. In Table 3, three leftmost columns denote whether each of our
solutions is applied to the baseline, Vanilla CAM with VGG-16.

The TAP layer improves the performance of both classification (CUB: 69.95→
74.91, ImageNet: 65.39 → 67.22) and localization (CUB: 37.05 → 48.53, Ima-
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Table 2. Performance of the proposed methods applied to Vanilla CAM (Baseline)
with various backbone structures.

Backbone Method
CUB-200-2011 ImageNet-1K

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

VGG16
Baseline 69.95 53.68 37.05 64.56 59.81 41.62
+ Ours 74.91 80.72 61.30 67.28 61.69 44.69

ResNet50-SE
Baseline 78.62 56.49 43.29 77.22 58.21 46.64
+ Ours 77.42 74.51 58.39 77.25 64.40 51.96

MobileNetV1
Baseline 72.09 58.92 44.46 67.34 59.45 43.29
+ Ours 75.82 74.28 57.63 68.07 61.85 45.55

GoogleNet
Baseline 74.35 61.67 46.86 70.50 62.32 46.98
+ Ours 75.04 65.10 51.05 71.09 62.76 47.70

Table 3. Performance variations of Vanilla CAM [40] with VGG16 according to differ-
ent usage of our solutions. TAP, NWC and PaS refer to thresholded average pooling,
negative weight clamping and percentile as a standard for thresholding.

Method TAP NWC PaS
CUB-200-2011 ImageNet-1K

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

Baseline 69.95 53.68 37.05 65.39 59.65 41.91

+ Ours

X 74.91 64.10 48.53 67.22 62.38 45.29
X 69.95 64.30 44.15 65.39 60.44 42.39

X 69.95 65.90 48.45 65.39 62.08 44.04
X X 74.91 73.58 54.41 67.22 62.48 45.24
X X 74.91 72.87 56.64 67.22 61.85 45.01

X X 69.95 76.42 54.30 65.39 62.77 44.40
X X X 74.91 80.72 61.30 67.22 62.68 45.40

geNet: 41.91→ 45.29). The weight clamping method as well as 90-th percentile
standard also constantly improve the performance of localization regardless of
datasets (CUB: 37.05→ 44.15, 48.45, ImageNet: 41.91→ 42.39, 44.04). With us-
ing all the solutions, the localization accuracies are maximized on both datasets.

Results on OpenImages30K. A drawback of GT Loc and Top-1 Cls is that
they are sensitive to a localization threshold θloc. To validate that the robust-
ness of our methods is not originated from a choice of the localization thresh-
old, we compare the performance of our proposed solution applied to Vanilla
CAM [40] and ADL [6] to other state-of-the-art algorithms on OpenImages30K
using PxAP [4], which is independent to a threshold. Table 4 shows that CAM
+ Ours outperform all the other methods of which performance is cited from
[4]. Also, our proposed methods significantly improve ADL performance.

Discussion on datasets. Interestingly, the improvement of localization perfor-
mance by our methods is much higher on CUB-200-2011 than on ImageNet-1K
and OpenImages30K. We conjecture the reasons are two-fold. First, our method
works better on harder classification tasks such as CUB-200-2011 where more
sophisticate part distinction is required. In other words, the discriminative re-
gions of CUB-200-2011 are relatively smaller than those of the other datasets



Rethinking CAM for Weakly Supervised Object Localization 13

Table 4. Performance on OpenImages30K.
Method VGG16 GoogleNet ResNet50

HaS 56.9 58.5 58.2
ACoL 54.7 63.0 57.8
SPG 55.9 62.4 57.7

CutMix [37] 58.2 61.7 58.7
CAM 58.1 61.4 58.0

CAM + Ours 59.6 63.3 60.9
∆ (+1.5) (+1.9) (+2.9)

ADL 58.3 62.1 54.3
ADL + Ours 59.3 63.3 55.7

∆ (+1.0) (+1.2) (+1.4)

as many images in CUB-200-2011
share the common features such as
feathers and wings. Since our pro-
posed method focuses on expanding
the localization to less-discriminative
regions, it works better on such fine-
grained classification problem. Sec-
ond, negative weight clamping is more
effective on single-object images such
as CUB-200-2011. Contrary to the
assumption of WSOL, ImageNet-1K
and OpenImages30K contain multiple
objects per image despite its single class labels. With an image of multiple ob-
jects, the features with negative weights tend to be activated in object regions
of different classes. We elaborate it in the appendix more in detail.

4.3 Qualitative Results

Fig. 5 provides some localization results that show the effectiveness of each of
the proposed methods. All the methods contribute to expand localization from
discriminative regions to the whole object regions through (i) TAP: balancing
over/underestimated weights of features, (ii) NWC: securing depreciated acti-
vations due to negative weights, and (iii) PaS: lowering too high threshold due
to the maximum standard. Note that PaS is robustly applicable whether the
overlap of high activations is too severe (right) or not (left).

Fig. 6 further provides localization results for the proposed methods on
Vanilla CAM and ADL with VGG16 and ResNet50-SE. In general, the pro-
posed methods help each model to utilize more activations in object regions,

Image CAM Ours Image CAM Ours

T
A
P

N
W
C

P
aS

Fig. 5. Comparison of CAM and each of the proposed method. The boxes in red and
green represent the ground truths and predictions of localization, respectively.
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Fig. 6. Localization results of various models with and without our approach applied
on CUB-200-2011 and ImageNet-1K datasets. The boxes in red and green represent
the ground truths and predictions of localization, respectively.

which results in the expansion of bounding boxes compared to the ones from
CAM and ADL. We provide additional qualitative results on the other combi-
nation of backbones and modules in the appendix.

5 Conclusion

Class activation mapping (CAM), the foundation of WSOL algorithms, has three
major problems which cause localization to be limited to small discriminative
regions. Instead of devising a new architecture as done in most previous studies,
we proposed three simple but robust methods to properly and efficiently utilize
the information that already resides in feature maps. We validated the proposed
method largely mitigated the problems, and as a result, achieved the new state-
of-the-art performance on CUB-200-2011, ImageNet-1K, and OpenImages30K.

As a future work, we will investigate a more integrated algorithm to handle
the aforementioned problems of the CAM method. Furthermore, instead of only
using the information for a class as done in the current CAM method, using
other external information such as weights of other classes may help to better
localize an object by utilizing the relationship between different classes.
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