A. Appendix

A.1. Method - Details of region-scale/contextual-relation pseudo labels and regularizer weight

We would share more details about the region-scale/contextual-relation pseudo labels and the weight of regularizer used in this paper. For the **source domain**, the sizes of the input image for datasets GTA5 and SYNTHIA are 720 × 1280 and 760 × 1280, respectively. In this paper, we use two types of regions with two different sizes. The first sizes of regions for datasets GTA5 and SYNTHIA are 18×32 and 19×32 , respectively. The second sizes of regions for datasets GTA5 and SYNTHIA are 36×64 and 38×64 , respectively. For the **target domain** (dataset Cityscapes), the size of input image is 512×1024 . The sizes of regions are 16×32 and 32×64 , respectively. We use two independent contextual-relations (CR) classifiers to deal with these two types of regions with two different sizes. The weight of the regularizer in adaptive entropy max-minimizing adversarial learning scheme decreases with training iteration, which is expressed as: $\lambda_R = (1 - \frac{iter}{max.iter})^{power}$ with power = 0.9.

A.2. Method - Traditional Losses

For the source domain, traditional approaches learn a supervised segmentation model G that aims to minimize a segmentation loss. For the target domain, UDA networks using adversarial learning train G to extract domain-invariant features though the minimaxing game between G and a domain discriminator D. The overall loss in the UDA networks can therefore be formulated by:

$$\mathcal{L}(X_s, X_t) = \mathcal{L}_{seq}(G) + \mathcal{L}_{adv}(G, D) \tag{1}$$

A.3. Method - Loss in Multi-Scale Adaptation

Source Flow: In our contextual-relation consistent domain adaptation (Cr-CDA) with multi-scale form, the source-domain data contribute to \mathcal{L}_{seg} , \mathcal{L}_{cr} and \mathcal{L}_D . Given a source-domain image $x_s \subset X_s$ and the corresponding pixelscale label $y_s \subset Y_s$, region-scale (contextual-relations) pseudo label $y_{s_cr} \subset Y_{s_cr}$, $P_s^{(h,w,c)} = C_{seg}(E(x_s))$ is the predicted probability map w.r.t each pixel over C classes; $P_{s_cr}^{(i,j,n)} = C_{cr}(E(x_s))$ is the predicted probability map w.r.t each region over N classes. The layout probability map $P_{s_layout}^{(h,w,c+n)}$ is generated by concatenating $P_s^{(h,w,c)}$ and up-sampled $P_{s_cr}^{(i,j,n)}$. \mathcal{L}_{seg} and \mathcal{L}_{cr} are provided in the submitted manuscript. \mathcal{L}_{sd} is formulated as follows:

$$\mathcal{L}_{s_d}(E, C_{seg}, C_{cr}, C_D) = \sum_{h, w} E[\log C_D(P_{s_layout}^{(h, w, c+n)})]$$
(2)

Target Flow: As the target label is not accessible, we design an adversarial training scheme between feature extractor E and classifiers $(C_{seg}, C_{cr} \text{ and } C_D)$ that extracts discriminative features via max-minimizing entropy in the target domain. Given a target image $x_t \subset X_t$, $P_t^{(h,w,c)} = C_{seg}(E(x_t))$ is the predicted probability map w.r.t each target pixel over C classes; $P_{t,cr}^{(i,j,n)} = C_{cr}(E(x_t))$ is the predicted probability map w.r.t each target region over N classes. The layout probability map $P_{t,layout}^{(h,w,c+n)}$ of the target-domain image is generated by concatenating $P_t^{(h,w,c)}$ and up-sampled $P_{t,cr}^{(i,j,n)}$. $\mathcal{L}_{ent}pix$ and $\mathcal{L}_{ent,cr}$ are provided in the submitted manuscript. \mathcal{L}_{t_d} is expressed as:

$$\mathcal{L}_{t_d}(E, C_{seg}, C_{cr}, C_D) = \sum_{h, w} E[\log(1 - C_D(P_{t_layout}^{(h, w, c+n)}))]$$
(3)

Therefore, the overall global alignment loss is expressed as:

$$\mathcal{L}_D(E, C_{seg}, C_{cr}, C_D) = \mathcal{L}_{s_d} + \mathcal{L}_{t_d} + Ent_{s_d} + Ent_{t_d}$$
(4)

where domain classifier entropy is $Ent_{s_d} = -C_D(P_{s_layout}^{(h,w,c+n)}) \log C_D(P_{s_layout}^{(h,w,c+n)})$ for source domain; similarly, $Ent_{t_d} = -C_D(P_{t_layout}^{(h,w,c+n)}) \log C_D(P_{t_layout}^{(h,w,c+n)})$ for target domain.

A.4. Experiment - More Qualitative Results

We share more qualitative experimental results for $GTA5 \rightarrow Cityscapes$ as shown in Fig. 1. As Fig. 1 shows, our CrCDA aligns both low-level features (*e.g.*, boundaries of sidewalk, car and person *etc.*) and high-level features by multi-scale adversarial learning. As a comparison, AdvEnt neglects low-level information which focuses more on high-level features. As a result, CrCDA achieves both local and global consistencies in segmentation while AdvEnt achieves global consistency only.

Fig. 1. Qualitative results for GTA5 \rightarrow Cityscapes. Our approach (CrCDA) aligns low-level features (*e.g.*, boundaries of sidewalk, car and person *etc.*) as well as high-level features by multi-scale adversarial learning. In contrast, AdvEnt ignores low-level information because global alignment focuses more on high-level information. Thus, as shown above, CrCDA achieves both local and global consistencies while AdvEnt only achieves global consistency.