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Abstract. Although deep learning techniques have largely improved
face recognition, unconstrained surveillance face recognition is still an
unsolved challenge, due to the limited training data and the gap of do-
main distribution. Previous methods mostly match low-resolution and
high-resolution faces in different domains, which tend to deteriorate the
original feature space in the common recognition scenarios. To avoid this
problem, we propose resolution adaption network (RAN) which contains
Multi-Resolution Generative Adversarial Networks (MR-GAN) followed
by a feature adaption network. MR-GAN learns multi-resolution rep-
resentations and randomly selects one resolution to generate realistic
low-resolution (LR) faces that can avoid the artifacts of down-sampled
faces. A novel feature adaption network with translation gate is devel-
oped to fuse the discriminative information of LR faces into backbone
network, while preserving the discrimination ability of original face repre-
sentations. The experimental results on IJB-C TinyFace, SCface, QMUL-
SurvFace datasets have demonstrated the superiority of our method com-
pared with state-of-the-art surveillance face recognition methods, while
showing stable performance on the common recognition scenarios.

Keywords: Surveillance Face Recognition, Generative Adversarial Net-
works, Feature Adaption

1 Introduction

Surveillance face recognition is an important problem, which is widely existed
in the real-world scenarios, e.g., low-quality faces captured from surveillance
cameras are used to match low-resolution (LR) faces or high-resolution (HR)
faces. The performance on high-resolution testing sets such as LFW [21] has
been greatly improved by SOTA face recognition methods [10, 25, 39] and the
large-scale datasets [4, 16, 42]. However, due to the large distribution discrepancy
between HR and LR faces, the performance of common recognition methods will
deteriorate in surveillance face recognition significantly.

Since most of faces in existing datasets [4, 16, 42] are in high-quality, network
will focus on learning more informative representation of high resolution such
as eyebrows [5], while ignore the information of low-resolution, such as facial
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Fig. 1. In RAN, we follow the concept of ”generate to adapt”. Unlike [32], MR-GAN
is utilized to synthesize realistic resolution-degraded distribution as anchors. Then fea-
ture adaption network adopts translation gate to determine the source of translated LR
features and minimizes the distance between translated and synthesized LR distribu-
tion. The embedding space is directly supervised by HR faces and indirectly supervised
by synthesized LR faces, aiming to obtain robust multi-resolution embedding.

contour. When test in the surveillance face, the informative embedding can not
catch the lost detail. One intuitive method is to employ face super-resolution [2,
8, 43], and then apply synthesized faces for face recognition. Due to the inevitably
introduced noise, the performance will be degraded with this method. The other
approach translates the embedding of HR faces and down-sampled LR faces into
a unified space to minimize the distance of same identity [18, 44, 54]. However,
recent works [3, 23] show down-sampling is not good for scale degradation. In
this work, we aim to adopt MR-GAN based data argumentation and propose
the progressive training procedure to fuse multi-resolution representations.

We propose a novel resolution adaption network (RAN) which includes multi-
resolution generative adversarial networks (MR-GAN) to synthesize realistic LR
faces. Feature adaption network is then included to progressively learn the multi-
resolution (MR) knowledge. The framework is depicted in Figure 1. Different
from [3], which adopted GANs to generate LR images as an intermediate step
to achieve image super-resolution, our MR-GAN aims to directly generate real-
istic LR faces that can be augmented in large-scale datasets and provide prior
multi-resolution representations. The global and local mechanism is adopted in
generator to pay attention to different areas. In the global stream of generator,
input faces are down-sampled into three scales and passed to extract specific
knowledge. Then multi-resolution representations are gradually combined and
converged into stream of the lowest-resolution to obtain the refined global face
by spatial attention. Multi-resolution fusion is conducted by connecting infor-
mation from sub-encoders of higher-resolution repeatedly and one resolution can
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be selected randomly to refine realistic LR faces. Meanwhile, the local regions
of lowest-scale face are employed to obtain the refined regions, aggregated with
global face to generate realistic LR faces. So the coarse, but still discriminative
faces can be employed to provide the low-resolution representations.

Following the concept of generating to adapt, we propose a novel feature
adaption network to guide the HR model to fuse the discriminative information
of the generated LR faces and maintain steady discrimination ability of the HR
faces. So, the problem of domain shift by pulling features of different domains
close to each other compulsively can be prevented. Specifically, translation gate
is proposed to balance the source of translated embedding and preserve LR
representations progressively. To minimize the distance between translated LR
embedding and realistic LR embedding extracted by synthesized LR faces, HR
model can be guaranteed to contain enough LR information and construct MR
embedding, retaining both the information of facial details and contours.

In summary, this paper makes the following contributions:

– We propose multi-resolution GAN to synthesize realistic LR faces, which can
avoid the artifacts of down-sampled faces. The representations of different
resolutions are combined and injected into stream of the lowest resolution
to refine LR faces. And the global and local architectures are both employed
into generator and discriminator to reinforce the realism of generated faces.

– We propose feature adaption network to redirect HR model to focus on fusing
LR information while preserving HR representations. This network employs
translation gate to progressively extract LR knowledge from HR embedding,
aiming to ensure that HR model contains enough LR information.

– We select small face from IJB-C [29] and construct testing set named IJB-C
TinyFace to exploit unconstrained surveillance face recognition. Our method
achieves state-of-the-art performance on surveillance datasets: SCface [15],
QMUL-SurvFace [9], and IJB-C TinyFace and shows the stable performance
on LFW [21], CALFW [53], CPLFW [52], AgeDB-30 [30] and CFP-FP [34].

2 Related Work

The method we proposed aims to learn and adapt embedding both in HR and LR
domains. Therefore, we briefly review previous works from two aspects: common
face recognition and surveillance face recognition.

Common Face Recognition. Face recognition [40] is a popular issue in
computer vision. The performance has been greatly improved due to the de-
velopment of discriminative loss functions [10, 25, 33, 39, 49, 51] and deep archi-
tectures [17, 19, 20, 35, 36]. And the availability of large-scale datasets, such as
CASIA-Webface [42], MS-Celeb-1M [16] and VGGFace2 [4] also contribute to
the development of large-scale common face recognition. However, since most of
faces in existing datasets are in high-quality, network will focus on learning more
informative representations of high resolution, which fails to achieve satisfactory
performance on low-resolution face recognition due to the large resolution gap.
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Surveillance Face Recognition. There are two categories of method to
resolve mismatch between HR and LR faces in surveillance face recognition. The
most common studies have concentrated on face super-resolution. These hallu-
cination based methods aim to obtain an identity preserved HR faces from the
LR input and use synthesized HR faces for recognition. Bulat et al. proposed
Super-FAN [2] to integrate a sub-network for facial landmark localization into
a GAN-based super-resolution network. Chen et al. [8] suggested to employ fa-
cial prior knowledge, including facial landmark heatmaps and parsing maps to
super-resolve LR faces. Zhang et al. [47] proposed a super-identity loss and pre-
sented domain integrated training approach to construct robust identity metric.
Ataer-Cansizeoglu [1] proposed a framework which contains a super-resolution
network and a feature extraction network for low-resolution face verification. The
other category of works is to learn projection into a unified space and minimize
the distances between LR and HR embedding. Zeng et al. [45] proposed to learn
resolution-invariant features to preserve multi-resolution information and classify
the identity. Lu et al. [27] proposed the deep coupled ResNet (DCR) model, con-
sisting of one trunk network and two branch networks to extract discriminative
features robust to the resolution. Yang et al. employed [41] multi-dimensional
scaling method to learn a mapping matrix, projecting the HR and LR images
into common space. Ge et al. proposed [13] selective knowledge distillation to
selectively distill the most informative facial features from the teacher stream.

3 Methodology

3.1 Framework Overview

Instead of employing down-sampling and bicubic linear interpolation to obtain
LR faces [5, 27], our MR-GAN can generate LR faces to avoid artifacts, allowing
us to leverage unpaired HR faces, which is crucial for tackling large-scale datasets
where paired faces are unavailable. The proposed adaption network is adopted to
improve performance on LR faces while still preserve the discrimination ability
on HR faces. As shown in Figure 1, our method consists of three steps: (i)
Synthesize realistic LR faces; (ii) Employ HR faces and synthesized LR faces
as training dataset to train HR and LR model respectively; (iii) Using feature
adaption network to re-guide HR model to learn resolution-robust distribution.

3.2 Low-Resolution Face Synthesis

Resolution-aggregated Generator. To minimize the distance between HR
and LR domains, we first adopt simple down-sampling to obtain three inputs
in three degrees of blur: xr1 , xr2 and xr3 , where xr1 maintains in the highest
resolution and xr3 is the face of the lowest resolution. Then we use generator
to further refine the global and local information based on down-sampling. In-
spired by HRNet [36], we introduce parallel sub-networks to repeatedly receive
the information from sub-networks of higher-resolution and integrate the feature
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Fig. 2. The architecture of MR-GAN.

map in the global stream. The sub-networks adopt three strided convolutional
layers to encode faces into feature maps. Then residual block is used to further
deepen the network and make feature maps to maintain the same width and
height. To aggregate the information from different streams, fusion units are
adopted. We illustrate the details of fusion unit in Figure 3, where all the op-
erated feature maps are learned from residual blocks. The feature maps in the
fusion unit can be denoted as {F1

r1 ,F
1
r2 ,F

1
r3 ...,F

k
r1 ,F

k
r2 ,F

k
r3} , where superscript

k indicates the feature map from k-th residual block and subscript r shows the
feature map in the stream of resolution r. To fuse Fr from different resolutions,
we concatenate two feature maps to deepen the channels. For instance, F a

r1 of
C1 ×W × H and F b

r2 of C2 ×W × H could be integrated to get feature map
of (C1 + C2) × W × H. To enhance resolution and identity-relevant informa-
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Fig. 3. Illustrate how the fusion unit connects the feature maps from different streams.
The representations are selected by SE block before and after connection and flow into
the stream of lower-resolution with the deeper channel.
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tion in the fusion unit, squeeze-and-excitation (SE) blocks [19] are aggregated
before and after feature connection. With repeated feature fusion, the feature
maps of higher-resolution are gradually injected into the stream of lower reso-
lution. Meanwhile, since multi-resolution can be preserved at the most extent
by connecting feature maps of different streams, we can inject the vector of
random noise z to effectively select and simulate different degrees of resolution
degradation randomly. To decode the low-resolution information and focus more
on the resolution-relevant changes, we introduce spatial attention to ignore the
background. So the output of global stream can be summarized as:

Gg(x, z) = GA(x, z) · xr3 + (1−GA(x, z)) ·GR(x, z), (1)

where GR(x, z) is the output residual face and GA(x, z) represents the atten-
tion map to describe the contribution to output Gg(x, z). So the important
regions can be learned by the generator, and irrelevant pixels could be directly
retained from xr3 . The local generator Gl contains three identical sub-networks
that learn separately to refine three center-cropped local patches: eyes, nose and
mouth. These regions are obtained by the detected landmark and fixed. By pass-
ing encoder-decoder stream and injecting random vector z, three cropped local
patches can be refined, which are further combined with global face Gg(x, z) and
then fed into two 1×1 strided convolutional layers to generate the faces G(x).

Global-local Focused Discriminator. We employ a series of discrimina-
tors to distinguish both global and local area, enhancing discrimination ability.
Considering characteristics of LR faces, we adopt the same receptive regions as
the local branch of generator, consisting of eyes, nose, and mouth to construct lo-
cal discriminators, while a global discriminator receive the entire face. As shown
in Figure 2. These four discriminators (Dk, k = 1, 2, 3, 4) pay attention to dis-
criminating different regions respectively. Compared with simple down-sampling
and bicubic interpolation, MR-GAN attaches importance to guaranteeing the
texture of local region keep fixed and naturally blurred with great visual quality.

3.3 Loss Function

The key objective of our MR-GAN is to generate LR face, while preserving the
identity information to avoid artifacts. Several loss terms are proposed to learn
realistic representations.

Perceptual Loss. To ensure the generated LR face preserve the same iden-
tity as input face, perceptual loss is introduced to reduce the differences in
high-dimensional feature space. And the high-level feature representation F are
extracted by the pre-trained expert network. So the loss can be formulated as:

Lperceptual =
∑
‖F (x)− F (G(x))‖1. (2)

Adversarial Loss. Adversarial loss is employed for cross domain adaption
from source to target distribution. The loss functions are presented as follows:
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LD
adv =

4∑
k=1

E[(Dk(y)− 1)2] +

4∑
k=1

E[Dk(G(x))2],

LG
adv =

4∑
k=1

E[(Dk(G(x))− 1)2],

(3)

where x is the input HR face and y represents the realistic LR face. Subscript k
points the discriminator of corresponding regions. Least square loss is adopted
[28] to ensure the discriminator cannot distinguish the synthesized faces.

Pixel Loss. Besides the specially designed adversarial criticism and identity
penalty, L1 loss in the image space is also adopted for further refining the simple
down-sampling and bridging the input-output gap, which is defined as follows:

Lpixel =
1

W ×H × C
‖G(x)− xr3‖1. (4)

As shown before, xr3 is the input of the lowest resolution, which can be employed
to accelerate the convergence speed and stabilize optimization.

Attention Activation Loss. As shown in Equation 5, when all elements in
GA(x) saturate to 0, all the output is treated as global output. To prevent learn-
ing identity-irrelevant information, attention activation loss is adopted to con-
strain the activation on the important mask and ignore the information around
the background. So the loss function can be written as:

Latt = ‖GA(x, z)center − 0‖1 + ‖GA(x, z)edge − 1‖1, (5)

where GA(x, z)center represents the 85× 82 central patch of attention map and
GA(x, z)edge is the edge of attention map.

In summary, we have four loss functions for generating LR face and use
hyper-parameters λ1, λ2, λ3 and λ4 to balance them. The overall objective is:

{
LD = λ1L

D
adv,

LG = λ1L
G
adv + λ2Lperceptual + λ3Lpixel + λ4Latt.

(6)

3.4 Feature Adaption Network

Due to the lack of enough LR faces in large-scale datasets, we propose to add gen-
erated target samples to balance the multi-resolution representations. However,
due to the domain shift between HR and LR domains, it is hard to directly apply
the method of simply minimizing distance with the same identities into surveil-
lance face recognition. To overcome this issue, we propose the feature adaption
network to preserve the discrimination ability in HR domain and apply it to
improve competitiveness in LR domain dynamically.
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Fig. 4. The pipeline of feature adaption network.

The whole framework is shown in Figure 4, which contains two streams. The
stream at the bottom is trained by the generated LR face to offer the realistic LR
representation and fixed in the following adaption learning. Stream at the top
is used to learn the final multi-resolution embedding fMR. To preserve discrim-
inatory in HR faces, We employ ArcFace [10] as classification loss LHR

c , making
the model of top stream directly supervised by HR faces. Meanwhile, to improve
the performance on LR face and avoid deteriorating the HR feature space by
directly minimizing domain gap, we propose the translation gate. The translate
gate employs translator to balance the LR component of fHR and determine the
source of fTranslate

LR . The translator consists of two batch normalization, ReLU
and fully connected layers in sequence, which plays an intermediate role in am-
plifying the LR representations to obtain LR features TLR(fHR), making HR
features fHR focus on preserving LR information. By translating realistic LR
features gradually, HR model at the top of stream can preserve more LR repre-
sentations to obtain the multi-resolution embedding fMR. To achieve this goal,
we apply low-resolution adversarial network to ensure that translated LR em-
bedding TLR(fHR) is realistic enough to confuse the discriminator. LSGAN [28]
is adopted to pull them together. And the loss function can be seen as follows:

LD
feature =E[(D(fReal

LR )− 1)2] + E[D(TLR(fHR))2],

LG
feature =E[(D(TLR(fHR))− 1)2].

(7)

By adopting LSGAN, |D(TLR(fHR))− 0.5| is used to represent the confidence
level of the translated LR features. The closer output of discriminator is to 0.5,
the more realistic LR features are translated, representing that fHR can preserve
more LR information and obtain fMR with balanced multi-resolution knowledge.
With the increase of confidence, fHR can also preserve and provide enough LR
representations directly without translation. So, our translation gate adopts a
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weighted architecture to determine the final LR features:{
W = 1− |D(TLR(fHR))− 0.5| ,
fTranslate
LR = W · TLR(fHR) + (1−W ) · fHR,

(8)

where W is the weight to balance TLR(fHR) and fHR. After obtaining fTranslate
LR ,

we add L1 loss and KL loss to learn the low-resolution face distribution in feature
and probabilistic representation, further pulling translated embedding close to
realistic embedding. The losses can be seen as follows:

Lf = ‖ fTranslate
LR (xHR)

‖fTranslate
LR (xHR)‖2

− fReal
LR (xLR)

‖fReal
LR (xLR)‖2

‖,

Lp =
∑

pReal(xLR) · log
pReal(xLR)

pTranslate(xHR)
.

(9)

Considering that fHR contains the limited LR representations in the early stage
of training, TLR(fHR) plays the dominant role in the feature and probabilistic
supervision. Then as HR features can preserve and provide more realistic LR
representations gradually, W will maintain within a stable range to balance two
sources of low-resolution knowledge. With this weighted translation, fHR can
retain enough LR representation to construct resolution-robust embedding. So,
total loss can be seen as:

Lc = LHR
c + αLG

feature + βLp + γLf . (10)

4 Experiments

4.1 Experiment Settings

In this section, we present results for proposed resolution adaption network.
CASIA-WebFace [42] is used as HR faces to train both MR-GAN and feature

Table 1. Evaluation results on IJB-C TinyFace 1:1 covariate protocol. Results from
row 2 to row 10 are implemented in the same ResNet-34 backbone network.

Method 10−7 10−6 10−5 10−4 10−3 10−2 10−1

MS1Mv2 (ResNet100 + ArcFace) [10] 0.0300 0.0436 0.1002 0.2191 0.3842 0.5246 0.6948

CASIA-WebFace [42] (ResNet34 + ArcFace) 0.0261 0.0291 0.0420 0.0917 0.1961 0.3219 0.5409
Down-Sampling 0.0434 0.0629 0.1000 0.1486 0.2201 0.3510 0.5853

Cycle-GAN 0.0279 0.0468 0.0897 0.1399 0.2016 0.3065 0.5261
High-to-Low 0.0332 0.0454 0.0638 0.0916 0.1335 0.2113 0.3873

MR-GAN 0.0508 0.0715 0.1159 0.1736 0.2535 0.3861 0.6147
Down-Sampling + Adaption 0.0488 0.0764 0.1168 0.1890 0.2870 0.4452 0.6751

Cycle-GAN + Adaption 0.0524 0.1032 0.1508 0.2058 0.2819 0.4048 0.6254
High-to-Low + Adaption 0.0665 0.0940 0.1428 0.2132 0.2977 0.4281 0.6477

MR-GAN + Adaption (RAN) 0.0699 0.1031 0.1616 0.2287 0.3273 0.4817 0.7095
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Fig. 5. Face images synthesized by different methods.

adaption network, which contains 494,414 images and 10,575 subjects. The real-
istic LR faces are selected from MillionCelebs [50]. We use MTCNN [48] for face
detection and alignment. The detected landmarks are utilized to measure dis-
tance between the center point of eyes and mouth center. Faces whose distances
less than 30 and more than 10 are selected as realistic LR faces. To evaluate
the performance of feature adaption network, we utilize 34-layer deep residual
architecture [17] as backbone and adopt SCface [15], QMUL-SurvFace [9] and
low resolution subset of IJB-C [29] (IJB-C TinyFace) as test set. IJB-C [29]
is a video-based face database which contains natural resolution variation. We
follow the same rule to select realistic LR faces. All the detected LR faces are
adopted and faces with same identity are selected for each anchor to construct
the positive pairs, including 158,338 genuine comparisons. Following IJB-C 1:1
covariate verification protocol, the same 39,584,639 negative pairs are used in
IJB-C TinyFace. SCface [15] consists of face images of 130 subjects. Following
[27], 80 subjects are for testing and the other 50 subjects are used for fine-tuning.
Face identification is conducted where HR faces are used as the gallery set and
LR images captured at 4.2m (d1), 2.6m (d2) and 1.0m (d3) as the probe respec-
tively. QMUL-SurvFace [9] consists of very-low resolution face images captured
under surveillance cameras.

4.2 Implementation Details

All the training and testing faces are cropped and aligned into 112×112. In MR-
GAN, We train the discriminator and generator by iteratively minimizing the
discriminator and generator loss function with Adam optimization. Pixel-critic
is employed at every 5 generator iterations. MobileFaceNets [6] has been adopted
as the expert network and all the parameters are fixed. The hyper-parameters
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Fig. 6. (a). ROC curves depict the effectiveness of translator on IJB-C [29]. (b): The
comparisons of ”with / without translator” on HR domain is depicted to show dis-
criminative recognition ability with translator. The results of LFW [21], CALFW [53],
CPLFW [52], AgeDB-30 [30] and CFP-FP [34] are reported.

are empirically set as follows: λ1 = 2, λ2 = 20, λ3 = 20, λ4 = 0.4 and batch
size= 16. And we set hyper-parameters of the optimizer as follows: β1 = 0.5,
β2 = 0.999 and learning rate= 0.0002. ArcFace is adopted in feature adaption
network as the classification loss. Following [10], the feature scale and angular
margin m are set as 64 and 0.5 respectively. We set the batch size to 256 to
train the pre-trained HR and LR model. There are three steps to obtain the MR
embedding. First, we pre-train ResNet-34 by using CASIA-WebFace to obtain
the HR model. The learning rate starts from 0.1 and is divided by 10 at 60,000,
100,000 and 140,000 iterations. Second, we fine-tune HR model by adopting
the generated LR CASIA-WebFace as training set to get the LR model. And
the learning rate starts from 0.01 and is divided by 10 at 50,000 and 100,000
iterations. To simulate more changes of resolution, random Gaussian blur is
added when training LR model. Finally, HR model continues to be finetuned by
using HR faces with indirect supervision of fixed LR model to train MR model.
The batch size is set to 200 in this step and learning rate starts from 0.01, which
is divided by 10 at 50,000 iterations. The hyper-parameters can be set as follows:
α = 0.05, β = 0.04, γ = 10. We adopt SGD optimization for recognition and
Adam optimization for adversarial learning. LG

feature is updated and utilized at
every 4 discriminator iterations. Please refer to the supplementary material for
full details on network architectures.

4.3 Ablation Study

Effects of LR Face Synthesis. Since existing large-scale datasets such as
CASIA-Webface [42] and MS-Celeb-1M [16] contain a lot of HR faces, our
method aims to generate LR faces with different resolutions to augment train-
ing set. However, most existing works adopt down-sampling to obtain LR face,
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Table 2. Evaluation results on IJB-C TinyFace 1:1 covariate protocol. HR, LR and
MR models trained on cleaned MS-Celeb-1M [16] are reported and compared.

Method 10−7 10−6 10−5 10−4 10−3 10−2 10−1

HR model 0.0307 0.0418 0.0811 0.1801 0.3641 0.5591 0.7491
LR model 0.0643 0.0854 0.1356 0.2240 0.3479 0.5025 0.7033

MR model (RAN) 0.0664 0.1049 0.1678 0.2635 0.4135 0.5819 0.7597

which doesn’t match the real environment. As shown in Figure 5, faces gener-
ated by down-sampling are full of irregular twist and noise. The GAN-based
synthesis method can keep the realism of faces when resolution is reduced. How-
ever, the faces generated by Cycle-GAN [55] are over-smoothed. Bulat et al. [3]
aimed to adopt High-to-Low and Low-to-High for face super-resolution. They
ignored to preserve the information around the facial details and employed the
limited supervision in LR faces. So, the LR faces generated by High-to-Low gen-
erator can not be used for recognition directly. In contrast, our MR-GAN can
integrate multi-resolution information to utilize the specific representation and
focus more on the simulation of local region to obtain coarse, but discriminative
details. More visualizations can be found in supplementary material.

To quantitatively compare with results on face recognition, we evaluate differ-
ent methods on IJB-C TinyFace and report the results in Table 1. We translate
all the faces of CASIA-WebFace to LR faces including: Down-sampling, Cycle-
GAN [55], High-to-Low [3] and MR-GAN, and adopt the generated training
set to fine-tune HR model. The results are depicted from row 3 to row 6. And
with adaption, the performances are further improved. Since faces generated by
High-to-Low [3] are very small which can not be recognized directly, the results
are relatively low. However, High-to-Low still provides the coarse enough details
during adaption learning, which shows the effectiveness. To better demonstrate
the effect of RAN, we report the results of model [10] using larger datasets and
more parameters, which is shown at the top. Our method utilizes the smaller
model and training set to achieve the same performance and even far beyond
them in some cases.

Effects of MR Feature Adaption. To prevent directly minimizing the
distances of HR and LR domains due to the domain gap, translation gate is pro-
posed to use translator to balance the source of translated LR features. Without
translator, fHR is directly adopted to minimize the distances between different
domains. In Figure 6(a), discrimination ability declines fast with the decrease of
FAR by directly minimizing distance in feature and probabilistic distribution. In
Figure 6(b), the accuracy of LFW decreases to 97.7. However, with intermediate
role of translator, translation gate can adopt weighted architecture to generate
TLR(fHR) progressively. So, the accuracy of LFW can be kept into 98.7. The
preserved results on IJB-C and high-resolution testing sets reveal that our MR
embedding with translation gate can be adapted into two domains and shows
significant effectiveness to handle difficult situations.
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Table 3. Rank-1 performance of face identification on SCface testing set. ’w/o FT’
means testing with the trained model directly without fine-tuning.

Methods d1 d2 d3
RICNN [45] 23.00 66.00 74.00
LDMDS [41] 62.70 70.70 65.50

Coupled-ResNet [27] 73.30 93.50 98.00
TCN-ResNet [46] 74.60 94.90 98.60

Selective knowledge distillation [13] 43.50 48.00 53.50
Triplet Loss [26] 70.69 95.42 97.02

Quadruplet Loss [7] 74.00 96.57 98.41
DATL [14] 76.24 96.87 98.09
DAQL [14] 77.25 96.58 98.14

ArcFace [10](w/o FT) 35.00 85.80 98.00
MR-GAN (w/o FT) 65.00 91.50 86.50

RAN (w/o FT) 70.50 96.00 98.00

ArcFace [10] 56.80 91.00 97.50
MR-GAN 71.80 94.30 91.00
RAN 81.30 97.80 98.80

Performance on Large-scale Dataset. To show the effectiveness of our
RAN on large-scale datasets, cleaned MS-Celeb-1M [16] which contains 5,084,598
faces and 97,099 subjects is used as training set. ResNet-50 and ArcFace are
adopted as the basic training architecture and loss function. Same training steps
are employed in this experiment. The results of HR, LR and MR models are
depicted in Table 2. Since the large-scale datasets already contain a lot of low-
resolution images, only adopting ArcFace loss for supervision can get high per-
formance in HR model. By using MR-GAN to transform all the data set to the
LR data set, LR model outperforms HR model where FAR is less than 10−4. Fur-
thermore, our RAN achieves the highest performance in all cases by integrating
multi-resolution knowledge.

4.4 Compare with SOTA Methods

Comparisons on SCface. SCface defines face identification protocol. For each
subject, there are 15 faces taken at three distances (five faces at each distance) by
surveillance cameras, and one frontal mugshot image taken by a digital camera.
For fair comparison, we implemented SOTA face recognition method ArcFace
[10] as HR model and follow [27] to fine-tune on SCface. The compared meth-
ods focus more on minimizing distance of intra-class in different resolutions.
However, these methods directly minimize the distance of class, ignoring the
resolution gap. And they simply adopt down-sampling to increase the diver-
sity of resolutions and provide paired multi-resolution faces, which don’t match
the real scenarios. Selective knowledge distillation [13] adopted HR model as
teacher and LR model as student to try to restore LR model’s ability to discrim-
inate on facial details. Since high resolution information is already lost, sufficient
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Table 4. Performance of face identification on QMUL-SurvFace. Most compared re-
sults are directly cited from [9] except ArcFace and RAN. In these face super-resolution
methods including SRCNN [11], FSRCNN [12], VDSR [22], DRRN [38] and LapSRN
[24], SphereFace [25] is used as recognition model.

Methods
TPIR20(%)@FPIR

AUC
30% 20% 10% 1%

DeepID2 [37] 12.8 8.1 3.4 0.8 20.8
VggFace [31] 5.1 2.6 0.8 0.1 14.0
FaceNet [33] 12.7 8.1 4.3 1.0 19.8

SphereFace [25] 21.3 15.7 8.3 1.0 28.1

SRCNN [11] 20.0 14.9 6.2 0.6 27.0
FSRCNN [12] 20.0 14.4 6.1 0.7 27.3

VDSR [22] 20.1 14.5 6.1 0.8 27.3
DRRN [38] 20.3 14.9 6.3 0.6 27.5

LapSRN [24] 20.2 14.7 6.3 0.7 27.4

ArcFace [10] 18.7 15.1 10.1 2.0 25.3
RAN 26.5 21.6 14.9 3.8 32.3

representation cannot be recovered. Instead, our RAN focuses on retaining LR
information from HR features through the resolution adaption, which can learn
enough multi-resolution knowledge and achieve the best performance.

Comparisons on QMUL-SurvFace. QMUL-SurvFace contains very low
LR faces which are drawn from real surveillance videos. We compare our RAN
with face super-resolution (SR) methods and common recognition methods. As
shown in Table 4, we conduct face identification. Large margin loss (ArcFace
and SphereFace) have achieved the SOTA results in large-scale datasets. So,
they improve the performance in HR domain, and also can be applied to LR
domain. However, these face SR methods struggle to recover the identity infor-
mation and focus more on the visual quality, inevitably degrading performance.
By dynamically extracting MR knowledge in feature space from HR face, our
method can perform better than face SR and common recognition methods.

5 Conclusion

This paper proposes Resolution Adaption Network (RAN) for realistic LR face
synthesis and surveillance face recognition. We aim to generate LR faces for data
augmentation and bridge the cross-resolution gap. In RAN, MR-GAN employs
multi-resolution and global-local architecture, blurring face in random resolu-
tions, to generate the identity-preserved and realistic LR faces. To use LR faces
to better match with both LR faces and HR faces, feature adaption network is
proposed to enhance LR knowledge and balance multi-resolution representations
progressively. SOTA results are achieved for surveillance face recognition.
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