
Partially-Shared Variational Auto-encoders
for Unsupervised Domain Adaptation

with Target Shift
– Supplementary Material –

Ryuhei Takahashi1, Atsushi Hashimoto2, Motoharu Sonogashira1, and Masaaki
Iiyama1

1 Kyoto University, Japan {sonogashira,iiyama}@mm.media.kyoto-u.ac.jp
2 OMRON SINIC X Corp., Tokyo, Japan atsushi.hashimoto@sinicx.com

A Details of the experimental settings

A.1 Various levels of target shifts with digit datasets

Table A lists the numbers of samples for each dataset at each level of the target-
shift, which was used in the experiment in 4.2 in the main paper. Because USPS
had only small numbers of training samples (500 to 1000 for each category),
the samples from the dataset were over-sampled to adjust the levels. For the
other datasets, we randomly discarded the samples. Note that SVHN had no
imbalanced situation because it was used only as a source domain but not as a
target domain, but to balance the total number against the MNIST dataset, the
samples were also randomly discarded.

Table A. Number of samples under each condition. SVHN was only used as a source
domain and had no imbalanced setting.

10% 20% 30% 40% 50%

USPS (1) 500 1125 1922 3000 4500
USPS (other) 500 500 500 500 500
MNIST (1) 4000 4500 5400 6000 6300
MNIST (other) 4000 2000 1400 1000 700
SVHN (1) 4000 - - - -
SVHN (other) 4000 - - - -

A.2 Hyper-parameters

As defined in Eq. (6) in the main paper, the proposed method has five hyper-
parameters of α, β, γ, δ, ε. In fact, the method has many hyper-parameters but
they can be hand-tuned without accessing the labels of target domain samples.



2 R. Takahashi et al.

First, Lpred is little competitive to the other losses due to the trainable param-
eters in M . Hence, we can simply set any value to ε. Second, Lfc is the main
objective of the method and should become small enough to predict the target
domain samples. Hence, to prioritize Lfc against the other competing losses,
we should set a large value for δ. Third, the hyper-parameters other than the
above two can be tuned by a visual check of domain conversion quality while
maintaining the small Lfc. After these steps, we can intuitively tune the all
hyper-parameters without accessing labels of the target domain samples. In this
sense, the sensitivity against hyper-parameter tuning with this method is less
important than general UDA methods.

Based on the above hand-tuning process, in each experiment, we set these
hyper-parameters as listed in Table B, which are carefully adjusted by hand
without accesing target domain labels.

Table B. hyper-parameters used in the experiments.

α β γ δ ε
digit classification 3 1 3 10 3

human pose estimation 5 10 3 20 3

A.3 Network structure and the algorithm detail

We show the entire network architecture and the exact training algorithm in
Fig. A and Alg. 1, respectively. Note that the important sub-parts are identical
with those shown in Figures 2, 3, 4 in the main paper, where all the encoders
and decoders are partially sharing the parameters as shown in Figure 5.

Each module was implemented as following. In the human pose estimation
task, we used a common network architecture for all the baseline methods and the
proposed method (including ablations). It was designed for this specific task but
its CycleGAN part is basically based on the ComboGAN, which was also used
by CyCADA, with four ResNet modules. The detail of the network architecture
is shown in Tables C to G, where ResBlock is defined in Table H. The number
of channels for z and ζ∗ are set to 64 and 96, respectively. Note that this setting
is adopted in the digit classification task, too.

In the digit classification task, we used the same base architecture with Cy-
CADA for the proposed method (other than the shared weights). For the other
methods, we basically used the architecture from their original papers but some
methods are not tested with the digit datasets and borrowed their architecture
from the other methods, which is summarized in Table I.

A.4 Data augmentation in the SVHN → MNIST task

In the SVHN → MNIST task, some conventional methods (UFDN, CyCADA)
augmented training images in the MNIST dataset by inverting all pixel values
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Fig.A. The entire network architecture with some loss calculations.

Algorithm 1 Training of PS-VAEs.

Require: {Xs, Ys} and Xt, which are the source and target domain datasets.
Ensure: E∗, G∗, D∗ (∗ ∈ {s, t}), which are encoders, decoders, and discrimina-

tors for the domains, and the predictor M .
1: repeat
2: freeze the parameters of Es, Gs, defreeze Ds.
3: sample batches xs, xt from Xs, Xt.
4: update Ds to maximize Ladv (Fig. 2).
5: freeze Ds and defreeze the others.
6: sample batches xs, ys from Xs, Ys and xt from Xt.
7: calculate Lcyc and Ladv for xs and xt (Fig. A, the gray paths) while Lpred

for xs and ys (Fig. 4 or Fig. A, the pink path).
8: calculate Lid and LKL for xs and xt (Fig. 5).
9: extract zs and zt, detach them from derivation graph, then calculate Lfc

(Fig. 3 or Fig. A, the green paths).
10: update the model to minimize Eq. (6) in the main paper.
11: until reaching to a decided number of iterations,

by chance. The reported results of these methods and the proposed method are
obtained with this augmentation.

A.5 Background subtraction for the target domain data in human
pose estimation

The depth images in the CMU panoptic dataset contains cluttered background
regions, which are diverse and essentially not related to human pose. These
background regions are detected automatically in a pre-process. Since depth
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values in a background are always bigger than the foreground in nature and
videos in the dataset are captured with fixed cameras, background images can
be generated by obtaining the maximum depth value at each pixel in a video.
We obtained background images of each target domain samples in this way and
applied background subtraction in advance. After that, we selected the maximum
foreground connected component as the human region. We set a uniform value
to the detected background pixels. Finally, the detected foreground regions (i.e.,
human regions) were cropped with the aspect ratio of 2 : 1 and resized to 256
channels × 128 pixels.

Note that the uniform value of the background region is equal to that of CG
images. In addition, the same cropping and resizing process were performed to
CG images.

Table C. Input x∗ for the human pose estimation task.

height width channel(s)
MNIST↔USPS 32 32 1
SVHN→MNIST 32 32 3
pose estimation 256 128 1

Table D. Encoder E∗ for the human pose estimation task.

Input h× w × c
Conv 7 × 7 × 64, refrectionpad 3
Parametrized ReLU
Conv 3 × 3 × 128, pad 1, stride 2
Parametrized ReLU
Conv 3 × 3 × 256, pad 1, stride 2
Parametrized ReLU
ResBlock 256 channels
ResBlock 256 channels
ResBlock 256 channels
ResBlock 256 channels
(mu) Conv 3 × 3 × 256, pad 1
(logvar) Conv 3 × 3 × 256, pad 1
Output h/4× w/4× 256
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Table E. Decoder G∗ for the human pose estimation task.

Input h/4× w/4× 256
ResBlock 256 channels
ResBlock 256 channels
ResBlock 256 channels
ResBlock 256 channels
Upsampling 2 × 2 × 256
Conv 3 × 3 × 128, pad 1
Parametrized ReLU
Upsampling 2 × 2 × 128
Conv 3 × 3 × 64, pad 1
Parametrized ReLU
Conv 7 × 7 ×c, reflectionpad 3
Output h× w × c

Table F. Regresser M for the human pose estimation task.

Regressor M

Input 8×8×64 channels
ResBlock 64 channels
ResBlock 64 channels
ResBlock 64 channels
ResBlock 64 channels
Upsampling 2 × 2 × 64
Conv 3 × 3 × 32, pad 1
Parametrized ReLU
Upsampling 2 × 2 × 32
Conv 3 × 3 × 16, pad 1
Parametrized ReLU
Conv 7 × 7 × 18, reflectionpad 3
Output h× w × 18
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Table G. Discriminator D∗ for the human pose estimation task.

Input h× w × c
Conv 4 × 4 × 64, pad 2, stride 2
Spectral norm
Parametrized ReLU
Conv 4 × 4 × 128, pad 2, stride 2
Spectral norm
Parametrized ReLU
Conv 4 × 4 × 256, pad 2, stride 2
Spectral norm
Parametrized ReLU
Conv 4 × 4 × 512, pad 2, stride 2
Spectral norm
Parametrized ReLU
Conv 4 × 4 × 512×, pad 2
Spectral norm
Parametrized ReLU
Conv 4 × 4 × 1, pad 2
Output (h/16 + 4)× (w/16 + 4)

Table H. Definition of the ResBlock.

Input h× w × cin
Conv 3 × 3 ×cin, pad 1
Parametrized ReLU
Conv 3 × 3 ×cin, pad 1
Parametrized ReLU
Output h× w × cout

Table I. Networks used in each method for digit classification. “original” indicated
that the network is the same with that used in the original paper.

digit classification
Source only same as ADDA
ADDA original
UFDN original
PADA same as ADDA
SimGAN same as CyCADA
CyCADA original
MCD original
PS-VAEs same as CyCADA
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B Joint distributions

We show all the distributions of joint positions in Figures B. Note that a right
hand, for example, can appear in the both sides of the image by chance because
the direction of the human is not fixed.
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Fig. B. Difference in pose distribution between Observed images and CG images.


