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Abstract. Object Permanence allows people to reason about the lo-
cation of non-visible objects, by understanding that they continue to
exist even when not perceived directly. Object Permanence is critical
for building a model of the world, since objects in natural visual scenes
dynamically occlude and contain each-other. Intensive studies in devel-
opmental psychology suggest that object permanence is a challenging
task that is learned through extensive experience.
Here we introduce the setup of learning Object Permanence from labeled
videos. We explain why this learning problem should be dissected into
four components, where objects are (1) visible, (2) occluded, (3) con-
tained by another object and (4) carried by a containing object. The
fourth subtask, where a target object is carried by a containing object,
is particularly challenging because it requires a system to reason about
a moving location of an invisible object. We then present a unified deep
architecture that learns to predict object location under these four sce-
narios. We evaluate the architecture and system on a new dataset based
on CATER, with per-frame labels, and find that it outperforms previous
localization methods and various baselines.
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1 Introduction

Understanding dynamic natural scenes is often challenged by objects that con-
tain or occlude each other. To reason correctly about such visual scenes, sys-
tems need to develop a sense of Object Permanence (OP) [20]. Namely, the
understanding that objects continue to exist and preserve their physical charac-
teristics, even if they are not perceived directly. For example, we want systems
to learn that a pedestrian occluded by a truck may emerge from its other side,
but that a person entering a car would “disappear” from the scene.

The concept of OP received substantial attention in the cognitive develop-
ment literature. Piaget hypothesized that infants develop OP relatively late (at
two years of age), suggesting that it is a challenging task that requires deep
modelling of the world based on sensory-motor interaction with objects. Later
evidence showed that children learn OP for occluded targets early [1,2]. Still,
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Fig. 1. Inferring object location in rich dynamic scenes involves four different tasks,
and two different types of reasoning. (a) The target, a red ball, is fully visible. (b) The
target is fully-or partially occluded by the static cube. (c) The target is located inside
the cube and fully covered. (d) The non-visible target is located inside another moving
object; its location changes even though it is not directly visible.

only at a later age do children develop understanding of objects that are con-
tained by other objects [25]. Based on these experiments we hypothesize that
reasoning about the location of non-visible objects may be much harder when
they are carried inside other moving objects.

Reasoning about the location of a target object in a video scene involves
four different subtasks of increasing complexity (Figure 1). These four tasks are
based on the state of the target object, depending if it is (1) visible, (2) occluded,
(3) contained or (4) carried. The visible case is perhaps the simplest task, and
corresponds to object detection, where one aims to localize an object that is
visible. Detection was studied extensively and is viewed as a key component in
computer vision systems. The second task, occlusion, is to detect a target object
which becomes transiently invisible by a moving occluding object (e.g., bicy-
cle behind a truck). Tracking objects under occlusion can be very challenging,
especially with long-term occlusions [11,9,18,14,4,30].

Third, in a containment scenario, a target object may be located inside an-
other container object and become non-visible [28], for example when person
enters a store. Finally, the fourth case of a carried object is arguably the most
challenging task. It requires inferring the location of a non-visible object located
inside a moving containing object (e.g., a person enters a taxi that leaves the
scene). The task is particularly challenging because one has to keep a representa-
tion of which object should be tracked at every time point and to “switch states”
dynamically through time. This task received little attention in the computer
vision community so far.

We argue that reasoning about the location of a non-visible object should ad-
dress two distinct and fundamentally different cases: occlusion and containment.
First, to localize an occluded object, an agent has to build an internal state that
models how the object moves. For example, when we observe a person walking in
the street, we can predict her ever-changing location even if occluded by a large
bus. In this mode, our reasoning mechanism keeps attending to the person and
keeps inferring her location from past data. Second, localizing contained objects
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is fundamentally different. It requires a reasoning mechanism that switches to
attend to the containing object, which is visible. Here, even though the object
of interest is not-visible, its location can be accurately inferred from the loca-
tion of the visible containing object. We demonstrate below that incorporating
these two reasoning mechanisms leads to more accurate localization in all four
subtasks.

Specifically, we develop a unified approach for learning all four object local-
ization subtasks in video. We design a deep architecture that learns to localize
objects that may be visible, occluded, contained or carried. Our architecture con-
sists of two reasoning modules designed to reason about (1) carried or contained
targets, and (2) occluded or visible targets. The first reasoning component is ex-
plicitly designed to answer the question “Which object should be tracked now?”.
It does so by using an LSTM to weight the perceived locations of the objects
in the scene. The second reasoning component leverages the information about
which object should be tracked and previous known locations of the target to lo-
calize the target, even if it is occluded. Finally, we also introduce a dataset called
LA-CATER, based on videos from CATER [8] enriched with new annotations
about task type and about ground-truth location of all objects.

Our main novel contributions are: (1) We conceptualize that localizing non-
visible objects requires two types of reasoning: about occluded objects and about
carried ones. (2) We define four subtypes of localization tasks and introduce an-
notations for the CATER dataset to facilitate evaluating each of these subtasks.
(3) We describe a new unified architecture for all four subtasks, which can cap-
ture the two types of reasoning, and we show empirically that it outperforms
multiple strong baselines. Our data and code are available for the community at
our website 1

2 Related Work

Relational Reasoning in Synthetic Video Datasets. Recently, several
studies provided synthetic datasets to explore object interaction and reasoning.
Many of these studies are based on CLEVR [12], a synthetic dataset designed
for visual reasoning through visual question answering. CLEVRER [31] extended
CLEVR to video, focusing on the causal structures underlying object interac-
tions. It demonstrated that visual reasoning models that thrive on perception
based tasks often perform poorly in causal reasoning tasks.

Most relevant for our paper, CATER [8] is a dataset for reasoning about
object action and interactions in video. One of the three tasks defined in CATER,
the snitch localization task, is closely related to the OP problem studied here. It
is defined as localizing a target at the end of a video, where the target is usually
visible. Our work refines their setup, learning to localize the target through the
full video, and breaks down prediction into four types of localization tasks. As
a result, we provide a fine-grained insight about the architectures and reasoning
that is required for solving the complex localization task.

1https://chechiklab.biu.ac.il/~avivshamsian/OP/OP_HTML.html

https://chechiklab.biu.ac.il/~avivshamsian/OP/OP_HTML.html
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Architectures for Video Reasoning. Several recent papers studied the ef-
fectiveness of CNN-based architectures for video action recognition. Many ap-
proaches use 3D convolutions for spatiotemporal feature learning [3,27] and sep-
arate the spatial and temporal modalities by adding optical flow as a second
stream [6,24]. These models are computationally expensive because 3D convo-
lution kernels may be costly to compute. As a result, they may limited the se-
quence length to 20-30 frames [3,27]. In [34] it was proposed to sparsely sample
video frames to capture temporal relations in action recognition datasets. How-
ever, sparse sampling may be insufficient for long occlusion and containment
sequences, which is the core of our OP focus.

Another strategy for temporal aggregation is to use recurrent architectures
like LSTM [10], connecting the underlying CNN output along the temporal di-
mension [32]. [7,26,23] combined LSTM with spatial attention, learning to attend
to those parts of the video frame that are relevant for the task as the video pro-
gresses. In Section 6 we experiment with a spatial attention module, which learns
to dynamically focus on relevant objects.

Tracking with Object Occlusion. A large body of work has been devoted
to tracking objects [18]. For objects under complex occlusion like carrying, early
work studied tracking using classical techniques and without deep learning meth-
ods. For instance, [11,19] used the idea of object permanence to track objects
through long-term occlusions. They located objects using adaptive appearance
models, modelling spatial distributions and inter-occlusion relationships. In con-
trast, the approach presented in this paper focuses on a single deep differentiable
model to learn motion reasoning end-to-end. [9] succeeds to track occluded tar-
gets by learning how their movement is coupled with the movement of other
visible objects. The dataset studied here, CATER [8], has weak object-object
motion coupling by design. Specifically, when measuring the correlation between
the movement of the target and other object (as in [9]), we found that the cor-
relation in 94% of the videos was not statistically significant.

More recently, models based on Siamese neural network achieved SOTA re-
sults in object tracking [5,15,35]. Despite the power of these architectures,
tracking highly-occluded objects is still challenging [18]. The tracker of [35],
DaSiamRPN, extends the region-proposal sub-network of [15]. It was designed
for long-term tracking and handles full occlusion or out-of-view scenarios. DaSi-
amRPN was used as a baseline for the snitch localization task in CATER [8],
and we evaluated its performance for the OP problem in Section 6.

Containment. Few recent studies explored the idea of containment relations.
[16] recovered incomplete object trajectories by reasoning about containment
relations. [28] proposed an unsupervised model to categorize spatial relations,
including containment between objects. The containment setup defined in these
studies differs from the one defined here in that the contained object is always at
least partially visible [28], or the containment does not involve carrying [16,28].
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3 The Learning Setup: Reason about Non-visible Objects

We next formally define the OP task and learning setup. We are given a set of
videos v1, ..., vN where each frame xit in video vi is accompanied by the bounding
box position Bi

t of the target object as its label. The goal is to predict for each
frame a bounding box B̂i

t of the target object that is closest (in terms of L1

distance) to the ground-truth bounding box Bi
t.

We define four localization tasks: (1) Localizing a visible object, which we
define as an object that is at least partially visible. (2) Localizing an occluded ob-
ject, which we define as an object that is fully occluded by another object. (3) Lo-
calizing an object contained by another object, thus also completely non visible.
(4) Localizing an object that is carried along the surface by a containing object.
Thus in this case the target is moving while being completely non-visible. To-
gether, these four tasks form a localization task that we call object-permanence
localization task, or OP.

In Section 7.2, we also study a semi-supervised learning setup, where at
training time the location Bi

t of the target is provided only in frames when it is
visible. This would correspond to the case of a child learning object permanence
without explicit feedback about where an object is located when it is hidden.

It is instructive to note how the task we address here differs from the tasks
of relation or action recognition [13,17,22]. In these tasks, models are trained to
output an explicit label that captures the name of the interaction or relation
(e.g., “behind”, “carry”). In our task, the model aims to predict the location
of the target (a regression problem), but it is not trained to name it explicitly
(occluded, contained). While it is possible that the model creates some implicit
representation describing the visibility type, this is not mandated by the loss or
the architecture.

4 Our Approach

We describe a deep network architecture designed to address the four localization
subtasks of the OP task. We refer to the architecture as OPNet. It contains
three modules, that account for the perception and inference computations which
facilitate OP (see Figure 2).

Perception and detection module (Figure 2a): A perception module, respon-
sible for detecting and tracking visible objects. We incorporated a Faster R-CNN
[21] object detection model, fine-tuned on frames from our dataset, as the per-
ception component of our model. After pre-training, we used the detector to
output the bounding boxes together with identifiers of all objects in any given
frame. Specifically, we represent a frame using a K × 5 matrix. Each row in
the matrix represents an object using 5 values: four values of the bounding box
(x1, y1, x2, y2) and one visibility bit, which indicates whether the object is visible
or not. As the video progresses, we assign a unique row to each newly identified
object. If an object is not detected in a given frame, its corresponding informa-
tion (assigned row) is set to zero. In practice, K = 15 was the maximal number
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of objects in a single video in our dataset. Notably, the videos in the dataset we
used do not contain two identical objects, but we found that the detector some-
times mistakes one object for another. Objects in a video form an unordered
collection [33]. To increase learning efficiency in this settings, we canonicalize
the representation and keep the target as the first item of the set.

Fig. 2. The architecture of the Object-Permanence network (OPNet) consists of three
components. (a) A perception module for detection. (b) A reasoning module for in-
ferring which object to track when the target is carried or contained. (c) A second
reasoning module for occluded or visible targets, to refine the location of the predicted
target.

“Who to track?” module (Figure 2c): responsible for understanding which ob-
ject is currently covering the target. This component consists of a single LSTM
layer with a hidden dimension of 256 neurons and a linear projection matrix.
After applying the LSTM to the object bounding boxes, we project its output to
K neurons, each representing a distinct object in the frame. Finally, we apply a
softmax layer, resulting in a distribution over the objects in the frame. This dis-
tribution can be viewed as an attention mask focusing on the object that covers
the target in this frame. Importantly, we do not provide explicit supervision to
this attention mask (e.g., by explicitly “telling the model” during training what
is the correct attention mask). Rather, our only objective is the location of the
target. The output of this module is 5 numbers per frame. It is computed as the
the weighted average over the K × 5 outputs of the previous stage, weighted by
the attention mask.

“Where is it” module (Figure 2b): learns to predict the location of occluded
targets. This final component consists of a second LSTM and a projection matrix.
Using the output of the previous component, this component is responsible for
predicting the target localization. It takes the output of the previous step (5
values per frame), feeds it into the LSTM and projects its output to four units,
representing the predicted bounding box of the target for each frame.
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5 The LA-CATER Dataset

To train models and evaluate their performance on the four OP subtasks defined
above, we introduce a new set of annotations to the CATER dataset [8]. We refer
to these as Localization Annotations (LA-CATER).

The CATER dataset consists of 5,500 videos generated programmatically
using the Blender 3D engine. Each video is 10-second long (300 frames) and
contains 5 to 10 objects. Each object is characterized by its shape (cube, sphere,
cylinder and inverted cone), size (small, medium, large), material (shiny metal
and matte rubber) and color (eight colors). Every video contains a golden small
sphere referred to as “the snitch”, that is used as the target object which needs
to be localized.

For the purpose of this study, we generated videos following a similar con-
figuration to the one used by CATER, but we computed additional annotations
during video generation. Specifically, we augmented the CATER dataset with
ground-truth bounding boxes locations of all objects. These annotations were
programmatically extracted from the Blender engine, by projecting the internal
3D coordinates of objects are to the 2D pixel space.

We further annotated videos with detailed frame-level annotations. Each
frame was labeled with one of four classes: visible, fully occluded, contained
(i.e., covered, static and non-visible) and carried (i.e., covered, moving and non-
visible). This classification of frames matches the four localization subtasks of
the OP problem.

LA-CATER includes a total number of 14K videos split into train, dev and
test datasets. See Table 1 for a classification of video frames to each one of
the localization subtasks across the dataset splits. Further details about dataset
preparation are provided in the supplementary.

Table 1. Fraction of frames per type in the train, dev and test sets of LA-CATER.
Occluded and carried target frames make up less than 8% of the frames, but they
present the most challenging prediction tasks.

Number of
Samples

Visible Occluded Contained Carried

Train 9,300 63.00% 3.03% 29.43% 4.54%

Dev 3,327 63.27% 2.89% 29.19% 4.65%

Test 1,371 64.13% 3.07% 28.56% 4.24%

6 Experiments

We describe our experimental setup, compared methods and evaluation metrics.
Implementation details are given in the supplementary
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6.1 Baselines and Model Variants

We compare our proposed OPNet with six other architectures designed to solve
the OP tasks. Since we are not aware of previously published unified architectures
designed to solve all OP tasks at once, we used existing models as components in
our baselines. All baseline models receive the predictions of the object detector
(perception) component as their input.

(A) Programmed Models. We evaluated two models that are “hard-coded” rather
than learned. They are designed to evaluate the power of models that program-
matically solve the reasoning task.

– (1) Detector + Tracker. Using the detected location of the target, this
method initiates a DaSiamRPN tracker [35] to track the target. Whenever
the target is no longer visible, the tracker is re-initiated to track the object
located in the last known location of the target.

– (2) Detector + Heuristic. When the target is not detected, the model switches
from tracking the target to tracking the object located closest to last known
location of the target. The model also employs an heuristic logic to adjust
between the sizes of the current tracked object and the original target.

(B) Learned Models. We evaluated four learned baselines with an increasing level
of representation complexity.

– (3) OPNet. The proposed model, as presented in Section 4.

– (4) Baseline LSTM. This model uses a single unidirectional LSTM layer
with a hidden state of 512 neurons, operating on the temporal (frames)
dimension. The input to the LSTM is the concatenation of the objects input
representations. It is the simplest learned baseline as the input representation
is not transformed non-linearly before being fed to the LSTM.

– (5) Non-Linear + LSTM. This model augments the previous model and in-
creases the complexity of the scene representation. The input representations
are upsampled using a linear layer followed by a ReLU activation, resulting in
a 256-dimensional vector representation for each object in the frame. These
high-dimensional objects representations are concatenated and fed into the
LSTM.

– (6) Transformer + LSTM. This model augments the previous baselines by
introducing a much complex representations for objects in frame. We uti-
lized a transformer encoder [29] after up-sampling the input representations,
employing self attention between all the objects in a frame. We used a trans-
former encoder with 2 layers and 2 attention heads, yielding a single vector
containing the target attended values. These attended values, which corre-
sponds to each other object in the frame, are then fed into the LSTM.

– (7) LSTM + MLP. This model (Figure 2) ablates the second LSTM module
(c) in the model presented in Section 4.
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6.2 Evaluation Metric

We evaluate model performance at a given frame t by comparing the predicted
target localization and the ground truth (GT) target localization. We use two
metrics as follows. First, intersection over union (IoU),

IoUt =
BGT

t ∩Bp
t

BGT
t ∪Bp

t

, (1)

where Bp
t denotes the predicted bounding box for frame t and BGT

t denotes the
ground truth bounding box for frame t. Second, we evaluate models using their
mean average precision (MAP). MAP is computed by employing an indicator
function to each frame, determining whether the IoU value is greater than a
predefined threshold, then averaging across frames in a single video and all the
videos in the dataset.

AP =
1

n

n∑
t=1

1t , where 1t =

{
1 IoUt > IoU threshold

0 otherwise
(2)

MAP =
1

N

N∑
v=1

APv . (3)

These per-frame metrics allow us to quantify the performance on each of the
four OP subtasks separately.

7 Results

We start with comparing OPNet with the baselines presented in Section 6.1.
We then provide more insights into the performance of the models by repeating
the evaluations with “Perfect Perception” in Section 7.1. Section 7.3 describes a
semi-supervised setting of training with visible frames only. Finally, in Section
7.3 we compare OPNet with the models presented in the CATER paper on the
original CATER data. We first compare OPNet and the baselines presented in
Section 6.1. Table 2 shows IoU for all models in all four sub-tasks and Figure 3
presents the MAP accuracy of the models across different IoU thresholds.

It can be seen in Table 2 that OPNet performs consistently well across all
subtasks and outperforms all other models overall. On the visible and occluded
frames performance is similar to other baselines. But on the contained and car-
ried frames, OPNet is significantly better than the other methods. This is likely
due to OPNet’s explicit modeling of the object to be tracked.

Table 2 also reports results for two variants of OPNet: OPNet (LSTM+MLP)
and OPNet (LSTM+LSTM). The former is missing the second module (“Where
is it” in Figure 3) which is meant to handle occlusion, and indeed under-performs
for occlusion frames (the “occluded” and “contained” subtasks). This highlights
the importance of using the two LSTM modules in Figure 3.
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Table 2. Mean IoU on LA-CATER test data. “±” denotes the standard error of the
mean (SEM). OPNet performs consistently well across all subtasks, and is significantly
better on contained and carried

Mean IoU± SEM Visible Occluded Contained Carried Overall

Detector + Tracker 90.27 ±0.13 53.62 ±0.58 39.98 ±0.38 34.45 ±0.40 71.23 ±0.51

Detector + Heuristic 90.06 ±0.14 47.03 ±0.73 55.36 ±0.53 55.87 ±0.59 76.91 ±0.43

Baseline LSTM 81.60 ±0.19 59.80 ±0.61 49.18 ±0.64 21.53 ±0.40 67.20 ±0.53

Non-Linear + LSTM 88.25 ±0.14 70.14 ±0.62 55.66 ±0.67 24.58 ±0.44 73.53 ±0.51

Transformer + LSTM 90.82 ±0.14 80.40 ±0.61 70.71 ±0.78 28.25 ±0.45 80.27 ±0.50

OPNet (LSTM + MLP) 88.11 ±0.16 55.32 ±0.85 65.18 ±0.89 57.59 ±0.85 78.85 ±0.52

OPNet (LSTM + LSTM) 88.89 ±0.16 78.83 ±0.56 76.79 ±0.62 56.04 ±0.77 81.94 ±0.41

Figure 3 provides interesting insight into the behavior of the programmed
models, namely, Detector + Tracker and Detector + Heuristic. These models
perform well when the IoU threshold is low. This reflects the fact that they have
a good coarse estimate of where the target is, but fail to provide more accurate
localization. At the same time, OPNet performs well for accurate localization,
presumably due to its learned “Where is it” module.

7.1 Reasoning with Perfect Perception

The OPNet model contains an initial “Perception” module that analyzes the
frame pixels to get bounding boxes. Errors in this component will naturally
propagate to the rest of the model and adversely affect results. Here we an-
alyze the effect of the perception module by replacing it with ground truth
bounding boxes and visibility bits. See supplementary for details on extracting
ground-truth annotations. In this setup all errors reflect failure in the reasoning
components of the models.

Table 3 provides the IoU performance and Figure 7 the MAP for all compared
methods on all four subtasks. The results are similar to the previous results.
When compared to the previous section (imperfect, detector-based, perception),
the overall trend is the same, but all models improve when using the ground
truth perception information. Interestingly, the subtask that improves the most
from using ground truth boxes is the carried task. This makes sense, since it is
the hardest subtask and the one that most relies on having the correct object
locations per frame.

7.2 Learning only from Visible Frames

We now examine a learning setup in which localization supervision is available
only for frames where the target object is visible. This setup corresponds more
naturally to the process by which people learn object permanence. For instance,
imagine a child learning to track a carried (non visible) object for the first time
and receiving a surprising feedback only when the object reappears in the scene.
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Fig. 3. Mean average precision (MAP) as a function of IoU thresholds. The two pro-
grammed models, Detector+Tracker (blue) and Detector+Heuristic (orange) perform
well when the IoU threshold is low, providing a good coarse estimate of target location.
OPNet performs well on all subtasks.

Table 3. Mean IoU with Perfect Perception. “±” denotes the standard error of the
mean (S.E.M.). Results are similar in nature to those with imperfect, detector-based,
perception (Table 2). All models improve when using ground-truth perception. The
largest improvement due to OPNet is observed in the carried task.

Mean IoU ± SEM Visible Occluded Contained Carried Overall

DETECTOR + TRACKER 90.27 ±0.13 53.62 ±0.58 39.98 ±0.38 34.45 ±0.40 71.23 ±0.51

DETECTOR + HEURISTIC 95.59 ±0.34 30.40 ±0.81 59.81 ±0.47 59.33 ±0.50 81.24 ±0.49

BASELINE LSTM 75.22 ±0.31 50.52 ±0.75 45.10 ±0.62 19.12 ±0.36 61.41 ±0.53

NON-LINEAR + LSTM 88.63 ±0.25 65.73 ±0.82 58.77 ±0.70 23.89 ±0.41 74.53 ±0.54

TRANSFORMER + LSTM 93.99 ±0.24 81.31 ±0.88 75.75 ±0.85 28.01 ±0.44 83.78 ±0.55

OPNet (LSTM + MLP) 88.11 ±0.16 19.39 ±0.60 77.40 ±0.68 78.25 ±0.65 83.84 ±0.48

OPNet (LSTM + LSTM) 88.78 ±0.25 67.79 ±0.69 83.47 ±0.47 76.42 ±0.66 85.44 ±0.38

In absence of any supervision when the target is non-visible, incorporating an
extra auxiliary loss is needed to account for these frames. Towards this end, we
incorporated an auxiliary consistency loss that minimizes the change between
predictions in consecutive frames. Lconsistency = 1

n

∑n
t=1 ‖bt − bt−1‖2. The total
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Fig. 4. Mean average precision (MAP) as a function of IoU thresholds for reasoning
with Perfect Perception (Section 7.1). The most notable performance gain of OPNet
(pink and brown curves) was with carried targets (subtask d).

loss is defined as an interpolation between the localization loss and the consis-
tency loss, balancing their different scales: L = α · Llocalization + β · Lconsistency

Details on choosing the values of α and β are provided in the supplementary.

Table 4 shows the mean IoU for this setup (compare with Table 2). The base-
lines perform well when the target is visible, fully occluded or contained without
movement. This phenomenon goes hand-in-hand with the inductive bias of the
consistency loss. Usually, to solve these subtasks, a model only needs to predict

Table 4. IoU for learning with only visible supervision. “±” denotes the standard error
of the mean (S.E.M.). The models do not perform well when the target is carried.

Mean IoU Visible Occluded Contained Carried Overall

Baseline LSTM 88.61 ±0.16 80.39 ±0.54 68.35 ±0.76 27.39 ±0.45 78.09 ±0.49

Non Linear + LSTM 89.30 ±0.15 82.49 ±0.45 67.25 ±0.75 27.34 ±0.45 78.15 ±0.49

Transformer + LSTM 88.33 ±0.15 83.74 ±0.44 69.93 ±0.77 27.65 ±0.54 78.43 ±0.49

OPNet (LSTM + MLP) 88.45 ±0.17 48.03 ±0.82 10.95 ±0.51 7.28 ±0.30 61.18 ±0.69

OPNet (LSTM + LSTM) 88.95 ±0.16 81.84 ±0.48 69.01 ±0.76 27.50 ±0.45 78.50 ±0.49
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the last known target location. This explains why the OPNet (LSTM+MLP)
model performs so poorly in this setup.

We note that the performance of non-OPNet models on the carried task is
similar to that obtained using full supervision (see Table 2, Section 7) . This
suggests that these models fail to use the supervision for the “carried” task,
and further reinforces the observation that localizing carried object is highly
challenging.

7.3 Comparison with CATER Data

The original CATER paper [8] considered the “snitch localization” task, aiming
to localize the snitch at the last frame of the video, and formalized as a classifi-
cation problem. The x-y plane was divided with a 6-by-6 grid, and the goal was
to predict the correct cell of that grid.

Here we report the performance of OPNet and relevant baselines evaluated
with the exact setup of [8], to facilitate comparison with the results reported
there. Table 5 shows the accuracy and L1-distance metrics for this evaluation.
OPNet significantly improves over all baselines from [8]. It reduces classification
error from 40% to 24%, and the L1 distance from 1.2 to 0.54.

7.4 Qualitative Examples

To gain insight into the behaviour and limitations of the OPNet model, we
provide examples of its successes and failures. The first video 1 provides a “win”
example, demonstrating the power of the “who-to-track” reasoning component.
In this example, the model correctly handles recursive containment that involve
“carrying”. See Figure 5 (top row). The second video 2 illustrates a failure, where
OPNet fails to switch between tracked objects when the target is “carried”. The
model accidentally switches to an incorrect cone object (the yellow cone) that
already contains another object, not the target. Interestingly, OPNet operates
properly when the yellow cone is picked up and switches to track the blue ball
that was contained by the yellow cone. It suggests that OPNet learns an implicit
representation of the object actions (pick-up, slide, contain etc.) even though it
was not explicitly trained to do so. See Figure 5 (bottom row).

Table 5. Classification accuracy on CATER using the metrics of [8].

Accuracy L1 Distance
Model (higher is better) (lower is better)

DaSiamRPN 33.9 2.4
TSN-RGB + LSTM 25.6 2.6
R3D + LSTM 60.2 1.2

OPNet (Ours) 74.8 0.54

1https://youtu.be/FnturB2Blw8
2https://youtu.be/qkdQSHLrGqI

https://youtu.be/FnturB2Blw8
https://youtu.be/qkdQSHLrGqI
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(a) (b) (c) (d) (e)

Fig. 5. Examples of a success case (top row) and a failure case (bottom row) for
localizing a carried object. The blue box marks the ground-truth location. The yellow
box marks the predicted location. Top (a) The target object is visible; (b-c) The target
becomes covered and carried by the orange cone; (d-e) The big golden cone covers and
carries the orange cone, illustrating recursive containment. The target object is not
visible, but OPNet successfully tracks it. Bottom (c-d) OPNet accidentally switches to
the wrong cone object (the yellow cone instead of the brown cone); (e) OPNet correctly
finds when the yellow cone is picked up and switches to track the blue ball underneath.

8 Conclusion

We considered the problem of localizing one target object in highly dynamic
scenes, where the target can be occluded, contained or even carried away, con-
cealed by another object. We name this task object permanence, following the
cognitive concept of an object that is physically present in a scene but is occluded
or carried. We presented an architecture called OPNet, whose components nat-
urally correspond to the perceptual and the reasoning stages of solving OP.
Specifically, it has a module that learns to switch attention to an object if it
infers that the object contains or carries the target. Our empirical evaluation
shows that these components are needed for improving accuracy in this task.

Our results highlight a remaining gap between perfect perception and a pixel-
based detector. It is expected that this gap may be even wider when applying OP
to more complex natural videos in an open-world setting. It will be interesting
to further improve detection architectures to reduce this gap
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