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Abstract. This work addresses the problems of generalization and flex-
ibility for text recognition in documents. We introduce a new model that
exploits the repetitive nature of characters in languages, and decouples
the visual decoding and linguistic modelling stages through intermedi-
ate representations in the form of similarity maps. By doing this, we
turn text recognition into a visual matching problem, thereby achieving
generalization in appearance and flexibility in classes.

We evaluate the model on both synthetic and real datasets across dif-
ferent languages and alphabets, and show that it can handle challenges
that traditional architectures are unable to solve without expensive re-
training, including: (i) it can change the number of classes simply by
changing the exemplars; and (ii) it can generalize to novel languages and
characters (not in the training data) simply by providing a new glyph
exemplar set. In essence, it is able to carry out one-shot sequence recog-
nition. We also demonstrate that the model can generalize to unseen
fonts without requiring new exemplars from them.

Code, data, and model checkpoints are available at: http://www.robots.
ox.ac.uk/~vgg/research/FontAdaptor20/.
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1 Introduction

Our objective in this work is generalization and flexibility in text recognition.
Modern text recognition methods [2, 7, 23, 32] achieve excellent performance in
many cases, but generalization to unseen data, i.e., novel fonts and new lan-
guages, either requires large amounts of data for primary training or expensive
fine-tuning for each new case.

The text recognition problem is to map an image of a line of text x into the
corresponding sequence of characters y = (y1, y2, . . . , yk), where k is the length of
the string and yi ∈ A are characters in alphabet A (e.g., {a,b,. . .,z,<space>}).

http://www.robots.ox.ac.uk/~vgg/research/FontAdaptor20/
http://www.robots.ox.ac.uk/~vgg/research/FontAdaptor20/
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English: alphabet-size: 26 characters Greek: novel glyph shapes and alphabet-size: 24 characters

Fig. 1: Visual matching for text recognition. Current text recognition mod-
els learn discriminative features specific to character shapes (glyphs) from a pre-
defined (fixed) alphabet. We train our model instead to establish visual similarity
between given character glyphs (top) and the text-line image to be recognized
(left). This makes the model highly adaptable to unseen glyphs, new alpha-
bets/languages, and extensible to novel character classes, e.g., English→ Greek,
without further training. Brighter colors correspond to higher visual similarity.

Current deep learning based methods [7,23,32] cast this in the encoder-decoder
framework [8, 37], where first the text-line image is encoded through a visual
ConvNet [22], followed by a recurrent neural network decoder, with alignment
between the visual features and text achieved either through attention [3] or
Connectionist Temporal Classification (CTC) [13].

Impediments to generalization. The conventional methods for text recogni-
tion train the visual encoder and the sequence decoder modules in an end-to-end
manner. While this is desirable for optimal co-adaptation, it induces monolithic
representations which confound visual and linguistic functions. Consequently,
these methods suffer from the following limitations: (1) Discriminative recogni-
tion models specialize to fonts and textures in the training set, hence generalize
poorly to novel visual styles. (2) The decoder discriminates over a fixed alpha-
bet/number of characters. (3) The encoder and decoder are tied to each other,
hence are not inter-operable across encoders for new visual styles or decoders
for new languages. Therefore, current text recognition methods generalize poorly
and require re-initialization or fine-tuning for new alphabets and languages. Fur-
ther, fine-tuning typically requires new training data for the target domain and
does not overcome these inherent limitations.

Recognition by matching. Our method is based on a key insight: text is
a sequence of repetitions of a finite number of discrete entities. The repeated
entities are characters in a text string, and glyphs, i.e., visual representations of
characters/symbols, in a text-line image. We re-formulate the text recognition
problem as one of visual matching. We assume access to glyph exemplars (i.e.,
cropped images of characters), and task the visual encoder to localize these
repeated glyphs in the given text-line image. The output of the visual encoder
is a similarity map which encodes the visual similarity of each spatial location
in the text-line to each glyph in the alphabet as shown in Figure 1. The decoder
ingests this similarity map to infer the most probable string. Figure 2 summarizes
the proposed method.
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Overcoming limitations. The proposed model overcomes the above mentioned
limitations as follows: (1) Training the encoder for visual matching relieves it
from learning specific visual styles (fonts, colors etc.) from the training data, im-
proving generalization over novel visual styles. (2) The similarity map is agnostic
to the number of different glyphs, hence the model generalizes to novel alphabets
(different number of characters). (3) The similarity map is also agnostic to visual
styles, and acts as an interpretable interface between the visual encoder and the
decoder, thereby disentangling the two.

Contributions. Our main contributions are threefold. First, we propose a novel
network design for text recognition aimed at generalization. We exploit the rep-
etition of glyphs in language, and build this similarity between units into our
architecture. The model is described in Sections 3 and 4. Second, we show that
the model outperforms state-of-the-art methods in recognition of novel fonts
unseen during training (Section 5). Third, the model can be applied to novel
languages without expensive fine-tuning at test time; it is only necessary to
supply glyph exemplars for the new font set. These include languages/alphabets
with different number of characters, and novel styles e.g., characters with accents
or historical characters "s" (also in Section 5).

Although we demonstrate our model for document OCR where a consistent vi-
sual style of glyphs spans the entire document, the method is applicable to
scene-text/text-in-the-wild (e.g., SVT [41], ICDAR [18,19] datasets) where each
instance has a unique visual style (results in supplementary material).

2 Related Work

Few-shot recognition. Adapting model behavior based on class exemplars
has been explored for few-shot object recognition. Current popular few-shot
classification methods, e.g., Prototypical Nets [34], Matching Nets [40], Rela-
tion Nets [36], and MAML [11], have been applied only to recognition of single
instances. Our work addresses the unique challenges associated with one-shot
classification of multiple instances in sequences. To the best of our knowledge
this is the first work to address one-shot sequence recognition. We discuss these
challenges and the proposed architectural innovations in Section 3.4. A relevant
work is from Cao et al. [5] which tackles few-shot video classification, but similar
to few-shot object recognition methods, they classify the whole video as a single
instance.

Text recognition. Recognizing text in images is a classic problem in pat-
tern recognition. Early successful applications were in reading handwritten doc-
uments [4, 22], and document optical character recognition (OCR) [33]. The
OCR industry standard—Tesseract [33]—employs specialized training data for
each supported language/alphabet.3 Our model enables rapid adaptation to

3 Tesseract’s specialized training data for 103 languages:
https://github.com/tesseract-ocr/tesseract/wiki/Data-Files

https://github.com/tesseract-ocr/tesseract/wiki/Data-Files
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Fig. 2: Visual matching for text recognition. We cast the problem of text
recognition as one of visual matching of glyph exemplars in the given text-line
image. The visual encoder Φ embeds the glyph-line g and text-line x images and
produces a similarity map S, which scores the similarity of each glyph against
each position along the text-line. Then, ambiguities in (potentially) imperfect
visual matching are resolved to produce the enhanced similarity map S∗. Finally,
similarity scores are aggregated to output class probabilities P using the ground-
truth glyph width contained inM.

novel visual styles and alphabets and does not require such expensive fine-
tuning/specialization. More recently, interest has been focussed towards text in
natural images. Current methods either directly classify word-level images [16],
or take an encoder-decoder approach [8,37]. The text-image is encoded through
a ConvNet, followed by bidirectional-LSTMs for context aggregation. The image
features are then aligned with string labels either using Connectionist Temporal
Classification (CTC) [13,15,30,35] or through attention [3,6,7,23,31]. Recogniz-
ing irregularly shaped text has garnered recent interest which has seen a resur-
gence of dense character-based segmentation and classification methods [28,42].
Irregular text is rectified before feature extraction either using geometric trans-
formations [24, 31, 32, 44] or by re-generating the text image in canonical fonts
and colors [43]. Recently, Baek et al. [2] present a thorough evaluation of text
recognition methods, unifying them in a four-stage framework—input transfor-
mation, feature extraction, sequence modeling, and string prediction.

3 Model Architecture

Our model recognizes a given text-line image by localizing glyph exemplars in it
through visual matching. It takes both the text-line image and an alphabet image
containing a set of exemplars as input, and predicts a sequence of probabilities



Adaptive Text Recognition through Visual Matching 5

over N classes as output, where N is equal to the number of exemplars given
in the alphabet image. For inference, a glyph-line image is assembled from the
individual character glyphs of a reference font simply by concatenating them
side-by-side, and text-lines in that font can then be read.

The model has two main components: (1) a visual similarity encoder (Section 3.1)
which outputs a similarity map encoding the similarity of each glyph in the text-
line image, and (2) an alphabet agnostic decoder (Section 3.2) which ingests this
similarity map to infer the most probable string. In Section 3.3 we give details
for the training objective. Figure 2 gives a concise schematic of the model.

3.1 Visual Similarity Encoder

The visual similarity encoder is provided with a set of glyphs for the target
alphabet, and tasked to localize these glyphs in the input text-line image to be
recognized. It first embeds the text-line and glyphs using a shared visual encoder
Φ and outputs a similarity map S which computes the visual similarity between
all locations in the text-line against all locations in every glyph in the alphabet.

Mathematically, let x ∈ RH×W×C be the text-line image, with height H, width
W and C channels. Let the glyphs be {gi}i=|A|i=1 , gi ∈ RH×Wi×C , where A is the
alphabet, and Wi is the width of the ith glyph. The glyphs are stacked along the
width to form a glyph-line image g ∈ RH×Wg×C . Embeddings are obtained using
the visual encoder Φ for both the text-line Φ(x) ∈ R1×W ′×D and the glyph-line
Φ(g) ∈ R1×W ′

g×D, where D is the embedding dimensionality. The output widths
are downsampled by the network stride s (i.e., W ′ = W

s ). Finally, each spatial
location along the width in the glyph-line image is scored against the every
location in the text-line image to obtain the similarity map S ∈ [−1, 1]W

′
g×W

′
:

Sij = 〈Φ(g)i, Φ(x)j〉 =
Φ(g)Ti Φ(x)j

||Φ(g)i|| · ||Φ(x)j ||
(1)

where score is the cosine similarity, and i ∈ {1, . . . ,W ′g}, j ∈ {1, . . . ,W ′}.

3.2 Alphabet Agnostic Decoder

The alphabet agnostic decoder discretizes the similarity maps into probabilities
for each character in the alphabet for all spatial locations along the width of
the text-line image. Concretely, given the visual similarity map S ∈ RW ′

g×W
′
it

outputs logits over the alphabet for each location in the text-line: P ∈ R|A|×W ′
,

Pij = log p(yi|xj), where xj is the jth column in text-line image (modulo encoder
stride) and yi is the ith character in the alphabet A.

A simple implementation would predict the argmax or sum of the similarity
scores aggregated over the extent of each glyph in the similarity map. However,
this naive strategy does not overcome ambiguities in similarities or produce
smooth/consistent character predictions. Hence, we proceed in two steps: first,
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similarity disambiguation resolves ambiguities over the glyphs in the alpha-
bet producing an enhanced similarity map (S∗) by taking into account the glyph
widths and position in the line image, and second, class aggregator computes
character class probabilities by aggregating the scores inside the spatial extent
of each glyph in S∗. We detail the two steps next; the significance of each com-
ponent is established empirically in Section 5.4.

Similarity disambiguation. An ideal similarity map would have square regions
of high-similarity. This is because the width of a character in the glyph and text-
line images will be the same. Hence, we encode glyph widths along with local x,
y coordinates using a small MLP into the similarity map. The input to the MLP
at each location is the similarity map value S stacked with: (1) two channels of
x, y coordinates (normalized to [0, 1]), and (2) a glyph width-map G: G = wg1

T ,
where wg ∈ RW ′

g is a vector of glyph widths in pixels; see Figure 2 for an
illustration. For disambiguation over all the glyphs (columns of S), we use a
self-attention module [38] which outputs the final enhanced similarity map S∗
of the same size as S.

Class aggregator. The class aggregator Λ maps the similarity map to logits
over the alphabet along the horizontal dimension in the text-line image: Λ :
RW ′

g×W
′
7→ R|A|×W ′

, S∗ 7→ P. This mapping can be achieved by multiplication
through a matrixM ∈ R|A|×W

′
g which aggregates (sums) the scores in the span of

each glyph: P =MS∗, such thatM = [m1,m2, . . . ,m|A|]
T and mi ∈ {0, 1}W

′
g =

[0, . . . , 0, 1, . . . , 1, 0, . . . , 0] where the non-zero values correspond to the span of
the ith glyph in the glyph-line image.

In practice, we first embed columns of S∗ and MT independently using learnt
linear embeddings. The embeddings are `2-normalized before the matrix prod-
uct (equivalent to cosine similarity). We also expand the alphabet to add an
additional “boundary” class (for CTC) using a learnt m|A|+1. Since, the decoder
is agnostic to the number of characters in the alphabet, it generalizes to novel
alphabets.

3.3 Training Loss

The dense per-pixel decoder logits over the alphabet P are supervised using
the CTC loss [12] (LCTC) to align the predictions with the output label. We
also supervise the similarity map output of the visual encoder S using an aux-
iliary cross-entropy loss (Lsim) at each location. We use ground-truth character
bounding-boxes for determining the spatial span of each character. The overall
training objective is the following two-part loss,

Lpred = LCTC (SoftMax(P),ygt)) (2)

Lsim = −
∑
ij

log(SoftMax(Syij)) (3)

Ltotal = Lpred + λLsim (4)
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where, SoftMax(·) normalization is over the alphabet (rows), ygt is the string
label, and yi is the ground-truth character associated with the ith position in the
glyph-line image. The model is insensitive to the value of λ within a reasonbale
range (see supplementary), and we use λ = 1 for a good balance of losses.

3.4 Discussion: One-shot Sequence Recognition

Our approach can be summarized as a method for one-shot sequence recogni-
tion. Note, existing few-shot methods [17, 34, 36, 40] are not directly applicable
to this problem of one-shot sequence recognition, as they focus on classification
of the whole of the input (e.g. an image) as a single instance. Hence, these can-
not address the following unique challenges associated with (text) sequences:
(1) segmentation of the imaged text sequence into characters of different widths;
(2) respecting language-model/sequence-regularity in the output. We develop
a novel neural architectural solutions for the above, namely: (1) A neural ar-
chitecture with explicit reasoning over similarity maps for decoding sequences.
The similarity maps are key for generalization at both ends—novel fonts/visual
styles and new alphabets/languages respectively. (2) Glyph width aware similar-
ity disambiguation, which identifies contiguous square blocks in noisy similarity
maps from novel data. This is critical for robustness against imprecise visual
matching. (3) Class aggregator, aggregates similarity scores over the reference
width-spans of the glyphs to produce character logit scores over the alphabet. It
operates over a variable number of characters/classes and glyph-widths. The im-
portance of each of these components is established in the ablation experiments
in Section 5.4.

4 Implementation details

The architectures of the visual similarity encoder and the alphabet agnostic
decoder are described in Section 4.1 and Section 4.2 respectively, followed by
training set up in Section 4.3.

4.1 Visual Similarity Encoder

Table 1: Visual encoder architec-
ture (Sections 3.1 and 4.1). The in-
put is an image of size 32×W×1
(height×width×channels).

layer kernel channels pooling output size
in / out H×W

conv1 3×3 1 / 64 max = (2, 2) 16 × W/2
resBlock1 3×3 64 / 64 max = (1, 2) 8 × W/2
resBlock2 3×3 64 / 128 max = (2, 2) 4 × W/4
upsample – – (2, 2) 8 × W/2
skip 3×3 128+64 / 128 – 8 × W/2
pool – – avg = (2, 1) 4 × W/2
conv2 1×1 128 / 64 – 4 × W/2
reshape – 64 / 256 – 1 × W/2

The visual similarity encoder (Φ) en-
codes both the text-line (x) and
glyph-line (g) images into feature
maps. The inputs of height 32 pix-
els, widthW and 1 channel (grayscale
images) are encoded into a tensor of
size 1×W

2 ×256. The glyph-line im-
age’s width is held fixed to a constant
Wg = 720 px: if

∑i=|A|
i=1 Wi < Wg the

image is padded at the end using the
<space> glyph, otherwise the image is
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downsampled bilinearly to a width of Wg = 720 px. The text-line image’s input
width is free (after resizing to a height of 32 proportionally). The encoder is im-
plemented as a U-Net [29] with two residual blocks [14]; detailed architecture in
Table 1. The visual similarity map (S) is obtained by taking the cosine distance
between all locations along the width of the encoded features from text-line Φ(x)
and glyph-line Φ(g) images.

4.2 Alphabet Agnostic Decoder

Similarity disambiguation. We use the self-attention based Transformer model
[38] with three layers with four attention heads each. The input to this module is
the similarity map S stacked with with local positions (x, y) and glyph widths,
which are then encoded through a three-layer (4×16, 16×32, 32×1) MLP with
ReLU non-linearity [26].

Class aggregator. The columns of S∗ and glyph width templates (refer to Sec-
tion 3.2) are embedded independently using linear embeddings of size W ′g×W ′g,
where W ′g =

Wg

s = 720
2 = 360 (s = encoder stride).

Inference. We decode greedily at inference, as is common after training with
CTC loss. No additional language model (LM) is used, except in Experiment
VS-3 (Section 5.5), where a 6-gram LM learnt from over 10M sentences from the
WMT News Crawl (2015) English corpus [1] is combined with the model output
with beam-search using the algorithm in [25] (parameters: α=1.0, β=2.0, beam-
width=15).

4.3 Training and Optimization

The entire model is trained end-to-end by minimizing the training objective Equa-
tion (4). We use online data augmentation on both the text-line and glyph im-
ages, specifically random translation, crops, contrast, and blur. All parameters,
for both ours and SotA models, are initialized with random weights. We use
the Adam optimizer [20] with a constant learning rate of 0.001, a batch size of
12 and train until validation accuracy saturates (typically 100k iterations) on a
single Nvidia Tesla P40 GPU. The models are implemented in PyTorch [27].

5 Experiments

We compare against state-of-the-art text-recognition models for generalization
to novel fonts and languages. We first describe the models used for comparisons
(Section 5.1), then datasets and evaluation metrics (Section 5.2), followed by an
overview of the experiments (Section 5.3), and a thorough component analysis of
the model architecture (Section 5.4). Finally, we present the results (Section 5.5)
of all the experiments.
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regular bold italic light test fontsregular bold italic light test fonts

Fig. 3: Left: FontSynth splits. Randomly selected fonts from each of the five
font categories – (1) regular (R), (2) bold (B), (3) italic (I), (4) light (L) –
used for generating the synthetic training set, and (5) other (i.e.none of the first
four) – used for the test set. Right: Synthetic data. Samples from FontSynth
(top) generated using fonts from MJSynth [16], and Omniglot-Seq (bottom)
generated using glyphs from Omniglot [21] as fonts (Section 5.2).

5.1 State-of-the-art Models in Text Recognition

For comparison to state-of-the-art methods, we use three models: (i) Baek et
al. [2] for scene-text recognition; (ii) Tesseract [33], the industry standard for
document OCR; and (iii) Chowdhury et al. [9] for handwritten text recognition.

For (i), we use the open-source models provided, but without the transformation
module (since documents do not have the scene-text problem of non-rectilinear
characters). Note, our visual encoder has similar number of parameters as in the
encoder ResNet of [2] (theirs: 6.8M, ours: 4.7M parameters). For (ii) and (iii) we
implement the models using the published architecture details. Further details
of these networks, and the verifcation of our implementations is provided in the
supplementary material.

5.2 Datasets and Metrics

FontSynth. We take 1400 fonts from the MJSynth dataset [16] and split them
into five categories by their appearance attributes as determined from their
names: (1) regular, (2) bold, (3) italic, (4) light, and (5) others (i.e., all fonts with
none of the first four attributes in their name); visualized in Figure 3 (left). We
use the first four splits to create a training set, and (5) for the test set. For train-
ing, we select 50 fonts at random from each split and generate 1000 text-line and
glyph images for each font. For testing, we use all the 251 fonts in category (5).
LRS2 dataset [10] is used as the text source. We call this dataset FontSynth;
visualization in Figure 3 (right) and further details in the supplementary.

Omniglot-Seq. Omniglot [21] consists of 50 alphabets with a total of 1623
characters, each drawn by 20 different writers. The original one-shot learning
task is defined for single characters. To evaluate our sequence prediction network
we generate a new Omniglot-Seq dataset with sentence images as following. We
randomly map alphabets in Omniglot to English, and use them as ‘fonts’ to
render text-line images as in FontSynth above. We use the original alphabet
splits (30 training, 20 test) and generate data online for training, and 500 lines
per alphabet for testing. Figure 3 (right) visualizes a few samples.
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Fig. 4: Google1000 printed books dataset. (left): Text-line image samples
from the Google1000 [39] evaluation set for all the languages, namely, English,
French, Italian and Spanish. (right): Common set of glyph exemplars used in
our method for all books in the evaluation set for English and accents for the
other languages.

Table 2: Google1000 dataset
summary. Total number of
books, alphabet size and per-
centage of letters with accent
(counting accented characters a
new) for various languages in
the Google1000.

language → EN FR IT ES

# books 780 40 40 140
alphabet size 26 35 29 32
% accented letters 0 2.6 0.7 1.5

Google1000. Google1000 [39] is a standard
benchmark for document OCR released as
part of ICDAR 2007. It constitutes scans of
1000 public domain historical books in En-
glish (EN), French (FR), Italian (IT) and
Spanish (ES) languages; Table 2 provides a
summary. Figure 4 visualizes a few samples
from this dataset. This dataset poses signif-
icant challenges due to severe degradation,
blur, show-through (from behind), inking, fad-
ing, oblique text-lines etc. Type-faces from
18th century are significantly different from
modern fonts, containing old ligatures like ",�,Qi". We use this dataset only
for evaluation: further details in supplementary.

Evaluation metrics. We measure the character (CER) and word error rates
(WER); definitions in supplementary.

5.3 Overview of Experiments

The goal of our experiments is to evaluate the proposed model against state-of-
the-art models for text recognition on their generalization ability to (1) novel
visual styles (VS) (e.g., novel fonts, background, noise etc.), and (2) novel al-
phabets/languages (A). Specifically, we conduct the following experiments:

1. VS-1: Impact of number of training fonts. We use FontSynth to study
the impact of the number of different training fonts on generalization to
novel fonts when the exemplars from the testing fonts are provided.

2. VS-2: Cross glyph matching. In this experiment, we do not assume access
to the testing font. Instead of using exemplars from the test font, the most
similar font from the training set is selected automatically.

3. VS-3: Transfer from synthetic to real data. This evaluates transfer of
models trained on synthetic data to real data with historical typeface and
degradation.
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4. A-1: Transfer to novel alphabets. This evaluates transfer of models
trained on English to new Latin languages in Google1000 with additional
characters in the alphabet (e.g., French with accented characters).

5. A-2: Transfer to non-Latin glyphs. The above experiments both train
and test on Latin alphabets. Here we evaluate the generalization of the mod-
els trained on English fonts to non-Latin scripts in Omniglot-Seq (e.g., from
English to Greek).

5.4 Ablation Study

Table 3: Model component analy-
sis. The first row corresponds to the
full model; the last row corresponds to
reading out characters using the CTC
decoder from the output of the visual
encoder. R, B, L and I correspond to
the FontSynth training splits: Regular,
Bold, Light and Italic respectively.

sim. enc.
S

sim. disamb. agg.
embed.

training data
R R+B+L+I

pos. enc. self-attn CER WER CER WER
3 3 3 3 9.4 30.1 5.6 22.3
3 7 3 3 11.8 37.9 7.9 22.9
3 7 7 3 23.9 68.8 13.0 52.0
3 3 3 7 22.9 65.8 8.5 26.4
3 7 7 7 25.8 63.1 18.4 45.0
3 - - - 49.0 96.2 38.3 78.9

We ablate each major component
of the proposed model on the VS-
1 experiment to evaluate its signif-
icance. Table 3 reports the recog-
nition accuracy on the FontSynth
test set when trained on one (R)
and all four (R+B+L+I) font at-
tributes. Without the decoder (last
row), simply reporting the argmax
from the visual similarity map re-
duces to nearest-neighbors or one-
shot Protypical Nets [34] method.
This is ineffective for unsegmented
text recognition (49% CER vs. 9.4%
CER for the full model). Excluding
the position encoding in the similarity disambiguation module leads to a moder-
ate drop. The similarity disambiguation (sim. disamb.) and linear embedding in
class aggregator (agg. embed.) are both important, especially when the training
data is limited. With more training data, the advantage brought by these mod-
ules becomes less significant, while improvement from position encoding does
not have such a strong correlation with the amount of training data.

5.5 Results

VS-1: Impact of number of training fonts. We investigate the impact of the
number of training fonts on generalization to unseen fonts. For this systematic
evaluation, we train the models on an increasing number of FontSynth splits–
regular, regular + bold, regular + bold + light, etc.and evaluate on FontSynth
test set. These splits correspond to increments of 50 new fonts with a different
appearance attribute. Table 4 summarizes the results. The three baseline SotA
models have similar CER when trained on the same amount of data. Tesser-
act [33] has a slightly better performance but generalizes poorly when there
is only one attribute in training. Models with an attention-based LSTM (Attn.
Baek et al. [2], Chowdhury et al. [9]) achieve lower WER than those without due
to better language modelling. Notably, our model achieves the same accuracy
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Table 4: VS-1, VS-2: Generalization to novel fonts with/without known
test glyphs and increasing number of training fonts. The mean error
rates (in %; ↓ is better) on FontSynth test set. For cross matching (ours-
cross), standard-dev is reported in parenthesis. R, B, L and I correspond to the
FontSynth training splits; OS stands for the Omniglot-Seq dataset (Section 5.2).

training set → R R+B R+B+L R+B+L+I R+B+L+I+OS

model test
glyphs
known

CER WER CER WER CER WER CER WER CER WER

CTC Beak et al. [2] 7 17.5 46.1 11.5 30.3 10.4 28.2 10.4 27.7 — —
Attn. Beak et al. [2] 7 16.5 41.0 12.7 34.5 11.1 27.4 10.3 23.6 — —
Tesseract [33] 7 19.2 48.6 12.3 37.0 10.8 31.7 9.1 27.8 — —
Chowdhury et al. [9] 7 16.2 39.1 12.6 28.6 11.5 29.5 10.5 24.2 — —

ours-cross mean 7 11.0 33.7 9.3 30.8 9.1 28.6 7.6 22.2 7.0 25.8
std (2.9) (9.8) (1.4) (5.9) (1.1) (2.2) (0.2) (0.9) (0.9) (3.7)

ours-cross selected 7 9.8 30.0 8.4 29.4 8.4 27.8 7.2 21.8 5.3 18.3
ours 3 9.4 30.2 8.3 28.8 8.1 27.3 5.6 22.4 3.5 12.8

with 1 training attribute (CER=9.4%) as the SotA’s with 4 training attributes
(CER>10%), i.e., using 150 (=3×50) less training fonts, proving the strong gen-
eralization ability of the proposed method to unseen fonts.

Leveraging visual matching. Since, our method does not learn class-specific
filters (unlike conventional discriminatively trained models), but instead is trained
for visual matching, we can leverage non-English glyphs for training. Hence, we
further train on Omniglot-Seq data and drastically reduce the CER from 5.6%

R R+B R+B+L R+B+L+I R+B+L+I+Omni
Training attributes

0

2

4

6

8

10

12

CE
R 

(%
)

Test-glyphs
Regular
Bold
Light
Italic

Fig. 5: VS-2: Cross matching on
FontSynth. Our model maintains its
performance when using training fonts
as glyph exemplars instead of test-image
glyphs (refer to Section 5.5). On the
x-axis we show the FontSynth training
splits (Figure 3 left).

(4 attributes) to 3.5%. Being able
to leverage language-agnostic data for
training is a key strength of our
model.

VS-2: Cross glyph matching. In
VS-1 above, our model assumed priv-
ileged access to glyphs from the test
image. Here we consider the setting
where glyphs exemplars from training
fonts are used instead. This we term
as cross matching, denoted ‘ours-
cross’ in Table 4. We randomly se-
lect 10 fonts from each font attribute
and use those as glyph exemplars.
In Table 4 we report the aggregate
mean and standard-deviation over all
attributes. To automatically find the
best font match, we also measure the
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similarity between the reference and unseen fonts by computing the column-wise
entropy in the similarity map S during inference: Similarity scores within each
glyph span are first aggregated to obtain logits P ∈ R|A|×W ′

, the averaged en-
tropy of logits over columns 1

W ′

∑W ′

i −Pi log(Pi) is then used as the criterion to
choose the best-matched reference font. Performance from the best-matched ex-
emplar set is reported in ’ours-cross selected’ in Table 4. With CER close to the
last row where test glyphs are provided, it is shown that the model does not rely
on extra information from the new fonts to generalize to different visual styles.
Figure 5 details the performance for each attribute separately. The accuracy is
largely insensitive to particular font attributes—indicating the strong ability of
our model to match glyph shapes. Further, the variation decreases as expected
as more training attributes are added.

Table 5: VS-3: Generalization from
synthetic to real data. Mean error
rates (in %; ↓ is better) on Google1000
English document for models trained
only on synthetic data (Section 5.5). LM
stands for 6-gram language model.

CTC
Beak [2]

Attn.
Beak [2]

Tesseract
[33]

Ch. et al.
[9]

ours

LM 7 3 7 3 7 3 7 3 7 3

CER 3.5 3.14 5.4 5.4 4.65 3.8 5.5 5.6 3.1 2.4

WER 12.9 11.4 13.1 13.8 15.9 12.2 14.9 15.6 14.9 8.0

VS-3: Transfer from synthetic
to real data. We evaluate mod-
els trained with synthetic data on
the real-world Google1000 test set for
generalization to novel visual fonts
and robustness against degradation
and other nuisance factors in real
data. To prevent giving per test sam-
ple specific privileged information to
our model, we use a common glyph
set extracted from Google1000 (visu-
alized in Figure 4). This glyph set is
used for all test samples, i.e., is not sample specific. Table 5 compares our model
trained on FontSynth+Omniglot-Seq against the SotAs. These models trained
on modern fonts are not able to recognize historical ligatures like long s: "s"
and usually classify it as the character "f". Further, they show worse ability for
handling degradation problems like fading and show-through, and thus are out-
performed by our model, especially when supported by a language model (LM)
(CER: ours = 2.4% vs. CTC = 3.14%).

A-1: Transfer to novel alphabets. We evaluate our model trained on English
FontSynth + Omniglot-Seq to other languages in Google1000, namely, French,
Italian and Spanish. These languages have more characters than English due
to accents (see Table 2). We expand the glyph set from English to include the
accented glyphs shown in Figure 4. For comparsion, we pick the CTC Baek et
al. [2] (the SotA with the lowest CER when training data is limited), and adapt
it to the new alphabet size by fine-tuning the last linear classifier layer on an
increasing number of training samples. Figure 6 summarizes the results. Images
for fine-tuning are carefully selected to cover as many new classes as possible. For
all three languages, at least 5 images with new classes are required in fine-tuning
to match our performance without fine-tuning; Depending on the number of new
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Fig. 6: A-2: Transfer to novel alphabets in Google1000. We evaluate mod-
els trained over the English alphabet on novel languages in the Google1000
dataset, namely, French, Italian and Spanish. CER is reported (in %; ↓ is bet-
ter).

classes in this language (for French 16 samples are required). Note that for our
model we do not need fine-tuning at all, just supplying exemplars of new glyphs
gives a good performance.

A-2: Transfer to non-Latin glyphs. In the above experiments, the models
were both trained and tested on English/Latin script and hence, are not tasked
to generalize to completely novel glyph shapes. Here we evaluate the generaliza-
tion ability of our model to new glyph shapes by testing the model trained on
FontSynth + Omniglot-Seq on the Omniglot-Seq test set, which consists of novel
alphabets/scripts. We provide our model with glyph exemplars from the ran-
domly generated alphabets (Section 5.2). Our model achieves CER=1.8%/7.9%,
WER=7.6%/31.6% (with LM/without LM), which demonstrates strong gener-
alization to novel scripts. Note, the baseline text recognition models trained
on FontSynth (English fonts) cannot perform this task, as they cannot process
completely new glyph shapes.

6 Conclusion

We have developed a method for text recognition which generalizes to novel vi-
sual styles (e.g., fonts, colors, backgrounds etc.), and is not tied to a particular
alphabet size/language. It achieves this by recasting the classic text recogni-
tion as one of visual matching, and we have demonstrated that the matching
can leverage random shapes/glyphs (e.g., Omniglot) for training. Our model is
perhaps the first to demonstrate one-shot sequence recognition, and achieves su-
perior generalization ability as compared to conventional text recognition meth-
ods without requiring expensive adaptation/fine-tuning. Although the method
has been demonstrated for text recognition, it is applicable to other sequence
recognition problems like speech and action recognition.
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