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In the following, we provide additional details and experimental results of
our novel 3D pose refinement approach. In Sec. 1, we present our evaluation
setup and discuss different datasets. In Sec. 2, we formally describe our evaluated
metrics. In Sec. 3, we give specific details on the implementation of our approach.
In Sec. 4, we analyze the iterative refinement behavior of different methods. In
Sec. 5, we present detailed quantitative 3D pose refinement results for individual
object categories. In Sec. 6, we show additional qualitative results. Finally, we
analyze failure cases of our approach in Sec. 7.

1 Datasets and Evaluation Setup

We evaluate our proposed 3D pose refinement approach on the challenging
Pix3D [19] dataset. The Pix3D dataset provides in-the-wild RGB images with 3D
pose, 3D model, and focal length annotations for objects of different categories.
We follow the evaluation protocol of previous work [3] and perform experiments
on categories which have more than 300 non-occluded and non-truncated sam-
ples (bed, chair, sofa, table). Further, we restrict the training and evaluation to
samples marked as non-occluded and non-truncated because all evaluated re-
finement methods lack explicit mechanisms to deal with occlusions. In addition,
this dataset does not provide information on which objects parts are occluded
nor the extent of the occlusion. For each category, we use 50% of the samples
for training and the other 50% for testing as in [3].

Other category-level datasets do not provide annotations with sufficient ac-
curacy to both train and evaluate fine-grained 3D pose refinement methods. For
example, the Comp [22] and Stanford [22] datasets only provide coarse 3D pose
annotations. In addition to coarse 3D pose annotations, the ScanNet [2], Pas-
cal3D+ [24], and ObjectNet3D [23] datasets also just provide approximate 3D
model annotations. Moreover, the latter two datasets assume constant camera
intrinsics for images captured with different cameras which further decreases
the annotation quality [3]. As a consequence of this label noise, the training
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of refinement methods results in models with poor accuracy, while quantitative
evaluations are not representative of the true refinement performance due to the
lack of accuracy in the annotations.

In contrast, instance-level datasets like LineMOD [8], YCB [1], T-LESS [10],
or NOCS [21] provide accurate annotations but have many images with strong
occlusions. Neither traditional refinement methods [14, 16, 25], nor differentiable
rendering based refinement methods [12, 15, 18], nor our approach employ ex-
plicit mechanisms to deal with occlusions. For example, one issue across all
evaluated methods is that they align renderings to real-world images but occlu-
sions are only present in the real-world images while the renderings are always
un-occluded. Also, simply training methods based on feed-forward CNNs on oc-
cluded objects is in practice not sufficient to handle occlusions [17]. However,
we specifically plan to address occlusions in the future by predicting occlusion
masks and correspondence confidences.

In addition, our approach is specifically designed for category-level 3D pose
refinement using untextured 3D models. This task is very different from instance-
level 3D pose estimation where exactly matching colored and textured 3D models
are available. In this case, methods which leverage color and texture information
of 3D models have a clear advantage and should be used instead.

For these two reasons, we did not evaluate our method on instance-level
datasets like LineMOD or YCB which have many images with strong occlusions
and provide 3D models with colors and textures that exactly match those of the
objects in the RGB images.

2 Metrics

We follow the evaluation protocol of previous work [3] and report the median
error (MedErr) of multiple geometric distances:

Rotation: The 3D rotation distance

eR =
‖log(RT

gtRpred)‖F√
2

(1)

represents the minimal angle between the ground truth rotation matrix Rgt and
the predicted rotation matrix Rpred [20].

Translation: The 3D translation distance

et =
‖tgt − tpred‖2
‖tgt‖2

(2)

gives the relative error between the ground truth translation tgt and the pre-
dicted translation tpred [11].



Geometric Correspondence Fields 3

Pose: The 3D pose distance

eR,t = avg
Mi∈M

dbbox
dimg

· ‖transf(Mi,Pgt)− transf(Mi,Ppred)‖2
‖tgt‖2

(3)

represents the average normalized Euclidean distance of all transformed 3D
model points in 3D space [9, 11]. Each 3D point Mi of the ground truth 3D
model M is transformed using the ground truth 3D pose Pgt and the predicted
3D pose Ppred. This distance is normalized by the relative size of the object in
the image using the ratio between the ground truth 2D bounding box diago-
nal dbbox and the image diagonal dimg, and the L2-norm of the ground truth
translation ‖tgt‖2.

Projection: The 2D projection distance

eP = avg
Mi∈M

‖proj(Mi,Pgt)− proj(Mi,Ppred)‖2
dbbox

(4)

is the average reprojection error normalized by the ground truth 2D bounding
box diagonal dbbox [22]. In this case, each 3D point Mi of the ground truth 3D
model M is projected to the 2D image plane using the ground truth 3D pose
Pgt and the predicted 3D pose Ppred subject to a camera model. In this work,
we assume the camera intrinsics to be known.

3 Implementation and Training Details

To train our refinement network, we resize and pad images to a spatial resolution
of 256 × 256 while maintaining the aspect ratio. In this way, we are able to
combine images with different aspect ratios in the same training batch. For our
mapping branches, we adapt a ResNet-50 [6, 7] architecture. We utilize all layers
up to the end of the first stage but use a stride of 1 for all convolutional layers
and discard max pooling layers. For our correspondence branch, we use a channel
dimensionality of 64 for all convolutional layers except the output layer.

During training of our network, we additionally employ different forms of
data augmentation like mirroring, affine transformations, and independent pixel
augmentations like additive or multiplicative noise for the RGB image I.

To regularize our network, we use L2 weight decay with a factor of 1e−5.
We train our network f(·) for 1500 epochs using the Adam optimizer [13] with
an initial learning rate of η = 1e−3. We use a batch size of 8 and decrease the
learning rate by a factor of 5 after 1000 and 1400 epochs.

During inference of our system, we compute geometry-level gradients ∇mi

from our predicted geometric correspondence fields. In this way, vertices belong-
ing to self-occluded triangles [12] or to visible triangles which are masked out
by our geometric attention module do not receive gradients. However, since the
geometry is fixed, providing gradients for a subset of all vertices is sufficient to
perform 3D pose refinement.
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4 Iterative Refinement
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Fig. 1: Evaluation on 3D pose refinement after varying numbers of iterations. In contrast
to other methods, our refinement achieves a consistent improvement upon the baseline,
increasing with the number of iterations.

Figure 1 shows the performance of different refinement methods after vary-
ing numbers of iterations. In this experiment, we report the 3D pose metric
MedErrR,t as a function of the number of 3D pose updates. The baseline does
not perform iterative updates, thus, its MedErrR,t score is constant.

For Image Refinement [25], the accuracy increases until 20 iterations but
then starts to decrease. After the first couple of coarse refinement steps, the
predicted updates are not accurate enough to refine the 3D pose but start to
jitter without further improving the 3D pose. Moreover, for many objects the
prediction fails and the iterative updates cause the 3D pose to drift off which
results in high MedErrR,t for large numbers of iterations.

For Mask Refinement [12], we observe an opposite effect. In the beginning,
the accuracy decreases but then the performance increases. This is due to de-
generated masks predicted from RGB images by Mask R-CNN [5]. The mask
prediction often fails to capture fine-grained and thin structures, e.g., ornaments
and legs of a bed (see Figure 2). These degenerated masks cause large gradients
during refinement and quickly pull the 3D pose away from the reasonable initial
estimate predicted by the baseline (also see Figure 3, 2nd row). After five itera-
tions the refinement on samples with correctly predicted masks counteracts this
effect and the performance improves.
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Table 1: Average computation times of different refinement methods for a single itera-
tion using a Titan X GPU. For all evaluated methods, the execution time for computing
a single 3D pose update is within the same order of magnitude.

Method Time per Iteration

Image Refinement [25] 86.5 ms
Mask Refinement [12] 29.7 ms
Our Refinement 36.0 ms

Image GT Mask Predicted Mask

GT 3D Pose Baseline [3] 3D Pose Mask Ref. [12] 3D Pose

Fig. 2: Typical failure case of Mask Refinement [12]. Degenerated predicted masks (top
right) cause large gradients during refinement and quickly pull the 3D pose away from
reasonable initial estimates by the baseline (bottom middle). As a consequence, the 3D
pose refinement using Mask Refinement fails (bottom right). Also see Figure 3, 2nd row.

In contrast to other refinement methods, our approach achieves a consistent
improvement upon the baseline, increasing with the number of iterations. As
expected, the accuracy saturates for large numbers of iterations. Empirically,
we achieve maximum accuracy by performing 1000 3D pose updates using the
Adam optimizer [13] with a learning rate of η = 0.05.

Finally, Table 1 compares the computation times of different refinement
methods. Image Refinement evaluates two large ResNet-style networks [6] dur-
ing inference and, thus, this method is the slowest in our evaluation. Mask Re-
finement generates a mask rendering, computes a loss in the mask space, and
performs the backward pass of its differentiable renderer in each iteration. This
method is the fastest in our evaluation since the target mask predicted from the
input RGB image by Mask R-CNN [5] does not change during refinement. It is
only predicted once before the iterative process and the inference time of Mask
R-CNN is not considered in this experiment.
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Our refinement is only marginally slower than Mask Refinement as we just
evaluate our efficient network branches in addition to the forward and back-
ward pass of our differentiable renderer in each iteration. However, all evaluated
refinement methods show comparable execution time within the same order of
magnitude for computing a single 3D pose update.

5 Detailed Quantitative Results

Tables 2 (GT 3D models) and 3 (retrieved 3D models) show detailed quanti-
tative results for individual object categories on Pix3D. For completeness, we
additionally report the detection accuracy AccD0.5

which gives the percentage
of objects for which the intersection over union between the ground truth 2D
bounding box and the predicted 2D bounding box is larger than 50% [24]. We
do not make 3D pose predictions for objects which are not detected by the base-
line [3]. However, the reported MedErr metrics are computed over all samples,
both detected and not detected.

Our refinement outperforms the baseline as well as competing refinement
methods across all metrics. In fact, we do not only increase the mean performance
over all categories but also achieve state-of-the-art results for each individual
category. Using both ground truth (see Table 2) and retrieved (see Table 3)
3D models, we improve the performance compared to other methods by a large
margin for each evaluated category.

Table 2: Detailed 3D pose refinement results for individual categories on Pix3D. In this
experiment, we provide the ground truth 3D model for refinement. We outperform
existing methods across all categories by a large margin.

Detection Rotation Translation Pose Projection

Method Category AccD0.5

MedErrR MedErrt MedErrR,t MedErrP
·1 ·102 ·102 ·102

Baseline [3]

bed 99.0

5.07 6.68 5.18 3.42
Image Refinement [25] 4.65 5.45 4.60 3.38
Mask Refinement [12] 3.03 4.04 3.07 2.00
Our Refinement 2.40 1.84 1.45 1.28

Baseline [3]

chair 95.2

7.36 5.49 3.90 3.32
Image Refinement [25] 7.10 5.31 3.68 3.34
Mask Refinement [12] 4.42 4.89 3.17 1.79
Our Refinement 2.96 1.77 1.23 1.17

Baseline [3]

sofa 96.5

4.40 4.96 3.78 2.57
Image Refinement [25] 4.30 3.87 3.15 2.54
Mask Refinement [12] 2.97 2.89 2.25 1.54
Our Refinement 2.28 1.36 1.19 1.08

Baseline [3]

table 94.0

10.18 7.72 6.17 5.54
Image Refinement [25] 9.81 7.07 5.80 5.40
Mask Refinement [12] 3.81 4.44 3.34 2.27
Our Refinement 2.59 2.00 1.48 1.55

Baseline [3]

mean 96.2

6.75 6.21 4.76 3.71
Image Refinement [25] 6.46 5.43 4.31 3.67
Mask Refinement [12] 3.56 4.06 2.96 1.90
Our Refinement 2.56 1.74 1.34 1.27
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Table 3: Detailed 3D pose refinement results for individual categories on Pix3D. In this
experiment, we automatically retrieve 3D models for refinement using the method
presented in [4]. We outperform existing methods across all categories by a large margin.

Detection Rotation Translation Pose Projection

Method Category AccD0.5

MedErrR MedErrt MedErrR,t MedErrP
·1 ·102 ·102 ·102

Baseline [3]

bed 99.0

5.07 6.68 5.18 3.42
Image Refinement [25] 4.65 5.86 4.41 3.38
Mask Refinement [12] 4.40 5.32 4.21 2.69
Our Refinement 2.95 2.75 2.18 1.83

Baseline [3]

chair 95.2

7.36 5.49 3.90 3.32
Image Refinement [25] 7.15 5.21 3.67 3.35
Mask Refinement [12] 7.22 6.32 4.53 3.31
Our Refinement 4.89 2.87 2.04 2.19

Baseline [3]

sofa 96.5

4.40 4.96 3.78 2.57
Image Refinement [25] 4.34 3.75 3.02 2.54
Mask Refinement [12] 3.33 3.00 2.34 1.63
Our Refinement 2.60 1.60 1.42 1.19

Baseline [3]

table 94.0

10.18 7.72 6.17 5.54
Image Refinement [25] 9.73 7.23 6.22 5.68
Mask Refinement [12] 6.92 6.34 5.52 4.85
Our Refinement 4.73 3.38 2.93 3.49

Baseline [3]

mean 96.2

6.75 6.21 4.76 3.71
Image Refinement [25] 6.47 5.51 4.33 3.74
Mask Refinement [12] 5.47 5.25 4.15 3.12
Our Refinement 3.79 2.65 2.14 2.18

6 Additional Qualitative Results

Figures 3, 4, and 5 show additional qualitative 3D pose refinement results for
different methods complementary to those presented in the main paper. While
other methods fail to predict fine-grained 3D poses in the wild, our approach
precisely aligns 3D models to objects in RGB images which results in signifi-
cantly improved 3D poses for objects of different categories. In many cases, our
predicted 3D pose is visually indistinguishable from the ground truth 3D pose.

Figures 6 and 7 show additional qualitative results of our predicted geometric
correspondence fields. Our predicted 2D displacement vectors are highly accurate
for many different objects and scales in the wild. The illustrations also show
our computed geometric attention masks, outlined in white underneath the 2D
displacement vectors.

7 Additional Failure Cases

Figure 8 shows additional failure cases of our approach. In the presence of strong
image noise, we cannot predict accurate geometric correspondence fields and,
thus, our refinement fails. Also, if there are duplicate or ambiguous structures
in the image our method sometimes predicts wrong correspondences and aligns
the 3D model to unintended image parts.
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Image GT [3] [25] [12] Ours

Fig. 3: Additional qualitative 3D pose refinement results for objects of different cate-
gories. We project the ground truth 3D model on the image using the predicted 3D
pose. Our approach overcomes the limitations of previous methods and predicts fine-
grained 3D poses which are in many cases visually indistinguishable from the ground
truth. Best viewed in digital zoom.
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Image GT [3] [25] [12] Ours

Fig. 4: Additional qualitative 3D pose refinement results for objects of different cate-
gories. We project the ground truth 3D model on the image using the predicted 3D
pose. Our approach overcomes the limitations of previous methods and predicts fine-
grained 3D poses which are in many cases visually indistinguishable from the ground
truth. Best viewed in digital zoom.
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Image GT [3] [25] [12] Ours

Fig. 5: Additional qualitative 3D pose refinement results for objects of different cate-
gories. We project the ground truth 3D model on the image using the predicted 3D
pose. Our approach overcomes the limitations of previous methods and predicts fine-
grained 3D poses which are in many cases visually indistinguishable from the ground
truth. Best viewed in digital zoom.
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Initial 3D Pose Ground Truth Prediction

Fig. 6: Additional qualitative examples of our predicted geometric correspondence
fields. Our predicted 2D displacement vectors are highly accurate for many different
objects and scales. Best viewed in digital zoom.



12 A. Grabner et al.

Initial 3D Pose Ground Truth Prediction

Fig. 7: Additional qualitative examples of our predicted geometric correspondence
fields. Our predicted 2D displacement vectors are highly accurate for many different
objects and scales. Best viewed in digital zoom.
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Image GT GCF Predicted GCF

GT 3D Pose Baseline [3] 3D Pose Our 3D Pose

Image GT GCF Predicted GCF

GT 3D Pose Baseline [3] 3D Pose Our 3D Pose

Fig. 8: Failure cases of our approach. In the presence of strong image noise (top ex-
ample), we cannot predict accurate geometric correspondence fields (GCF) and, thus,
our refinement fails. Also, if there are duplicate or ambiguous structures in the image
our method sometimes predicts wrong correspondences and aligns the 3D model to
unintended image parts (bottom example). Best viewed in digital zoom.
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