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Abstract. Requirement of large annotated datasets restrict the use of
deep convolutional neural networks (CNNs) for many practical applica-
tions. The problem can be mitigated by using active learning (AL) tech-
niques which, under a given annotation budget, allow to select a subset
of data that yields maximum accuracy upon fine tuning. State of the art
AL approaches typically rely on measures of visual diversity or prediction
uncertainty, which are unable to effectively capture the variations in spa-
tial context. On the other hand, modern CNN architectures make heavy
use of spatial context for achieving highly accurate predictions. Since the
context is difficult to evaluate in the absence of ground-truth labels, we
introduce the notion of contextual diversity that captures the confusion
associated with spatially co-occurring classes. Contextual Diversity (CD)
hinges on a crucial observation that the probability vector predicted by a
CNN for a region of interest typically contains information from a larger
receptive field. Exploiting this observation, we use the proposed CD mea-
sure within two AL frameworks: (1) a core-set based strategy and (2) a
reinforcement learning based policy, for active frame selection. Our exten-
sive empirical evaluation establish state of the art results for active learn-
ing on benchmark datasets of Semantic Segmentation, Object Detection
and Image classification. Our ablation studies show clear advantages of
using contextual diversity for active learning. The source code and addi-
tional results are available at https://github.com/sharat29ag/CDAL.

1 Introduction

Deep convolutional neural networks (CNNs) have acheived state of the art (SOTA)
performance on various computer vision tasks. One of the key driving factors for
this success has been the effort gone in preparing large amounts of labeled train-
ing data. As CNNs become more popular, they are applied to diverse tasks from
disparate domains, each of which may incur annotation costs that are task as
well as domain specific. For instance, the annotation effort in image classification
is substantially lower than that of object detection or semantic segmentation in
images or videos. Similarly, annotations of RGB images may be cheaper than
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Fig. 1. Illustration showing 4 frames from Camvid. Each subfigure shows the full RGB
image, region of interest with ground truth overlaid, and the average probability for the
‘pedestrian’ class with bars color coded by class. We observe that the confusion reflected
by the average probability vector corresponding to a class in a frame is also influenced
by the object’s background. Notice the confusion of pedestrian class with fence in
(A) and with bicycle in (C), each of which appear in the neighborhood of a pedestrian
instance. We propose a novel contextual diversity based measure that exploits the above
structure in probability vectors to help select images containing objects in diverse
backgrounds. Including this set of images for training helps improving accuracy of
CNN-based classifiers, which rely on the local spatial neighborhoods for prediction.
For the above example our contextual diversity based selection picks {(A), (C), (D)}
as opposed to the set {(B), (C), (D)} picked by a maximum entropy based strategy
(best viewed in color).

MRI/CT images or Thermal IR images, which may require annotators with
specialized training.

The core idea of Active Learning (AL) is to leverage the current knowledge of
a machine learning model to select most informative samples for labeling, which
would be more beneficial to model improvement compared to a randomly chosen
data point [33]. With the effectiveness of deep learning (DL) based models in
recent years, AL strategies have been investigated for these models as well. Here,
it has been shown that DL models trained with a fraction of available training
samples selected by active learning can achieve nearly the same performance as
when trained with all available data [32,42,36]. Since DL models are expensive to
train, AL strategies for DL typically operate in a batch selection setting, where
a set of images are selected and annotated followed by retraining or fine-tuning
of the model using the selected set.

Traditional AL techniques [20,21,34,25,14] have mostly been based on uncer-
tainty and have exploited the ambiguity in the predicted output of a model. As
most measures of uncertainty employed are based on predictions of individual
samples, such approaches often result in highly correlated selections in the batch
AL setting. Consequently, more recent AL techniques attempt to reduce this cor-
relation by following a strategy based on the diversity and representativeness of
the selected samples [37,40,18]. Existing approaches that leverage these cues are
still insufficient in adequately capturing the spatial and semantic context within
an image and across the selected set. Uncertainty, typically measured through
entropy, is also unable to capture the class(es) responsible for the resulting un-
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certainty. On the other hand, visual diversity and representativeness are able to
capture the semantic context across image samples, but are typically measured
using global cues in a feature space that do not preserve information about the
spatial location or relative placement of the image’s constituent objects.

Spatial context is an important aspect of modern CNNs, which are able to
learn discriminative semantic representations due to their large receptive fields.
There is sufficient evidence that points to the brittleness of CNNs as object
locations, or the spatial context, in an image are perturbed [31]. In other words,
a CNN based classifier’s misclassification is not simply attributed to the objects
from the true class, but also to other classes that may appear in the object’s
spatial neighborhood. This crucial observation also points to an important gap
in the AL literature, where existing measures are unable to capture uncertainty
arising from the diversity in spatial and semantic context in an image. Such a
measure would help select a training set that is diverse enough to cover a variety
of object classes and their spatial co-occurrence and thus improve generalization
of CNNs. The objective of this paper is to achieve this goal by designing a novel
measure for active learning which helps select frames having objects in diverse
contexts and background. Figure 1 describes an illustrative comparison of some
of the samples selected by our approach with the entropy based one.

In this paper, we introduce the notion of contextual diversity, which permits
us to unify the model prediction uncertainty with the diversity among samples
based upon spatial and semantic context in the data. We summarize our contri-
butions below:

– We introduce a novel information-theoretic distance measure, Contextual
Diversity (CD), to capture the diversity in spatial and semantic context of
various object categories in a dataset.

– We demonstrate that using CD with core-set based active learning [32] al-
most always beats the state of the art across three visual recognition tasks:
semantic segmentation, object detection and image classification. We show
an improvement of 1.1, 1.1, and 1.2 units on the three tasks, over the state
of the art performance achieving 57.2, 73.3, and 80.9 respectively.

– Using CD as a reward function in an RL framework further improves the
AL performance and achieves an improvement of 2.7, 2.1, and 2.3 units on
the respective visual recognition tasks over state of the art (57.2, 73.3, and
80.9 respectively).

– Through a series of ablation experiments, we show that CD complements
existing cues like visual diversity.

2 Related Work

Active learning techniques can be broadly categorized into the following cate-
gories. Query by committee methods operate on consensus by several models
[2,10]. However, these approaches in general are too computationally expensive
to be used with deep neural networks and big datasets. Diversity-based ap-
proaches identify a subset of a dataset that is sufficiently representative of the
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entire dataset. Most approaches in this category leverage techniques like clus-
tering [30], matrix partitioning [13], or linkage based similarity[3]. Uncertainty
based approaches exploit the ambiguity in the predicted output of a model. Some
representative techniques in this class include [20,21,34,25,14]. Some approaches
attempt to combine both uncertainty and diversity cues for active sample selec-
tion. Some notable works in this category include [22,37,40,18]. Recently, gener-
ative models have also been used to synthesize informative samples for Active
Learning [46,29,28]. In the following, we give a detailed review of three recent
state of the art AL approaches applied to vision related tasks. We compare with
these methods later in the experiment sections over the three visual recognition
tasks.

Core-Set. Sener and Savarese [32] have modeled active learning as a core-set
selection problem in the feature space learned by convolutional neural networks
(CNNs). Here, the core-set is defined as a selected subset of points such that
the union of Rn-balls of radius δ around these points contain all the remain-
ing unlabeled points. The main advantage of the method is in its theoretical
guarantees, which claim that the difference between the loss averaged over all
the samples and that averaged over the selected subset does not depend on the
number of samples in the selected subset, but only on the radius δ. Following
this result, Sener and Savarese used approximation algorithms to solve a facility
location problem using a Euclidean distance measure in the feature space. How-
ever, as was noted by [36], reliance on Euclidean distance in a high-dimensional
feature space is ineffective. Our proposed contextual diversity measure relies on
KL divergence, which is known to be an effective surrogate for distance in the
probability space [6]. Due to distance like properties of our measure, the pro-
posed approach, named contextual diversity based active learning using core-sets
(CDAL-CS), respects the theoretical guarantees of core-set, yet does not suffer
from curse of dimensionality.

Learning Loss. Yoo and Kweon [42] have proposed a novel measure of uncer-
tainty by learning to predict the loss value of a data sample. They sampled data
based on the ranking obtained on the basis of predicted loss value. However, it
is not clear if the sample yielding the largest loss, is also the one that leads to
most performance gain. The samples with the largest loss, could potentially be
outliers or label noise, and including them in the training set may be mislead-
ing to the network. The other disadvantage of the technique is that, there is no
obvious way to choose the diverse samples based upon the predicted loss values.

Variational Adversarial Active Learning (VAAL). Sinha et al. [36] have
proposed to use a VAE to map both the labeled and unlabeled data into a latent
space, followed by a discriminator to distinguish between the two based upon
their latent space representation. The sample selection is simply based on the
output probability of the discriminator. Similar to [42], there seem to be no obvi-
ous way to choose diverse samples in their technique based on the discriminator
score only. Further, there is no guarantee that the representation learnt by their
VAE is closer to the one used by the actual model for the task. Therefore, the
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Fig. 2. The architecture for the proposed frame selection technique. Two of the
strengths of our technique are its unsupervised nature and its generalizability to va-
riety of tasks. The frame selection can be performed in either way by CDAL-CS or
CDAL-RL modules. Based on the visual task, a pre-trained model can be readily inte-
grated. The top scoring frames are selected to be annotated and are used to fine tune
the model to be evaluated over the main task.

most informative frame for the discriminator need not be the same for the target
model as well. Nonetheless, in the empirical analysis, VAAL demonstrates state
of the art performance among the other active learning techniques for image
classification and semantic segmentation tasks.

Reinforcement Learning for Active Learning. Recently, there has been an
increasing interest in application of RL based methods to active learning. RALF
[7] takes a meta-learning approach where the policy determines a weighted com-
bination of pre-defined uncertainty and diversity measure, which is then used
for sample selection. Both [39] and [24] train the RL agents using ground truth
based rewards for one-shot learning and person re-identification separately. This
requires their method to have a large, annotated training set to learn the policy,
and therefore is hard to generalize to more annotation heavy tasks like object
detection and semantic segmentation. In [16], an RL framework minimizes time
taken for object-level annotation by choosing between bounding box verification
and drawing tasks. Fang et al. [9] design a special state space representation
to capture uncertainty and diversity for active learning for text data. This de-
sign makes it harder to generalize their model to other tasks. Contrary to most
of these approaches, our RL based formulation, CDAL-RL, takes a task spe-
cific state representation and uses the contextual diversity based reward that
combines uncertainty and diversity in an unsupervised manner.

3 Active Frame Selection

One of the popular approaches in semi-supervised and self-supervised learn-
ing is to use pseudo-labels, which are labels as predicted by the current model
[4,19,37]. However, directly using pseudo-labels in training, without appropri-
ately accounting for the uncertainty in the predictions could lead to overfitting
and confirmation bias [1]. Nonetheless, the class probability vector predicted by
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a model contains useful information about the model’s discriminative ability. In
this section, we present the proposed contextual diversity (CD), an information-
theoretic measure that forms the basis for Contextual Diversity based Active
Learning (CDAL). At the heart of CD is our quantification of the model’s pre-
dictive uncertainty defined as a mixture of softmax posterior probabilities of
pseudo-labeled samples. This mixture distribution effectively captures the spa-
tial and semantic context over a set of images. We then derive the CD measure,
which allows us to select diverse and uncertain samples from the unlabeled pool
for annotation and finally suggest two strategies for active frame selection. First
(CDAL-CS), inspired by the core-set [32] approach and the second (CDAL-RL)
using a reinforcement learning framework. An overview of our approach to Active
Learning is illustrated in Fig. 2.

3.1 Contextual Diversity

Deep CNNs have large receptive fields to capture sufficient spatial context for
learning discriminative semantic features, however, it also leads to feature inter-
ference making the output predictions more ambiguous [31]. This spatial pooling
of features adds to confusion between classes, especially when a model is not
fully trained and has noisy feature representations. We quantify this ambiguity
by defining the class-specific confusion.

Let C = {1, . . . , nC} be the set of classes to be predicted by a Deep CNN
based model. Given a region r within an input image I, let P r(ŷ | I;θ) be
the softmax probability vector as predicted by the model θ. For convenience of
notation, we will use P r instead of P r(ŷ|I;θ) as the subscript r implies the
conditioning on its constituent image I and the model θ is fixed in one step of
sample selection. These regions could be pixels, bounding boxes or the entire
image itself depending on the task at hand. The pseudo-label for the region
r ⊆ I is defined as ŷr = arg maxj∈C P r[j], where the notation P r[j] denotes

the jth element of the vector. We emphasize that this abstraction of regions is
important as it permits us to define overlapping regions within an image and
yet have different predictions, thereby catering to tasks like object detection.
Let I = ∪c∈CIc be the total pool of unlabeled images, where Ic is the set of
images, each of which have at least one region classified by the model into class
c. Further, let Rc

I be the set of regions within image I ∈ Ic that are assigned a
pseudo-label c. The collection of all the regions that the model believes belong
to class c is contained within the set Rc

I = ∪I∈IcRc
I . We assume that for a

sufficiently large unlabeled pool I, there will be a non-empty set Rc
I. For a given

model θ over the unlabeled pool I, we now define the class-specific confusion for
class c by the following mixture distribution P c

I

P c
I =

1

|Ic|
∑
I∈Ic

[∑
r∈Rc

I
wrP r(ŷ | I;θ)∑
r∈Rc

I
wr

]
(1)

with wr ≥ 0 as the mixing weights. While the weights could take any non-
negative values, we are interested in capturing the predictive uncertainty of the
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model. Therefore, we choose the weights to be the Shannon entropy of wr =
H(P r) = −

∑
j∈C P r[j] log2P r[j] + ε, where ε > 0 is a small constant and

avoid any numerical instabilities. If the model were perfect, P c
I would be a

one-hot encoded vector1, but for an insufficiently trained model P c
I will have

a higher entropy indicating the confusion between class c and all other classes
(c′ ∈ C, c′ 6= c). We use P c

I to denote the mixture computed from a single image
I ∈ Ic.

As discussed in Sec. 1, in CNN based classifiers, this uncertainty stems from
spatial and semantic context in the images. For instance, in the semantic seg-
mentation task shown in Fig. 1, the model may predict many pixels as of class
‘pedestrian’ (c = pedestrian) with the highest probability, yet it would have a
sufficiently high probability of another class like ‘fence’ or ‘bicycle’. In such a
case, P c

I[j] will have high values at j = {fence, bicycle}, reflecting the chance
of confusion between these classes across the unlabeled pool I. As the predic-
tive ability of the model increases, we expect the probability mass to get more
concentrated at j= c and therefore reduce the overall entropy of P c

I. It is easy
to see that the total Shannon’s entropy hI =

∑
c∈C H(P c

I) reduces with the
cross-entropy loss.

Annotating an image and using it to train a model would help resolve the
confusion constituent in that image. Based on this intuition, we argue that the
annotation effort for a new image is justified only if its inclusion increases the
informativeness of the selected subset, i.e., when an image captures a different
kind of confusion than the rest of the subset. Therefore, for a given pair of
images I1 and I2, we quantify the disparity between their constituent class-
specific confusion by the pairwise contextual diversity defined using a symmetric
KL-divergence as

d[I1,I2] =
∑
c∈C

1
c(I1, I2)

(
0.5 ∗KL(P c

I1
‖ P c

I2
) + 0.5 ∗KL(P c

I2
‖ P c

I1
)
)
. (2)

In Eq. (2), KL(· ‖ ·) denotes the KL-divergence between the two mixture distri-
butions. We use the indicator variable denoted by 1c(·) that takes a value of one
only if both I1, I2 ∈ Ic, otherwise zero. This variable ensures that the disparity
in class-specific confusion is considered only when both images have at least one
region pseudo-labeled as class c, i.e., when both images have a somewhat reliable
measure of confusion w.r.t. class c. This confusion disparity accumulated over all
classes is the pairwise contextual diversity measure between two images. Given
that the KL-divergence captures a distance between two distributions, d[I1,I2] can
be used as a distance measure between two images in the probability space. Thus,
using pairwise distances, we can take a core-set [32] style approach for sample
selection. Additionally, we can readily aggregate d[Im,In] over the selected batch
of images, Ib ⊆ I to compute the aggregate contextual diversity

dIb =
∑

Im,In∈Ib

d[Im,In]. (3)

1 We ignore the unlikely event where the predictions are perfectly consistent over the
large unlabeled pool I, yet different from the true label.
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We use this term as the primary reward component in our RL framework. In
addition to the intuitive motivation of using the contextual diversity, we show
extensive comparisons in Sec. 4 and ablative analysis in Sec. 5.

3.2 Frame Selection Strategy

CDAL-CS. Our first frame selection strategy is contextual diversity based ac-
tive learning using core-set (CDAL-CS), which is inspired by the theoretically
grounded core-set approach [32]. To use core-set with Contextual Diversity, we
simply replace the Euclidean distance with the pairwise contextual diversity (Eq.
2) and use it in the K-Center-Greedy algorithm [32, Algo. 1], which is reproduced
in the supplementary material for completeness.

CDAL-RL. Reinforcement Learning has been used for frame selection [39,45]
for tasks like active one-shot learning and video summarization. We use contex-
tual diversity as part of the reward function to learn a Bi-LSTM-based policy
for frame selection. Our reward function comprises of the following three com-
ponents.

Contextual Diversity (Rcd). This is simply the aggregated contextual diver-
sity, as given in Eq. (3), over the selected subset of images Ib.
Visual Representation (Rvr). We use this reward to incorporate the visual
representativeness over the whole unlabeled set using the image’s feature repre-
sentation. Let xi and xj be the feature representations of an image Ii ∈ I and
of Ij ∈ Ib respectively, then

Rvr = exp

− 1

|I|

|I |∑
i=1

min
j∈Ib

(‖xi − xj‖2)

 (4)

This reward prefers to pick images that are spread out across the feature space,
akin to k-medoid approaches.

Semantic Representation (Rsr). We introduce this component to ensure that
the selected subset of images are reasonably balanced across all the classes and
define it as

Rsr =
∑
c∈C

log
(
|Rc

Ib
|/λ
)

(5)

Here, λ is a hyper-parameter that is set to a value such that a selection that has
substantially small representation of a class (|Rc

Ib
| � λ) gets penalized. We use

this reward component only for the semantic segmentation application where
certain classes (e.g., ‘pole’) may occupy a relatively small number of regions
(pixels).

We define the total reward as R = αRcd+(1−α)(Rvr+Rsr) and use it to train
our LSTM based policy network. To emphasize the CD component in the reward
function we set α to 0.75 across all tasks and experiments. The precise value of
α does not influence results significantly as shown by the ablation experiments
reported in the supplementary.
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3.3 Network Architecture and Training

The contextual diversity measure is agnostic to the underlying task network and
is computed using the predicted softmax probability. Therefore in Sec. 4, our
task network choice is driven by reporting a fair comparison with the state-of-
the-art approaches on the respective applications. In the core-set approach [32],
images are represented using the feature embeddings and pairwise distances are
Euclidean. Contrarily, our representation is the mixture distribution computed
in Eqn. (1) over a single image and the corresponding distances are computed
using pairwise contextual diversity in Eqn. (2).

For CDAL-RL, we follow a policy gradient based approach using the REIN-
FORCE algorithm [38] and learn a Bi-LSTM policy network, where the reward
used is as described in the previous section. The input to the policy network
at a given time step is a representation of each image extracted using the task
network. This representation is the vectorized form of an nC×nC matrix, where
the columns of the matrix are set to P c

I for all c ∈ C such that I ∈ Ic, and zero
vectors otherwise. The binary action (select or not) for each frame is modeled as
a Bernoulli random variable using a sigmoid activation at the output of the Bi-
LSTM policy network. The LSTM cell size is fixed to 256 across all experiments
with the exception of image classification, where we also show results with a cell
size of 1024 to accommodate for a larger set of 100 classes. For REINFORCE, we
use learning rate = 10−5, weight decay = 10−5, max epoch = 60 and #episodes
= 5. We achieve the best performance when we train the policy network from
scratch in each iteration of AL, however, in Sec. 5 we also analyze and compare
other alternatives. It is worth noting that in the AL setting, the redundancy
within a large unlabeled pool may lead to multiple subsets that are equally good
selections. CDAL-RL is no exception and multiple subsets may achieve the same
reward, thus rendering the specific input image sequence to our Bi-LSTM policy
network, irrelevant.

4 Results and Comparison

We now present empirical evaluation of our approach on three visual recognition
tasks of semantic segmentation, object detection and image classification2.

Datasets. For semantic segmentation, we use Cityscapes [5] and BDD100K [44].
Both these datasets have 19 object categories, with pixel-level annotation for
10K and 3475 frames for BDD100K and Cityscapes respectively. We report our
comparisons using the mIoU metric. For direct comparisons with [42] over the
object detection task, we combine the training and validation sets from PASCAL
VOC 2007 and 2012 [8] to obtain 16,551 unlabeled pool and evaluate the model
performance on the test set of PASCAL VOC 2007 using the mAP metric. We
evaluate the image classification task using classification accuracy as the metric
over the CIFAR-10 and CIFAR-100 [17] datasets, each of which have 60K images
evenly divided over 10 and 100 categories respectively.

2 Additional results and ablative analysis is presented in the supplementary.
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Compared Approaches. The two recent works [42,36] showed state of the
art AL performance on various visual recognition tasks and presented a com-
prehensive empirical comparison with prior work. We follow their experimental
protocol for a fair comparison and present our results over all the three tasks.
For the semantic segmentation task, we use the reported results for VAAL and
its other competitors from [36], which are core-set [32], Query-by-Committee
(QBC) [18], MC-Dropout [12] and Suggestive Annotation (SA) [41]. We refer
to our contextual diversity based approaches as CDAL-CS for its core-set vari-
ant and CDAL-RL for the RL variant, which uses the combined reward R as
defined in Sec.3.2. The object detection experiments are compared with learn
loss [42] and its competitors – core-set, entropy based and random sampling –
using results reported in [42]. For the image classification task, we again compare
with VAAL, core-set, DBAL [11] and MC-Dropout. All the CDAL-RL results
are reported after averaging over three independent runs. In Sec. 5 we demon-
strate the strengths of CD through various ablative analysis on the Cityscapes
dataset. Finally, in the supplementary material, we show further comparisons
with region based approaches [15,27], following their experimental protocol on
the Cityscapes dataset.
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Fig. 3. Quantitative comparison for the Semantic Segmentation problem over
Cityscapes (left) and BDD100K (right). Note: DRN results 62.95% and 44.95% mIoU
on 100% data for Cityscapes and BDD respectively (best viewed in color).

4.1 Semantic Segmentation

Despite the tediousness associated with semantic segmentation, there are limited
number of works for frame-level selection using AL. A recent approach applied
to this task is VAAL [36], which achieves state-of-the-art performance while pre-
senting a comprehensive comparison with previously proposed approaches. We
follow the experimental protocol of VAAL [36], and also use the same backbone
model of dilated residual network (DRN) [43] for a fair comparison. As in their
case, the annotation budget is set to 150 and 400 for Cityscapes and BDD100K
respectively. The evaluation metric is mIoU. For each dataset, we evaluate the
performance of an AL technique at each step, as the number of samples to be
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selected are increased from 10% to 40% of the unlabeled pool size, in steps of
5%. Fig. 3 shows the comparison over the two datasets.

We observe that for both challenging benchmarks, the two variants of CDAL
comprehensively outperform all other approaches by a significant margin. Our
CDAL-RL approach can acheive current SOTA 57.2 and 42.8 mIoU by reduc-
ing the labeling effort by 300 and 800(10%) frames on cityscapes and BDD100k
respectively. A network’s performance on this task is the most affected by the
spatial context, due to the fine-grained spatial labeling necessary for improving
the mIoU metric. We conclude that the CD measure effectively captures the
spatial and semantic context and simultaneously helps select the most informa-
tive samples. There exist region-level AL approaches to semantic segmentation,
where only certain regions are annotated in each frame [15,27]. Our empirical
analysis in the supplementary material shows that our CDAL based frame se-
lection strategy is complementary to the region-based approaches.

4.2 Object Detection
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Learn Loss Coreset

Entropy Random

Pascal-VOC 

m
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Fig. 4. Quantitative comparison for
Object Detection over PASCAL-VOC
dataset. We follow the experimental
protocol of the learning loss method
[42]. Note: SSD results 77.43% mAP on
100% data of PASCAL-VOC(07+12).

For the object detection task, we compare
with the learning loss approach [42] and
the competing methods therein. For a fair
comparison, we use the same base detec-
tor network as SSD [23] with a VGG-16
[35] backbone and use the same hyperpa-
rameter settings as described in [42].

Fig. 4 shows the comparisons, where
we see in most cases, both variants of
CDAL perform better than the other ap-
proaches. During the first few cycles of
active learning, i.e., until about 5K train-
ing samples are selected for annotation,
CDAL performs nearly as well as core-
set, which outperforms all the other ap-
proaches. In the later half of the active
learning cycles with 5K to 10K selected
samples, CDAL variants outperform all the other approaches including core-
set [32]. CDAL-RL achieved 73.3 mAP using 8k data where learning loss [42]
achieved it by 10k hence reducing 2k labeled samples.

4.3 Image Classification

One of the criticisms often made about the active learning techniques is their rel-
ative difficulty in scaling with the number of classes in a given task. For example
it has been reported in [36], that core-set [32] does not scale well for large num-
ber of classes. To demonstrate the strength of contextual diversity cues when
the number of classes is large, we present the evaluations on the image clas-
sification task using CIFAR-10 and CIFAR-100. Fig. 5 shows the comparison.
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Fig. 5. Quantitative comparison for Image Classification over CIFAR-10 (left) and
CIFAR-100 (right). CDAL-RL(cell=n) indicates that the LSTM policy network has a
cell size n. Note: VGG16 results 90.2% and 63.14% accuracy on 100% data for CIFAR10
and CIFAR100 respectively (best viewed in color).

It is clear that CDAL convincingly outperforms the state of the art technique,
VAAL [36] on both the datasets. We can see that CDAL-RL can achieve ∼81%
accuracy on CIFAR10 by using 5000 (10%) less samples than VAAL [36] and
similarly 2500 less samples are required in CIFAR100 to beat SOTA of 47.95%
accuracy. These results indicate that CDAL can gracefully scale with the number
of classes, which is not surprising as CD is a measure computed by accumulat-
ing KL-divergence, which scales well with high-dimensions unlike the Euclidean
distance. It is worth noting that an increase in the LSTM cell size to 1024, helps
improve the performance on CIFAR-100, without any significant effect on the
CIFAR-10 performance. A higher dimension of the LSTM cell has higher capac-
ity which better accommodates a larger number of classes. For completeness, we
include more ablations of CDAL for image classification in the supplementary.

We also point out that in image classification, the entire image qualifies as
a region (as defined in Sec. 3.1), and the resulting mixture P c

I comprising of
a single component still captures confusion arising from the spatial context.
Therefore, when a batch Ib is selected using the contextual diversity measure,
the selection is diverse in terms of classes and their confusion.

5 Analysis and Ablation Experiments

In the previous section, we showed that contextual diversity consistently out-
performs state of the art active learning approaches over three different visual
recognition tasks. We will now show a series of ablation experiments to demon-
strate the value of contextual diversity in an active learning problem. Since active
learning is expected to be the most useful for the semantic segmentation task
with highest amount of annotation time per image, we have chosen the task for
our ablation experiments. We have designed all our ablation experiments on the
Cityscapes dataset using the DRN model in the same settings as in Sec. 4.1.
Reward Component Ablation. We first investigate the performance of var-
ious components of the reward used in our approach. Fig. 6(left) shows the
performance of CDAL in three different reward settings: only contextual diver-
sity (R = Rcd), contextual diversity and visual representation (CD+VR, i.e.,
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Fig. 6. (left) Ablation with individual reward components on Cityscapes. (right)
Cityscapes results when the CDAL-RL policy was learned only once in the first iteration
with 10% randomly selected frames (best viewed in color).

R = αRcd + (1−α)Rvr) and all the three components including semantic repre-
sentations (CD+VR+SR, i.e., R = αRcd + (1− α)(Rvr +Rsr)). It is clear that
contextual diversity alone outperforms the state of the art, VAAL [36], and im-
proves further when the other two components are added to the reward function.
As mentioned in Sec. 3.2, the value of α = 0.75 was not picked carefully, but
only to emphasize the CD component, and remains fixed in all experiments.

Policy Training Analysis. Our next experiment analyzes the effect of learn-
ing the Bi-LSTM-based policy only once, in the first AL iteration. We train
the policy network using the randomly selected 10% and use it in each of the
AL iterations for frame selection without further fine-tuning. The results are
shown in Fig. 6(right), where we can see that this policy denoted by CDAL-
RL(policy@10%), still outperforms VAAL and CDAL-CS in all iterations of
AL. Here CDAL-RL is the policy learned under the setting in Sec. 4.1, where
the policy network is trained from scratch in each AL iteration. An interesting
observation is the suitability of the contextual diversity measure as a reward,
and that it led to learning a meaningful policy even with randomly selected data.

Visualization of CDAL-based Selection. In Fig. 7(a), we show t-SNE plots
[26] to visually compare the distribution of the points selected by the CDAL
variants and that of core-set. We use the Cityscapes training samples projected
into the feature space of the DRN model. The red points in the plots show the
unlabeled samples. The left plot shows green points as samples selected by core-
set and the right plot shows green and blue points are selected by CDAL-RL and
CDAL-CS respectively. It is clear that both variants of the contextual diversity
based selection have better spread across the feature space when compared with
the core-set approach, which is possibly due to the distance concentration effect
as pointed by [36]. This confirms the limitation of the Euclidean distance in a
high-dimensional feature space corresponding to the DRN model. On the other
hand, CDAL selects points that are more uniformly distributed across the entire
feature space, reflecting better representativeness capability.

Class-wise Contextual Diversity Reward. The CD is computed by accu-
mulating the symmetric KL-divergence (cf. Eq. (2)) over all classes. Therefore, it
is possible to use the Rcd reward only for a few, and not all, the classes. Fig. 7(b)
shows the segmentation performance as we incorporate the contextual diversity
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Fig. 7. (a) t-sne plots comparison with [32] on Cityscapes: CoreSet (left), and CDAL
(right) (b) Performance analysis when CD reward is computed for an increasing number
of classes.(best viewed in color)

(CD) from zero to three classes. The initial model is trained using only the visual
representation reward (Rvr) and is shown as the leftmost group of color-coded
bars. As we include the Rcd term in the reward with the CD only being computed
for the Person class, we see a substantial rise in the IoU score corresponding to
Person, as well as a marginal overall improvement. As expected, when we include
both, the Person and Vegetation classes in the CD reward, we see substantial
improvements in both the classes. The analysis indicates that the contextual
diversity reward indeed helps mitigating class-specific confusion.
Limitations of CDAL. While we show competitive performance of the policy
without retraining (Fig.6(right)), for best performance retraining at each AL it-
eration is preferred. For large datasets, this requires larger unrolling of the LSTM
network incurring more computational and memory costs. Another limitation of
CDAL in general is in the case of image classification, where the entire image is
treated as a single region and thus is unable to fully leverage spatial context.

6 Conclusion

We have introduced a novel contextual diversity based measure for active frame
selection. Through experiments for three visual recognition tasks, we showed
that contextual diversity when used as a distance measure with core-set, or as a
reward function for RL, is a befitting choice. It is designed using an information-
theoretic distance measure, computed over the mixture of softmax distributions
of pseudo-labeled data points, which allows it to capture the model’s predic-
tive uncertainty as well as class-specific confusion. We have only elaborated the
promising empirical results in this paper, and plan to investigate deeper theo-
retical interpretations of contextual diversity that may exist.
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