
General 3D Room Layout from a Single View by
Render-and-Compare – Supplementary Material

Sinisa Stekovic1, Shreyas Hampali1, Mahdi Rad1, Sayan Deb Sarkar1, Friedrich
Fraundorfer1, and Vincent Lepetit1,2

1 Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
2 Université Paris-Est, École des Ponts ParisTech, Paris, France

{sinisa.stekovic, hampali, rad, sayan.sarkar, fraundorfer,
lepetit}@icg.tugraz.at

Project page: https://www.tugraz.at/index.php?id=40222

1 Results on ScanNet-Layout

Figures 1 to 10 show additional qualitative results on our ScanNet-Layout benchmark.
We also submitted a video that provides a better visualization of our 3D reconstructions.

2 Computation Times

Table 1 details the computation times for the different steps of our method. Our current
implementation is not optimized and runs on a single CPU, except for the network
predictions which run on a NVIDIA GeForce 1080 Ti. As the computation times for one
image depend on the number of estimated layout components, we provide the average
times over the images of our ScanNet-Layout benchmark.

Depending on the networks that are utilized during inference for different scenar-
ios, the run-time slightly varies, but the time for network predictions never exceeds
0.3 s. Most notably, the bottleneck of our computations is during the plane fitting step,
which can be significantly optimized. When using PlaneRCNN to estimate the plane
parameters, this step is skipped entirely.

Time (s)

Networks Predictions < 0.3

Fitting Layout Planes with RANSAC 8.2 (*)

Finding Candidate Corners and Edges 0.08

Optimal Polygon Search 1.26

Iterative Refinement 3.12

Table 1. Run-time performance. (*) This step can be significantly improved in our implementa-
tion. When using PlaneRCNN to estimate the plane parameters, it is skipped entirely.

https://www.tugraz.at/index.php?id=40222


2 S. Stekovic et al.

3 Implementation details

3.1 Handling Noisy Observations

To handle noisy observations in plane detection, semantic segmentation, and depth pre-
dictions, we rely on the simple heuristics given below:

– We consider a planar region predicted by PlaneRCNN to be part of the layout only if
more than 0.4 pixels locations of the plane belong to one of the layout categories—
wall, floor, ceiling.

– After calculating the planes parameters using RANSAC, we discard planes that
are inconsistent with the depth map for the input image across the corresponding
planar region. If the number of outliers during the RANSAC procedure is larger
than 30% of the planar region, we discard the corresponding plane. As outliers, we
consider the points with distance larger than 0.01m to the fitted plane. When plane
parameters are predicted using PlaneRCNN, we skip this step.

– PlaneRCNN might falsely predict multiple planar regions in place of one. In order
to handle such mistakes, we merge layout planes that are parallel, by measuring the
angles between the normals vectors. At the same time, the planes are only merged if
the planes have similar camera offsets, measured by the absolute difference. In case
of RGBD image as input, we set these hyper-parameters to 15

◦
and 0.3 respectively.

When using RGB image as input, to compensate for the noise in plane estimation,
we set these parameters to 30

◦
and 0.5. However, it is also possible that a given

scene consists of multiple layout components with same plane parameters. Hence,
we merge the planes only if they are neighbouring layout planes. In other words,
there are no other planar regions from ML in-between them. For the merged planes,
the new parameters are simply calculated as a mean of the two planes.

– Layout refinement is performed only if the discrepancy between the rendered layout
depth and the depth map for the input image is larger than a threshold value for at
least 1000 image locations. We set this threshold value to 0.1m when utilizing
measured depth, and 0.5m for predicted depths.

3.2 Networks for Plane Detection, Semantic Segmentation, and Depth
Prediction

For all networks, we consider 640 × 480 input images. PlaneRCNN [5] is the original
network that was pre-trained on the ScanNet dataset [2] by the authors. We trained
DeepLabV3+ [1] on the SUNRGB-D dataset [8], a collection of datasets, made of an
original dataset and additional datasets previously published [7,4,9]. We took care not
to include any of the test images from the NYUv2 303 dataset during training. We
retrained SharpNet [6] on the NYUv2 dataset [10,7] without the test images from the
NYUv2 303 dataset.



Title Suppressed Due to Excessive Length 3

Hence, by merging the outputs of the networks we obtain the planes parameters for
the layout components of the scene. PlaneRCNN outputs instance plane segmentation
for all of the visible planes in the scene. Next, we infer the planar regions in the image
belonging to different layout components as intersections between the predicted planar
regions and the predicted semantic regions corresponding to the layout categories—
wall, floor, ceiling. Using depth information, from sensor or predicted, we then perform
plane fitting for each of the planar layout regions to obtain the final planes parameters.
Alternatively, when depth information is not available, we rely on PlaneRCNN that
directly outputs the planes parameters.



4 S. Stekovic et al.

Fig. 1. Examples from our ScanNet-Layout benchmark (Part 1). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



Title Suppressed Due to Excessive Length 5

Fig. 2. Examples from our ScanNet-Layout benchmark (Part 2). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



6 S. Stekovic et al.

Fig. 3. Examples from our ScanNet-Layout benchmark (Part 3). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



Title Suppressed Due to Excessive Length 7

Fig. 4. Examples from our ScanNet-Layout benchmark (Part 4). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



8 S. Stekovic et al.

Fig. 5. Examples from our ScanNet-Layout benchmark (Part 5). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



Title Suppressed Due to Excessive Length 9

Fig. 6. Examples from our ScanNet-Layout benchmark (Part 6). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



10 S. Stekovic et al.

Fig. 7. Examples from our ScanNet-Layout benchmark (Part 7). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



Title Suppressed Due to Excessive Length 11

Fig. 8. Examples from our ScanNet-Layout benchmark (Part 8). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



12 S. Stekovic et al.

Fig. 9. Examples from our ScanNet-Layout benchmark (Part 9). For each example, first row: 2D
annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results
with RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with
the mean color of their visible parts.



Title Suppressed Due to Excessive Length 13

Fig. 10. Examples from our ScanNet-Layout benchmark (Part 10). For each example, first row:
2D annotations; second row: our results with RGBD input; third row: our results with RGB input;
fourth row: results from Hirzer’s cuboid method [3]; fifth row: 3D visualization of our results with
RGBD input. For the 3D visualization, we inpaint the occluded parts the 3D polygons with the
mean color of their visible parts. For these cases, the floor was entirely occluded and we assume
the camera was 1.5m above the floor for the visualization.



14 S. Stekovic et al.

References

1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-Decoder with Atrous
Separable Convolution for Semantic Image Segmentation. In: European Conference on Com-
puter Vision (2018)

2. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Niessner, M.: Scannet: Richly-
Annotated 3D Reconstructions of Indoor Scenes. In: Conference on Computer Vision and
Pattern Recognition (2017)

3. Hirzer, M., Roth, P.M., Lepetit, V.: Smart Hypothesis Generation for Efficient and Robust
Room Layout Estimation. IEEE Winter Conference on Applications of Computer Vision
(2020)

4. Janoch, A., Karayev, S., Jia, Y., Barron, J.T., Fritz, M., Saenko, K., Darrell, T.: A Category-
Level 3D Object Dataset: Putting the Kinect to Work. In: Consumer Depth Cameras for
Computer Vision (2013)

5. Liu, C., Kim, K., Gu, J., Furukawa, Y., Kautz, J.: Planercnn: 3D Plane Detection and Recon-
struction from a Single Image. In: Conference on Computer Vision and Pattern Recognition
(2019)

6. Ramamonjisoa, M., Lepetit, V.: SharpNet: Fast and Accurate Recovery of Occluding Con-
tours in Monocular Depth Estimation. In: International Conference on Computer Vision
Workshops (2019)

7. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor Segmentation and Support Inference
from RGBD Images. In: European Conference on Computer Vision (2012)

8. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: A RGB-D Scene Understanding Bench-
mark Suite. In: Conference on Computer Vision and Pattern Recognition (2015)

9. Xiao, J., Owens, A., Torralba, A.: SUN3D: A Database of Big Spaces Reconstructed Using
SfM and Object Labels. In: ICCV (2013)

10. Zhang, J., Kan, C., Schwing, A.G., Urtasun, R.: Estimating the 3D Layout of Indoor Scenes
and Its Clutter from Depth Sensors. In: International Conference on Computer Vision (2013)


	General 3D Room Layout from a Single View by Render-and-Compare – Supplementary Material

