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Abstract. A key capability of an intelligent system is deciding when
events from past experience must be remembered and when they can
be forgotten. Towards this goal, we develop a predictive model of hu-
man visual event memory and how those memories decay over time.
We introduce Memento10k, a new, dynamic video memorability dataset
containing human annotations at different viewing delays. Based on our
findings we propose a new mathematical formulation of memorability
decay, resulting in a model that is able to produce the first quantitative
estimation of how a video decays in memory over time. In contrast with
previous work, our model can predict the probability that a video will
be remembered at an arbitrary delay. Importantly, our approach com-
bines visual and semantic information (in the form of textual captions)
to fully represent the meaning of events. Our experiments on two video
memorability benchmarks, including Memento10k, show that our model
significantly improves upon the best prior approach (by 12% on average).

Keywords: Memorability estimation, memorability decay, multimodal
video understanding.

1 Introduction

Deciding which moments from past experience to remember and which ones to
discard is a key capability of an intelligent system. The human brain is optimized
to remember what it deems to be important and forget what is uninteresting
or redundant. Thus, human memorability is a useful measure of what content
is interesting and likely to be retained by a human viewer. If a system can
predict which information will be highly memorable, it can evaluate the utility
of incoming data and compress or discard what is deemed to be irrelevant. It can
also filter to select the content that will be most memorable to humans, which
has potential applications in design and education.

However, memorability of dynamic events is challenging to predict because
it depends on many factors. First, different visual representations are forgotten
at different rates: while some events persist in memory even over long periods,
others are forgotten within minutes [3,22,25,34]. This means that the probability
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Fig. 1. How do visual and semantic features impact memory decay over
time? We introduce a multimodal model, SemanticMemNet, that leverages visual and
textual information to predict the memorability decay curve of a video clip. We show
predictions on videos from Memento10k, our new video memorability dataset. Seman-
ticMemNet is the first model to predict a decay curve that represents how quickly a
video falls off in memory over time.

that someone will remember a certain event varies dramatically as a function
of time, introducing challenges in terms of how memorability is represented and
measured. Second, memorability depends on both visual and semantic factors.
In human cognition, language and vision often act in concert for remembering
an event. Events described with richer and more distinctive concepts are re-
membered for longer than events attached to shallower descriptions, and certain
semantic categories of objects or places are more memorable than others [25,33].

In this paper, we introduce a new dataset and a model for video memorabil-
ity prediction that address these challenges1. Memento10k, the most dynamic
video memorability dataset to date, contains both human annotations at differ-
ent viewing delays and human-written captions, making it ideal for studying the
effects of delay and semantics on memorability. Based on this data, we propose
a mathematical formulation of memorability decay that allows us to estimate
the probability that an event will be remembered at any point over the first
ten minutes after viewing. We introduce SemanticMemNet, a multimodal model
that relies on visual and semantic features to predict the decay in memory of
a short video clip (Fig. 1). SemanticMemNet is the first model that predicts
the entire memorability decay curve, which allows us to estimate the probability
that a person will recall a given video after a certain delay. We also enhance our
model’s features to include information about video semantics by jointly pre-
dicting verbal captions. SemanticMemNet achieves state-of-the-art performance
on video memorability prediction on two different video memorability baselines.

1 Dataset, code, and models can be found at our website: http://memento.csail.

mit.edu/

http://memento.csail.mit.edu/
http://memento.csail.mit.edu/
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To summarize, our key contributions are:

– We present a new multi-temporal, multimodal memory dataset of
10,000 video clips, Memento10k. With over 900,000 human memory annota-
tions at different delay intervals and 50,000 captions describing the events,
it is the largest repository of dynamic visual memory data.

– We propose a new mathematical formulation for memorability decay
which estimates the decay curve of human memory for individual videos.

– We introduce SemanticMemNet, a model capitalizing on learning visual
and semantic features to predict both the memorability strength and the
memory decay curve of a video clip.

2 Related Work

Memorability in Cognitive Science. Four landmark results in cognitive sci-
ence inspired our current approach. First, memorability is an intrinsic property
of an image: people are remarkably consistent in which images they remember
and forget [3,11,22,25,26,27,30,36]. Second, semantic features, such as a detailed
conceptual representation or a verbal description, boost visual memory and aid
in predicting memorability [33,35,44,45]. Third, most stimuli decay in memory,
with memory performances falling off predictably over time [22,25,34,43]. Fi-
nally, the classical old-new recognition paradigm (i.e. people press a key when
they recognize a repeated stimulus in a sequence) allows researchers to collect
objective measurements of human memory at a large scale [9,26] and variable
time scales, which we draw on to collect our dataset.
Memorability in Computer Vision. The intrinsic nature of visual memora-
bility means that visual stimuli themselves contain visual and semantic features
that can be captured by machine vision. For instance, earlier works [24,25,26]
pointed to content of images that were predictive of their memorability (i.e.
people, animals and manipulable objects are memorable, but landscapes are
often forgettable). Later work replicated the initial findings and extended the
memorability prediction task to many photo categories [1,5,17,19,31,38,48], faces
[3,29,40], visualizations [7,8] and videos [13,15,39].

The development of large-scale image datasets augmented with memorability
scores [30] allowed convolutional neural networks to predict image memorability
at near human-level consistency [1,5,19,30,48] and even generate realistic mem-
orable and forgettable photos [21,40]. However, similar large-scale work on video
memorability prediction has been limited. In the past year, Cohendet et al. in-
troduced a video-based memorability dataset [14] that is the only other large
benchmark comparable to Memento10k, and made progress towards building a
predictive model of video memorability [13,15]. Other works on video memo-
rability have largely relied on smaller datasets collected using paradigms that
are more challenging to scale. [23] collected memorability and fMRI data on
2400 video clips and aligned audio-visual features with brain data to improve
prediction. [39] used a language-based recall task to collect memorability scores
as a function of response time for 100 videos. They find that a combination of
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semantic, spatio-temporal, saliency, and color features can be used to predict
memorability scores. [15] collected a long-term memorability dataset using clips
from popular movies that people have seen before.

Past work has confirmed the usefulness of semantic features for predicting
memorability [13,41,39]. Work at the intersection of Computer Vision and NLP
has aimed to bridge the gap between images and text by generating natural lan-
guage descriptions of images using encoder-decoder architectures (e.g. [28,42,47])
or by creating aligned embeddings for visual and textual content [18,20,32]. Here,
we experiment with both approaches in order to create a memorability model
that jointly learns to understand visual features and textual labels.

3 Memento10k: A Multimodal Memorability Dataset

Fig. 2. Task flow diagram of The Memento Video Memory Game. Participants see a
continuous stream of videos and press the space bar when they see a repeat.

Memento10k focuses on both the visual and semantic underpinnings of video
memorability. The dataset contains 10,000 video clips augmented with memory
scores, action labels, and textual descriptions (five human-generated captions per
video). Importantly, our memorability annotations occur at presentation delays
ranging from several seconds to ten minutes, which, for the first time, allows us
to model how memorability falls off with time.
The Memento Video Memory Game. In our experiment, crowdworkers from
Amazon’s Mechanical Turk (AMT) watched a continuous stream of three-second
video clips and were asked to press the space bar when they saw a repeated
video. Importantly, we varied the lag for repeated videos (the number of videos
between the first and the second showing of a repeat), which allowed us to study
the evolution of memorability over time. Our policies came from [26,30] and a
summary of paradigm details can be found in the supplement.

Three seconds, the length of a Memento clip, is about the average duration
of human working memory [2,4] and most human visual memory performances
plateau at three seconds of exposure [9,10]. This makes three seconds a good
“atomic” length for a single item held in memory. Previous work has shown that
machine learning models can learn robust features even from short clips [37].
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Fig. 3. Video distribution by level of motion for VideoMem and Me-
mento10k. The motion metric for each video is calculated by averaging optical flow
magnitude over the entire video. A high percentage of videos in the VideoMem dataset
are almost static, while Memento10k is much more balanced. We show select examples
with low and high levels of motion.

Dynamic, In-The-Wild Videos. Memento10k is composed of natural videos
scraped from the Internet 2. To limit our clips to non-artificial scenes with every-
day context, we asked crowdworkers whether each clip was a “home video” and
discarded videos that did not meet this criterion. After removing clips that con-
tained undesirable properties (i.e. watermarks), we were left with 10,000 “clean”
videos, which we break into train (7000), validation (1500), and test (1500) sets.

The Memento10k dataset is a significant step towards understanding memo-
rability of real-world events. First, it is the most dynamic memorability dataset
to date with videos containing a variety of motion patterns including camera mo-
tion and moving objects. The mean magnitude of optical flow in Memento10k
is nearly double that of VideoMem [13] (approximately 15.476 for Memento vs.
7.296 for VideoMem, see Fig. 3), whose clips tend to be fairly static. Second,
Memento10k’s diverse, natural content enables the study of memorability in an
everyday context: Memento10k was compiled from in-the-wild amateur videos
like those found on social media or real-life scenes, while VideoMem is composed
of professional footage. Third, Memento10k’s greater number of annotations (90
versus 38 per video in VideoMem), spread over lags of 30 seconds to 10 minutes,
leads to higher ground-truth human consistency and allows for a robust estima-
tion of a video’s decay rate. Finally, we provide more semantic information such
as action labels as well as 5 detailed captions per video. In this paper, we use
both benchmarks to evaluate the generalization of our model.

Semantic Annotations. We augment our dataset with captions, providing a
source of rich textual data that we can use to relate memorability to semantic
concepts (examples in Fig. 4). We asked crowdworkers to describe the events in
the video clip in full sentences and we manually vetted the captions for quality
and corrected spelling mistakes. Each video has 5 unique captions from different
crowdworkers. More details on caption collection are in the supplement.

2 The Memento videos have partial overlap with the Moments in Time [37] dataset.
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Fig. 4. The Memento10k dataset contains the memorability scores, alpha scores
(decay rates), action labels, and five unique captions for 10,000 videos. Left: The
distribution of memorability scores over the entire dataset. Right: Example clips from
the Memento10k dataset along with their memorability score, decay rate, actions, and
an example caption.

Human Results. The Memento10k dataset contains over 900,000 individual
annotations, making it the biggest memorability dataset to date. We measured
human consistency of these annotations following [13,26]: we randomly split our
participant pool into two groups and calculate the Spearman’s rank correlation
between the memorability rankings produced by each group, where the rankings
are generated by sorting videos by raw hit rate. The average rank correlation (ρ)
over 25 random splits is 0.73 (compared to 0.68 for images in [30], and 0.616 for
videos in [13]). This high consistency between human observers confirms that
videos have strong intrinsic visual, dynamic or semantic features that a model
can learn from to predict memorability of new videos.

Fig. 5 illustrates some qualitative results of our experiment. We see some
similar patterns as with image memorability: memorable videos tend to con-
tain saturated colors, people and faces, manipulable objects, and man-made
spaces, while less memorable videos are dark, cluttered, or inanimate. Addition-
ally, videos with interesting motion patterns can be highly memorable whereas
static videos often have low memorability.

4 Memory Decay: A Theoretical Formulation

Most memories decay over time. In psychology this is known as the forgetting
curve, which estimates how the memory of an item naturally degrades. Because
Memento10k’s memorability annotations occur at lags of anywhere from 9 videos
(less than 30 seconds) to 200 videos (around 9 minutes), we have the opportunity
to calculate the strength of a given video clip’s memory at different lags.

A naive method for calculating a memorability score is to simply take the
video’s target hit rate, or the fraction of times that the repeated video was
correctly detected. However, since we expect a video’s hit rate to go down with
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Fig. 5. Examples of high- and low-memorability video clips. Videos involving
people, faces, hands, man-made spaces, and moving objects are in general more mem-
orable, while clips containing distant/outdoor landscapes or dark, cluttered, or static
content tend to be less memorable.

time, annotations at different lags are not directly comparable. Instead, we derive
an equation for how each video’s hit rate declines as a function of lag.

First, for the lags tested in our study, we observe that hit rate decays linearly
as a function of lag. This is notable because previous work on image memorability
has found that images follow a log-linear decay curve [22,25,43]. Fig. 6 (left)
shows that a linear trend best fits our raw annotations; this holds for videos
across the memorability distribution (see the supplement for more details).

Second, in contrast to prior work, we find that different videos decay in
memory at different rates. Instead of assuming that all stimuli decay at one
universal decay rate, α, as in [30], we assume that each video decays at its own
rate, α(v). Following the procedure laid out in [30], we find a memorability score
and decay rate for each video that approximates our annotations. We define

the memorability of video v as m
(v)
T = α(v)T + c(v), where T is the lag (the

interval in videos between the first and second presentation) and c(v) is the base

memorability of the video. If we know m
(v)
T and α(v), we can then calculate the

video’s memorability at a different lag t with m
(v)
t = m

(v)
T + α(v)(t− T ) (1).

To obtain values for m
(v)
T and α(v), we minimize the L2 norm between the raw

binary annotations from our experiment x
(v)
j , j ∈ {0, ..., n(v)} and the predicted

memorability score at the corresponding lag, m
(v)
t . The error equation is:

E(α(v),m
(v)
T ) =

n(v)∑
j=1

∥∥∥x(v)j −m
(v)
t

∥∥∥2
2

=

n(v)∑
j=1

∥∥∥x(v)j −
[
m

(v)
T + α(v)(t

(v)
j − T )

]∥∥∥2
2
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Fig. 6. Our data suggests a memory model where each video decays linearly
in memory according to an individual decay rate α(v). Left: A linear trend is a better
approximation for our raw data (r = −0.991) than a log-linear trend (r = −0.953).
Right: We confirm our assumption that α varies by video by grouping videos into
deciles based on their normalized memorability score and plotting group average hit
rate as a function of lag. Videos with lower memorability show a faster rate of decay.

We find update equations for m
(v)
T and α(v) by taking the derivative with

respect to each and setting it to zero:

α(v) ←
1

n(v)

∑n(v)

j=1 (t
(v)
j − T )

[
x
(v)
j −m

(v)
T

]
1

n(v)

∑n(v)

j=1

[
t
(v)
j − T

]2 m
(v)
T ← 1

n(v)

n(v)∑
j=1

[
x
(v)
j − α

(v)(t
(v)
j − T )

]
(2)

We initialize α(v) to −5e−4 and m
(v)
T to each video’s mean hit rate. We set

our base lag T to 80 and optimize for 10 iterations to produce α(v) and m
(v)
80 for

each video. We thus define a video’s “memorability score”, for the purposes of
memorability ranking, as its hit rate at a lag of 80; however, we can use equation
1 to calculate its hit rate at an arbitrary lag within the range that we studied.

Next, we validate our hypothesis that videos decay in memory at different
rates. We bucket the Memento10k videos into 10 groups based on their normal-
ized memorability scores and plot the raw data (average hit rate as a function of
lag) for each group. Fig. 6 (right) confirms that different videos decay at different
rates.

5 Modeling Experiments

In this section, we explore different architecture choices for modeling video mem-
orability that take into consideration both visual and semantic features. We also
move away from a conception of memorability as a single value, and instead
predict the decay curve of a video, resulting in the first model that predicts the
raw probability that a video will be remembered at a particular lag.
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Approach
RC - Memento10k

(test set)
RC - VideoMem
(validation set)

Human consistency 0.730 0.616

(Sec. 5.1)

Flow stream only 0.579 0.425

Frames stream only 0.595 0.527

Video stream only 0.596 0.492

Flow + Frames + Video 0.659 0.555

(Sec. 5.2)
Video stream + captions 0.602 0.512

Video stream + triplet loss 0.599 -

SemanticMemNet (ours) 0.663 0.556
Table 1. SemanticMemNet ablation study. We experiment with different ways
of incorporating visual and semantic features into memorability prediction. We mea-
sure performance by calculating the Spearman’s rank correlation (RC) of the pre-
dicted memorability rankings with ground truth rankings on both Memento10k and
VideoMem.

Metrics. A commonly-used metric for evaluating memorability is the Spear-
man rank correlation (RC) between the memorability ranking produced by the
ground-truth memorability scores versus the predicted scores. This is a popular
metric [13,26,30] because memorability rankings are generally robust across ex-
perimental designs and choice of lag; however, it does not measure the accuracy
of predicted memorability values. As such, when evaluating the quality of the
decay curve produced by our model, we will also consider R2 for our predictions.

5.1 Modeling Visual Features

Baseline: Static Frames. We evaluate the extent to which static visual features
contribute to video memorability by training a network to predict a video’s mem-
orability from a single frame. We first train an ImageNet-pretrained DenseNet-
121 to predict image memorability by training on the LaMem dataset [30], then
finetune on the video memorability datasets. At test time, a video’s memorabil-
ity score is calculated by averaging predictions over every 4th frame (about 22
frames total for Memento videos).
3D Architectures: Video and Optical Flow. Training on the RGB videos
allows the network to access information on both motion and visual features,
while training on optical flow lets us isolate the effects of motion. We train I3D
architectures [12] on raw video and optical flow (computed using OpenCV’s TV-
L1 implementation). Our models were pretrained on the ImageNet and Kinetics
datasets. We test the different visual feature architectures on both Memento10k
and VideoMem videos. Our results are in the top section of Table 1. Out of the
three input representations (frames, flow, and video), optical flow achieves the
poorest performance, probably because of the lack of access to explicit visual
features like color and shape. Static frames perform remarkably well on their
own, outperforming a 3D-video representation on VideoMem (as VideoMem is a
fairly static dataset, this result is reasonable). Even with the relatively high level
of motion in the Memento10k dataset (see Fig. 3), the video and frames streams
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perform comparably. For both datasets, combining the three streams maximizes
performance, which is consistent with previous work [12] and reinforces that both
visual appearance and motion are relevant to predicting video memorability. In
fact, our three-stream approach leverages motion information from the optical
flow stream to refine its predictions, as shown in Fig. 7.

Fig. 7. Our model leverages visual and motion information to produce accu-
rate memorability scores. Here, we compare the contributions of the frames stream
(static information only) and the optical flow stream (motion information only) to sepa-
rate the contributions of visual features and temporal dynamics. Left: Flow decreases
the frames prediction. The frames stream detects memorable features like a human
face or saturated colors, but the flow stream detects a static video and predicts lower
memorability. Right: Flow increases the frames prediction. The flow stream picks up
on dynamic patterns like fast bikers or a baby falling and increases the memorability
prediction.

5.2 Modeling Semantic Features

It is well-known that semantics are an important contributor to memorability
[13,15,33,39]. To increase our model’s ability to extract semantic information, we
jointly train it on memorability prediction and a captioning task, which ensures
that the underlying representation learned for both problems contains relevant
event semantics. To test this approach, we enhance the video stream from the
previous section with an additional module that aims to solve one of two tasks:
generating captions or learning a joint text-video embedding. We augment the
video stream as opposed to the flow or frames streams because it contains both
visual and motion information required to reconstruct a video caption.
Caption Generation. Our first approach is to predict captions directly. This
has the benefit of forcing the model to encode a rich semantic representation of
the image, taking into account multiple objects, actions, and colors. However, it
also involves learning an English language model, which is tangential to the task
of predicting memorability. We feed the output features of the video I3D base
into an LSTM that learns to predict the ground-truth captions. For Memento10k,
we tokenize our 5 ground-truth captions and create a vocabulary of 3,870 words
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that each appear at least 5 times in our training set. We use pre-trained FastText
word embeddings [6] to map our tokens to 300-dimensional feature vectors that
we feed to the recurrent module. The VideoMem dataset provides a single brief
description with each video, which we process the same way. We train with
teacher forcing and at test-time feed the output of the LSTM back into itself.

Mapping Videos into a Semantic Embedding. Our second approach is
to learn to map videos into a sentence-level semantic embedding space using
a triplet loss. We pre-compute sentence embeddings for the captions using the
popular transformer-based network BERT [16].3 At training time, we stack a
fully-connected layer on top of the visual encoder’s output features and use a
triplet loss with squared distance to ensure that the embedded representation is
closer to the matching caption than a randomly selected one from our dataset.
This approach has the benefit that our network does not have to learn a language
model, but it may not pick up on fine-grained semantic actors in the video.

Captioning Results. The results of our captioning experiments are in the sec-
ond section of Table 1. Caption generation outperforms the semantic embedding
approach on Memento10k. Learning to generate captions provides a boost over
only the video stream for both datasets. Fig. 9 contains examples of captions
generated by our model.

5.3 Modeling Memorability Decay

Up until this point, we have evaluated our memorability predictions by convert-
ing them to rankings and comparing them to the ground truth. However, the
Memento10k data and our parameterization of the memorability decay curve un-

locks a richer representation of memorability, where m
(v)
t is the true probability

that an arbitrary person remembers video v at lag t. Thus, we also investigate
techniques for predicting the ground-truth values of the memorability decay
curve. Again, we consider two alternative architectures.

Mem-α Model. “Mem-α” models produce two outputs by regressing to a
video’s memory score and decay coefficient. To train these models, we define
a loss that consists of uniformly sampling 100 values along the true and pre-
dicted memorability curves and calculating the Mean Absolute Error on the
resulting pairs. Equation 1 can then be used to predict the raw hit rate at a
different lag.

Recurrent Decay Model. This model directly outputs multiple probability
values corresponding to different points on the decay curve. It works by injecting
the feature vector produced by the video encoder into the hidden state of an 8-
cell LSTM, where the cells represent evenly spaced lags from t = 40 through
180. At each time step, the LSTM modifies the encoded video representation,
which is then fed into a multi-layer perceptron to generate the hit rate at that
lag. The ground truth values used during training are calculated from α(v) and

m
(v)
80 using Equation 1.

3 Computed using [46]
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Table 2. Multi-lag memorability
prediction: Rank correlation (RC) and
raw predictions (R2) at 3 different lags
(t, representing the number of interven-
ing videos).

Approach RC
R2

t=40 t=80 t=160

Mem-α 0.604 0.146 0.227 0.121

Recur. head 0.599 0.298 0.364 0.219

Decay Results. We evaluate the models in two ways. First, we calculate rank
correlation with ground truth, based on the memorability scores (defined as

m
(v)
80 ). We also compare their raw predictions for different values of t, for which

we report R2. The results are in Table 2.
We find that the Mem-α has better performance than the recurrent decay

model in terms of rank correlation. However, the recurrent decay model outper-
forms the Mem-α model at predicting the raw memorability values, and exhibits
good results for low and high lags as well. It makes sense that the performance
of the Mem-α model falls off at lags further away from T = 80, since any er-
ror in the prediction of alpha (the slope of the decay curve) is amplified as we
extrapolate away from the reference lag. These two models present a trade-off
between simplicity and ranking accuracy (mem-α) and numerical accuracy along
the entire decay curve (recurrent decay). Because of its relative simplicity and
strong RC score, we use an Mem-α architecture for our final predictions.

6 Model results

Fig. 8. The architecture
of SemanticMemNet. An
I3D is jointly trained to pre-
dict memorability and seman-
tic captions for an input video.
Its memorability predictions
are combined with a frames-
based and optical flow stream
to produce m80 and α, the pa-
rameters of the memorability
decay curve.

SemanticMemNet (Fig. 8) combines our findings from the three previous
sections. We use a three-stream encoder that operates on three different input
representations: 1) the raw frames, 2) the entire video as a 3D unit, and 3) the
3D optical flow. We jointly train the video stream to output memorability scores
and captions for the video. Each of our streams predicts both the memorability
and the decay rate, which allows us to predict the probability that an observer
will recall the video at an arbitrary lag within the range we studied.

To evaluate the effectiveness of our model, we compare against prior work in
memorability prediction. MemNet [30] is a strong image memorability baseline;
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we apply it to our videos by averaging its predictions over 7 frames uniformly
sampled from the video. “Feature extraction and regression” is based on the
approach from Shekhar et al. [39], where semantic, spatio-temporal, saliency, and
color features are first extracted from the video and then a regression is learned to
predict the memorability score. The final two baselines are the best-performing
models from Cohendet et al. [13]. (Further details about baseline implementation
can be found in the supplement.) The results of our evaluations are in Table
3. Our model achieves state-of-the-art performance on both Memento10k and
VideoMem. Example predictions generated by our model are in Fig. 9.

Approach
RC - Memento10k

(test set)
RC - VideoMem
(validation set4)

Human consistency 0.730 0.616

MemNet Baseline [30] 0.485 0.425

Feature extraction + regression (as in [39])* 0.615 0.427

Cohendet et al. (ResNet3D) [13] 0.574 0.508

Cohendet et al. (Semantic)[13] 0.552 0.503

SemanticMemNet 0.663 0.556

Table 3. Comparison to state-of-the-art on Memento10k and VideoMem. Our
approach, SemanticMemNet, approaches human consistency and outperforms previous
approaches. *Uses ground-truth captions at test-time.

Fig. 9. Memorability and captions predictions from SemanticMemNet. For
each example, we plot the predicted memorability decay curve based on SemanticMem-
Net’s values in purple, as well as the ground truth in gray.

4 We use the VideoMem validation set as the test set has not been made public.
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Fig. 10. Under and overpredictions of SemanticMemNet. Our network under-
estimates the memorability of visually bland scenes with a single distinctive element,
like a whale sighting (a). It can fail on out-of-context scenes, like someone surfing on a
flooded concrete river (b), or surpising events, like a man getting dragged into a lake
by a cow (c). By contrast, it overestimates the memorability of choppy, dynamic scenes
without clear semantic content (d) and of scenes that contain memorable elements,
such as humans and faces, but that are overly cluttered (e), dark (f), or shaky.

7 Conclusion

Our contributions. We introduce a novel task (memorability decay estimation)
and a new dynamic dataset with memorability scores at different delays. We
propose a mathematical formulation for memorability decay and a model that
takes advantage of it to estimate both memorability and decay.
Limitations and Future Work. Memorability is not a solved problem. Fig.
10 analyzes instances where our model fails because of competing visual at-
tributes or complex semantics. Furthermore, there is still room for improvement
in modeling memorability decay (Table 2) and extending our understanding of
memorability to longer sequences. Our approach makes progress towards con-
tinuous memorability prediction for long videos (i.e. first-person live streams,
YouTube videos) where memorability models should handle past events and
their decay rates, to assess memorability of events a t different points in the
past. To encourage exploration in this direction, we have released a live demo5

of SemanticMemNet that extracts memorable segments from longer video clips.
The utility of memorability. Video memorability models open the door to
many exciting applications in computer vision. They can be used to provide guid-
ance to designers, educators, and models to generate clips that will be durable
in memory. They can improve summarization by selecting segments likely to
be retained. They can act as a measure of the utility of different segments in
space-constrained systems; for instance, a camera in a self-driving car or a pair
of virtual assistant glasses could discard data once it has fallen below a certain
memorability threshold. Predicting visual memory will lead to systems that make
intelligent decisions about what information to delete, enhance, and preserve.
Acknowledgments. We thank Zoya Bylinskii and Phillip Isola for their useful
discussions and Alex Lascelles and Mathew Monfort for helping with the dataset.

5 http://demo.memento.csail.mit.edu/
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