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This material provides the motivation of enhancing JPEG-compressed images
in Sec. 1, additional details about image quality assessment module in Sec. 2,
efficiency performance of enhancing JPEG-compressed images in Sec. 3, and
more enhanced examples in Sec. 4.

1 Motivation of Enhancing JPEG-compressed Images

In this section, we conduct experiments on JPEG-compressed images to prove
the two propositions of our paper: Proposition 1: “Easy” samples (i.e., high-
quality compressed images) can be simply enhanced, while “hard” samples (i.e.,
low-quality compressed images) should be further enhanced; Proposition 2:
The quality enhancement process with different computational complexity can
be jointly optimized in a single network through an “easy to hard” manner,
rather than a “hard to easy” manner.

1.1 Proof of Proposition 1

We construct a series of vanilla CNNs with the layer number from 6 to 12. Each
layer includes 32×3×3 filters, except for the last layer with 1×3×3 filter. Beside,
ReLU [7] activation and global residual learning [2] are adopted. The training,
validation and test sets (including 400, 100 and 100 raw images, respectively) are
randomly selected from RAISE without overlapping. They are all compressed by
the JPEG encoder of Python Imaging Library (PIL) [5] with quality factor (QF)
= 50 and 10 for obtaining “easy” and “hard” samples, respectively. We train
these vanilla CNNs with the “easy” samples, and then obtain converged models
“QF = 50”. Similarly, we train the CNNs with the “hard” samples and then
obtain converged models “QF = 10”. As shown in Fig. 1 (a), the performance
of QF = 10 models improves significantly with the increase of layer numbers,
while the performance of QF = 50 models gradually becomes saturated once the
layer number excesses 10. Therefore, it is possible to enhance the “easy” samples
with a simpler architecture and fewer computational resources, and to further
enhance the “hard” samples in a more elaborate process.
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Fig. 1. (a) Average ∆PSNR (dB) of vanilla CNNs over the test set. (b) Average
∆PSNR (dB) curves alongside increased epochs, for vanilla CNN models and their
transferred models over the validation set during the training stage.

1.2 Proof of Proposition 2

Here, we investigate the efficacy of “easy to hard” strategy on image quality
enhancement through the experiments of transfer learning. If the filters learned
from “easy” samples can be transferred to enhance “hard” samples more suc-
cessfully than the opposite manner, then our proposition can be proved. Here,
we construct 2 identical vanilla CNNs with 7 convolutional layers. The other
settings conform to the above. We train these 2 models with the training sets
of images compressed at QF = 50 and 10, respectively, and accordingly these 2
models are called “QF = 50” and “QF = 10”. After convergence, they exchange
their parameters for the first 2 layers and restart training with their own training
sets. Note that the exchanged parameters are frozen during the training stage.
We name the model transferred from QF = 10 to QF = 50 as “transferred QF
= 50” and the model transferred from QF = 50 to QF = 10 as “transferred QF
= 10”. Fig. 1 (b) shows the validation-epoch curves of the original 2 models and
their transferred models. As shown in this figure, the transferred QF = 10 model
improves the performance of the QF = 10 model, while the transferred QF = 50
model does not benefit the performance of the QF = 50 model. Consequently, the
joint simple and elaborate enhancement process should be conducted in an “easy
to hard” manner rather than a “hard to easy” manner. In summary, proposition
2 can be proved.

2 Details about image quality assessment module

In this section, we present details about the mechanism of Image Quality As-
sessment Module (IQAM).

2.1 Image Partition

We first partition the image into patches. The obtained patches should cover
all the potential block boundaries, as shown in Fig. 2. For a JPEG-compressed
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Fig. 2. Examples of compression blocks (with blue solid boundaries) and obtained
patches (with red dotted boundaries) of a JPEG-compressed image (a) and an HEVC-
MSP-compressed image (b).

image, it is split into 8 × 8 blocks from the top-left. Therefore, 8 × 8 patches
are obtained to cover all block boundaries, as depicted in Fig. 2 (a). For an
HEVC-MSP-compressed image, it is split into coding units (CUs), transform
units (TUs) and prediction units (PUs) in a tree structure [8]. Among these
units, CUs and TUs may contribute to blocky effects, and their minimum size
is 4 × 4. Therefore, we partition the HEVC-MSP-compressed image into 4 × 4
patches, as depicted in Fig. 2 (b).

2.2 Patches Classification

We take 4 × 4 patches as an example. We classify these patches into smooth
ones and textured ones, according to their sum of squared non-DC Tchebichef
moment (SSTM) values [6, 3]:

M =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 , (1)

SSTM =

 3∑
i=0

3∑
j=0

m2
ij

−m2
00, (2)

where M denotes the Tchebichef moment of each patch. In fact, SSTM can be
used for measuring block energy, and it is higher for textured patches and lower
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for smooth patches. Therefore, patches can be classified by comparing SSTM
with a threshold TSSTM. If SSTM < TSSTM, the patch is classified as a smooth
one. Otherwise, it will be classified as a textured one.

2.3 Evaluation on Blocky Effects

For smooth patches, blocky effects are the dominant factor that degrades the
quality. Therefore, we evaluate the score of blocky effects in the textured patches.
Motivated by [4], the ratio of the summation of absolute 3th order moment values
to the summation of absolute non-DC moment values can reflect the energy of
vertical and horizontal blocky effects. Specifically, the energy of vertical and
horizontal blocky effects, denoted by ev and eh, can be reflected by the following
two metrics respectively:

eh =

∑3
i=0 |mi3|(∑3

i=0

∑3
j=0 |mij |

)
− |m00|+ C

, (3)

ev =

∑3
j=0 |m3j |(∑3

i=0

∑3
j=0 |mij |

)
− |m00|+ C

, (4)

where C is a small constant to ensure the numerical stability. The bigger ev/eh,
the slighter the vertical/horizontal blocky effects. When ev/eh is bigger than a
threshold Te, the blocky effects are too slight to notice:

ev =

{
ev ev < Te
Te ev ≥ Te,

(5)

eh =

{
eh eh < Te
Te eh ≥ Te,

(6)

Finally, the quality score of the smooth patch is calculated as:

QS = log(1−Te)

(
1− ev + eh

2

)
. (7)

Note that a higher QS indicates better quality of the smooth patch.

2.4 Evaluation on Blurring

For textured patches, blurring is the dominant factor that degrades the qual-
ity. Therefore, we evaluate the score of blurring in the textured patches. Each
textured patch is blurred by a Gaussian filter:

G(x, y, σ) =
1

2πσ2
exp

(
−(x2 + y2)

2σ2

)
, (8)
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where σ is the stand deviation of the Gaussian filter; (x, y) denotes the coordinate
of each image pixel. Following [3], the filter size is set to 3 × 3. The standard
deviation is set to 5. Then, we can obtain the Tchebichef moments of the blurred
patch:

M′ =


m′00 m

′
01 m

′
02 m

′
03

m′10 m
′
11 m

′
12 m

′
13

m′20 m
′
21 m

′
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′
23

m′30 m
′
31 m

′
32 m

′
33

 . (9)

The similarity of M and M′ is calculated as:

S(i, j) =
2mijm

′
ij + C

(mij)2 + (m′ij)
2 + C

, i, j = 0, 1, 2, 3. (10)

The similarity value of severely blurred patch is bigger than that of slightly
blurred patch. Therefore, we compute the quality score of textured patch as
follows,

QT = 1− 1

3× 3

3∑
i=0

3∑
j=0

S(i, j). (11)

Note that a higher QT indicates better quality of the textured patch. Also note
that this formulation of quality score of textured patch is different from that in
[3], which directly takes the average similarity values as the quality score. It is
inconsistent with the quality score of smooth patch, since the latter increases
when the quality is better.

2.5 Quality Score

Finally, we calculate the average quality scores of all smooth patches:

Q̄S =

NS∑
k=1

QS,k, (12)

where QS,k is the k-th smooth patch and NS is the number of smooth patches.
Similarly, we can obtain the average quality scores of all textured patches Q̄T.
The final quality score of the image can be generated as:

Q = (Q̄S)α · (Q̄T)β , (13)

where α > β. It is because blocky effects are the dominant distortion [3], espe-
cially for low bit-rate compression.

2.6 Implementation

We set TSSTM = 4e−3, C = 1e−8, Te = 5e−2 and α = 0.9 > β = 0.1 through
experiments on a validation set (including 1000 pairs of raw/compressed im-
ages randomly selected from RAISE [1]) compressed at 5 different QPs (QP
= 22, 27, 32, 37, 42).
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Fig. 3. (a) Average PSNR (dB) and TQ of the HEVC validation set compressed at 5
QPs. (b) Average SSIM and TQ of the HEVC validation set compressed at 5 QPs.

2.7 Relation between TQ and Objective Quality Metrics

The generated quality score TQ is highly and positively correlated to objective
quality metrics, such as peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM) index. To verify this, we calculate the average TQ of the validation
set. As shown in Fig. 3 (a) and (b), the PSNR, SSIM and TQ increase along with
the decreased QP values. Therefore, the strong and positive correlation between
TQ and objective quality metrics PSNR and SSIM can be verified.

3 Efficiency of Enhancing JPEG-compressed Images

We also validate the efficiency of the RBQE approach when enhancing the quality
of JPEG-compressed images in terms of the average consumed FLOPs. Our
RBQE approach consumes only 26.9 GMacs for the “hardest” samples, i.e.,
the images compressed at QF = 10. In contrast, DCAD, QE-CNN, CBDNet
and DnCNN consume constantly 77.8, 118.4, 160.5 and 175.8 GMacs for all
samples that are either “easy” or “hard” samples compressed at 5 different QFs.
Therefore, our RBQE approach is much more efficient than compared approaches
when enhancing the quality of JPEG-compressed images.

4 Enhanced Samples

Fig. 4 visualizes the enhanced samples by our RBQE and other compared ap-
proaches. In particular, the smooth background can be finely restored by our
RBQE approach, while other approaches are ineffective to suppress compression
artifacts surrounding the lines, clothes and petals.
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Fig. 4. Enhanced test samples. We observe significant suppression by RBQE of com-
pression artifacts surrounding the lines, clothes and petals.
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