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Abstract. Lossy image compression is pervasively conducted to save
communication bandwidth, resulting in undesirable compression arti-
facts. Recently, extensive approaches have been proposed to reduce image
compression artifacts at the decoder side; however, they require a series
of architecture-identical models to process images with different qual-
ity, which are inefficient and resource-consuming. Besides, it is common
in practice that compressed images are with unknown quality and it is
intractable for existing approaches to select a suitable model for blind
quality enhancement. In this paper, we propose a resource-efficient blind
quality enhancement (RBQE) approach for compressed images. Specif-
ically, our approach blindly and progressively enhances the quality of
compressed images through a dynamic deep neural network (DNN), in
which an early-exit strategy is embedded. Then, our approach can au-
tomatically decide to terminate or continue enhancement according to
the assessed quality of enhanced images. Consequently, slight artifacts
can be removed in a simpler and faster process, while the severe artifacts
can be further removed in a more elaborate process. Extensive exper-
iments demonstrate that our RBQE approach achieves state-of-the-art
performance in terms of both blind quality enhancement and resource
efficiency.

Keywords: blind quality enhancement · compressed images · resource-
efficient · early-exit

1 Introduction

We are embracing an era of visual data explosion. According to Cisco mo-
bile traffic forecast [4], the amount of mobile visual data is predicted to grow
nearly 10-fold from 2017 to 2022. To overcome the bandwidth-hungry bottleneck
caused by a deluge of visual data, lossy image compression, such as JPEG [40],
JPEG 2000 [28] and HEVC-MSP [37], has been pervasively used. However, com-
pressed images inevitably suffer from compression artifacts, such as blocky ef-
fects, ringing effects and blurring, which severely degrade the Quality of Expe-
rience (QoE) [35, 39] and the performance of high-level vision tasks [17, 48].

? Corresponding author: Mai Xu.
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Fig. 1. Examples of quality enhancement on “easy” and “hard” samples, along with
increased computational complexity.

For enhancing the quality of compressed images, many approaches [8, 13, 42,
22, 46, 16, 47, 12] have been proposed. Their basic idea is that one model needs
to be trained for enhancing compressed images with similar quality reflected by
a particular value of Quantization Parameter (QP) [37], and then a series of
architecture-identical models need to be trained for enhancing compressed im-
ages with different quality. For example, [42, 46, 12] train 5 deep models to handle
compressed images with QP = 22, 27, 32, 37 and 42. There are three main draw-
backs to these approaches. (1) QP cannot faithfully reflect image quality, and
thus it is intractable to manually select a suitable model based on QP value. (2)
These approaches consume large computational resources during the training
stage since many architecture-identical models need to be trained. (3) Com-
pressed images with different quality are enhanced with the same computational
complexity, such that these approaches impose excessive computational costs on
“easy” samples (high-quality compressed images) but lack sufficient computa-
tion on “hard” samples (low-quality compressed images). Intuitively, the quality
enhancement of images with different quality can be partly shared in a single
framework, such that the joint computational costs can be reduced. More im-
portantly, slight artifacts should be removed in a simpler and faster process,
while the severe artifacts need to be further removed through a more elaborate
process. Therefore, an ideal framework should automatically conduct a simple
or elaborate enhancement process by distinguishing “easy” and “hard” samples,
as a blind quality enhancement task.

In this paper, we propose a resource-efficient blind quality enhancement
(RBQE) approach for compressed images. Specifically, we first prove that there
exist “easy”/“hard” samples for quality enhancement on compressed images. We
demonstrate that “easy” samples are those with slight compression artifacts,
while “hard” samples are those with severe artifacts. Then, a novel dynamic
deep neural network (DNN) is designed, which progressively enhances the qual-
ity of compressed image, assesses the enhanced image quality, and automatically
decides whether to terminate (early exit) or continue the enhancement. The qual-
ity assessment and early-exit decision are managed by a Tchebichef moments-
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Fig. 2. Proposed resource-efficient blind quality enhancement paradigm (a) vs. two
traditional blind denoising paradigms (b) and (c). Our paradigm dynamically processes
samples with early exits for “easy” samples, while traditional paradigms (b) and (c)
statically process images with equal computational costs on both “easy” and “hard”
samples.

based Image Quality Assessment Module (IQAM), which is strongly sensitive to
compression artifacts. Finally, our RBQE approach can perform “easy to hard”
quality enhancement in an end-to-end manner. This way, images with slight com-
pression artifacts can be simply and rapidly enhanced, while those with severe
artifacts need to be further enhanced. Some examples are shown in Fig. 1. Also,
experimental results verify that our RBQE approach achieves state-of-the-art
performance for blind quality enhancement in both efficiency and efficacy.

To the best of knowledge, our approach is a first attempt to manage quality
enhancement of compressed images in a resource-efficient manner. To sum up,
the contributions are as follows:

(1) We prove that “easy”/“hard” samples exist in quality enhancement, as the
theoretical foundation of our approach.

(2) We propose the RBQE approach with a simple yet effective dynamic DNN
architecture, which processes “easy to hard” paradigm for blind quality en-
hancement.

(3) We develop a Tchebichef moments-based IQAM, workable for early-exit de-
termination in our dynamic DNN structure.

2 Related Work

2.1 Quality Enhancement for Compressed Images

Due to the astonishing development of Convolutional Neural Networks (CNNs) [36,
34, 9] and large-scale image datasets [7], several CNN-based quality enhancement
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approaches have been successfully applied to JPEG-compressed images. Dong et
al. [8] proposed a shallow four-layer Artifacts Reduction Convolutional Neural
Network (AR-CNN), which is the pioneer of CNN-based quality enhancement
of JPEG-compressed images. Later, Deep Dual-Domain (D3) approach [43] and
Deep Dual-domain Convolutional neural Network (DDCN) [13] were proposed
for JPEG artifacts removal, which are motivated by dual-domain sparse cod-
ing and utilize the quantization prior of JPEG compression. DnCNN [49] is a
milestone for reducing both Additive White Gaussian Noise (AWGN) and JPEG
artifacts. It is a 20-layer deep network employing residual learning [15] and batch
normalization [19], which can yield better results than Block-Matching and 3-D
filtering (BM3D) approach [5]. It also achieves blind denoising by mixing and
sampling training data randomly with different levels of noise.

Most recently, extensive works have been devoted to the latest video/image
coding standard, HEVC/HEVC-MSP [37, 31, 2, 32, 26, 25, 45]. Due to the elabo-
rate coding strategies of HEVC, the approaches for JPEG-compressed images [8,
43, 13, 49], especially those utilizing the prior of JPEG compression [43, 13], can-
not be directly used for quality enhancement of HEVC-compressed images. In
fact, HEVC [37] codec already incorporates the in-loop filters, which consist of
Deblocking Filter (DF) [33] and Sample Adaptive Offset (SAO) filter [10], to sup-
press blocky effects and ringing effects. However, these handcrafted filters are far
from optimum, resulting in still visible artifacts in compressed images. To allevi-
ate this issue, Wang et al. [42] proposed the DCAD approach, which is the first
attempt for CNN-based non-blind quality enhancement of HEVC-compressed
images. Later, Yang et al. [46] proposed a novel QE-CNN for quality enhance-
ment of images compressed by HEVC-MSP. Unfortunately, they are all non-blind
approaches, typically requiring QP information before quality enhancement.

2.2 Blind Denoising for Images

In this section, we briefly review the CNN-based blind denoiser, as the closest
field of blind quality enhancement of compressed images. The existing approaches
for CNN-based blind denoising can be roughly summarized into two paradigms
based on the mechanism of noise level estimation, as shown in Fig. 2 (b) and (c).
The first paradigm implicitly estimates the noise level. To achieve blind denois-
ing, images with various levels of noise are mixed and randomly sampled during
training [49, 38]. Unfortunately, the performance is always far from optimum, as
stated in [50, 14]. It degrades severely when there is a mismatch of noise levels
between training and test data. The second paradigm explicitly estimates the
noise level. It sets a noise level estimation sub-net before a non-blind denoising
sub-net. For example, [14] generates a noise level map to guide the subsequent
non-blind denoising. This paradigm can always yield better results than the first
paradigm, yet it is not suitable for quality enhancement of compressed artifacts,
mainly due to two reasons. (1) The generated noise level map cannot well repre-
sent the level of compression artifacts. The compression artifacts are much more
complex than generic noise since it is always assumed to be signal-independent
and white [43]. (2) Both “easy” and “hard” samples are processed in the same
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Fig. 3. (a) Average improved peak signal-to-noise ratio (∆PSNR) of vanilla CNNs over
the test set. (b) Average ∆PSNR curves alongside increased epochs, for vanilla CNN
models and their transferred models over the validation set during the training stage.

deep architecture consuming equal computational resources, resulting in low effi-
ciency. In this paper, we provide a brand-new paradigm for image reconstruction
(as shown in Fig. 2 (a)) and exemplify it by our proposed RBQE on quality en-
hancement of compressed images. It is worth mentioning that our brand-new
paradigm also has the potential for the blind denoising task.

3 Proposed Approach

In this section, we propose our RBQE approach for blind quality enhancement.
Specifically, we solve three challenging problems that are crucial to the resource-
efficient paradigm of our approach. (1) Which samples are “simple”/“hard” in
quality enhancement? (to be discussed in Sec. 3.1) (2) How to design a dynamic
network for progressive enhancement? (to be discussed in Sec. 3.2) (3) How to
measure compression artifacts of enhanced compressed images for early exits?
(to be discussed in Sec. 3.3)

3.1 Motivation

Our RBQE approach is motivated by the following two propositions. Propo-
sition 1: “Easy” samples (i.e., high-quality compressed images) can be simply
enhanced, while “hard” samples (i.e., low-quality compressed images) should be
further enhanced. Proposition 2: The quality enhancement process with dif-
ferent computational complexity can be jointly optimized in a single network
through an “easy to hard” manner, rather than a “hard to easy” manner.

Proof of Proposition 1. We construct a series of vanilla CNNs with different
depths and feed them with “easy” and “hard” samples, respectively. Specifically,
a series of vanilla CNNs with the layer number from 4 to 11 are constructed. Each
layer includes 64×3×3 filters, except for the last layer with 1×3×3 filter. Beside,
ReLU [30] activation and global residual learning [15] are adopted. The training,
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validation and test sets (including 400, 100 and 100 raw images, respectively) are
randomly selected from Raw Image Database (RAISE) [6] without overlapping.
They are all compressed by HM16.53 under intra-coding configuration [37] with
QP = 37 and 42 for obtaining “easy” and “hard” samples, respectively. Then,
we train the vanilla CNNs with the “easy” samples, and then obtain converged
models “QP = 37”. Similarly, we train the CNNs with the “hard” samples
and then obtain converged models “QP = 42”. As shown in Fig. 3 (a), the
performance of QP = 42 models improves significantly with the increase of layer
numbers, while the performance of QP = 37 models gradually becomes saturated
once the layer number excesses 9. Therefore, it is possible to enhance the “easy”
samples with a simpler architecture and fewer computational resources, while
further enhancing the “hard” samples in a more elaborate process.

Proof of Proposition 2. The advantage of the “easy to hard” strategy has
been pointed out in neuro-computation [11]. Here, we investigate its efficacy on
image quality enhancement through the experiments of transfer learning. If the
filters learned from “easy” samples can be transferred to enhance “hard” samples
more successfully than the opposite manner, then our proposition can be proved.
Here, we construct 2 identical vanilla CNNs with 10 convolutional layers. The
other settings conform to the above. We train these 2 models with the training
sets of images compressed at QP = 37 and 42, respectively, and accordingly
these 2 models are called “QP = 37” and “QP = 42”. After convergence, they
exchange their parameters for the first 4 layers and restart training with their
own training sets. Note that the exchanged parameters are frozen during the
training stage. We name the model transferred from QP = 42 to QP = 37 as
“transferred QP = 37” and the model transferred from QP = 37 to QP = 42
as “transferred QP = 42”. Fig. 3 (b) shows the validation-epoch curves of the
original 2 models and their transferred models. As shown in this figure, the
transferred QP = 42 model improves the performance of the QP = 42 model,
while the transferred QP = 37 model slightly degrades the performance of the
QP = 37 model. Consequently, the joint simple and elaborate enhancement
process should be conducted in an “easy to hard” manner rather than a “hard
to easy” manner. Besides, the experimental results of Section 4 show that the
simple and elaborate enhancement process can be jointly optimized in a single
network. In summary, proposition 2 can be proved. The above propositions can
be also validated by JPEG-compressed images, as detailed in the supplementary
material.

Given the above two propositions, we propose our RBQE approach for resource-
efficient quality enhancement of compressed images in an “easy to hard” manner.

3.2 Dynamic DNN Architecture with Early-exit Strategy

Notations. In this section, we present the DNN architecture of the proposed
RBQE approach for resource-efficient quality enhancement. We first introduce

3 HM16.5 is the latest HEVC reference software.
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Fig. 4. Dynamic DNN architecture and early-exit strategy of our RBQE approach.
The computations of gray objects (arrays and circles) are accomplished in the previous
step and inherited in the current step.

the notations for our RBQE approach. The input sample is denoted by Sin. The
convolutional layer is denoted by Ci,j , where i denotes the level and j denotes
the index of the convolutional layer on the same level. In addition, I is the total
number of levels. Accordingly, the feature maps generated from Ci,j are denoted
by Fi,j . The enhancement residuals are denoted by {Rj}Ij=2. Accordingly, the

output enhanced samples are denoted by {Sout,j}Ij=2.

Architecture. To better illustrate the architecture of RBQE, we separate the
backbone and the output side of RBQE, as shown in the left half of Fig. 4. In
this figure, we take RBQE with 6 levels as an example. The backbone of RBQE
is a progressive UNet-based structure. Convolutional layers C1,1 and C2,1 can
be seen as the encoding path of the smallest 2-level UNet, while {Ci,1}6i=1 are
the encoding path of the largest 6-level UNet. Therefore, the backbone of RBQE
can be considered as a compact combination of 5 different-level UNets. In the
backbone of RBQE, the input sample is first fed into the convolutional layer
C1,1. After that, the feature maps generated by C1,1 (i.e., F1,1) are progressively
down-sampled and convoluted by {Ci,1, i = 2, 3, ..., 6}. This way, we obtain fea-
ture maps {Fi,1}6i=1 at 6 different levels, the size of which progressively becomes
smaller from level 1 to 6. In accordance with the encoder-decoder architecture
of the UNet approach, {Fi,1}6i=1 are then progressively up-sampled and convo-
luted until level 1. Moreover, based on the progressive UNet structure, we adopt
dense connections [18] at each level. For example, at level 1, F1,1 are directly
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fed into the subsequent convolutional layers at the same level: {C1,j}6j=2. The
adoption of dense connection does not only encourage the reuse of encoded low-
level fine-grained features by decoders, but also largely decreases the number of
parameters, leading to a lightweight structure for RBQE.

At the output side, the obtained feature maps {F1,j}6j=2 are further convo-

luted by independent convolutional layers {C0,j}6j=2, respectively. In this step,

we obtain the enhancement residuals: {Rj}6j=2. For each residual Rj , it is then
added into the input sample Sin for calculating the enhanced image Sout,j :

Sout,j = Sin + Rj . (1)

To assess the quality of enhanced image Sout,j , we feed it into IQAM, which is
to be presented in Section 3.3.

The backbone of RBQE is motivated by [51], which extends the UNet ar-
chitecture to a wide UNet for medical image segmentation. Here, we advance
the wide UNet in the following aspects: (1) The wide UNet adopts deep super-
vision [21] directly for the feature maps {F1,j}5j=2.Here, we further process the

output feature maps {F1,j}Ij=2 independently through the convolutional layers

in the output side {C0,j}Ij=2. This process can alleviate the interference be-
tween outputs, while slightly increase the computational costs. (2) The work of
[51] manually selects one of the 4 different-level UNet-based structures in the
test stage, based on the requirement for speed and accuracy. Here, we incorpo-
rate IQAM into RBQE and provide early exits in the test stage. Therefore, all
UNet-based structures are progressively and automatically selected to generate
the output. The early-exit strategy and proposed IQAM are presented in the
following.

Early-exit Strategy. Now we explain the early-exit strategy of RBQE. Simi-
larly, we take the RBQE structure with 6 levels as an example. The backbone of
RBQE can be ablated progressively into 5 different-level UNet-based structures,
as depicted in the right half of Fig. 4. For example, the smallest UNet-based
structure with 2 levels consists of 3 convolutional layers: C1,1, C2,1 and C1,2.
In addition to these 3 layers, the 3-level UNet-based structure includes 3 more
convolutional layers: C3,1, C2,2 and C1,3. Similarly, we can identify the layers of
the remaining 3 UNet-based structures. Note that the interval activation layers
are omitted for simplicity. We denote the parameters of the i-level UNet-based
structure by θi. This way, the output enhanced samples {Sout,j}6j=2 can be for-
mulated as:

Sout,j = Sin + Rj(θj), j = 2, 3, ..., 6. (2)

In the test stage, {Sout,j}6j=2 are obtained and assessed progressively. That is, we
first obtain Sout,2 and send it to IQAM. If Sout,2 is assessed to be qualified as the
output, the quality enhancement process is terminated. Otherwise, we further
obtain Sout,3 and assess its quality through IQAM. The same procedure applies
to Sout,4 and Sout,5. If {Sout,j}5j=2 are all rejected by IQAM, Sout,6 is output
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without assessment. This way, we successfully perform the early-exit strategy
for “easy” samples, which are expected to output in the early stage.

3.3 Image Quality Assessment for Enhanced Images

In this section, we introduce IQAM for blind quality assessment and automatic
early-exit decision. Most existing blind denoising approaches (e.g., [49, 42, 46,
14]) ignore the characteristics of compression artifacts; however, these charac-
teristics are important to assess the compression artifacts. Motivated by [23],
this paper considers two dominant factors that degrade the quality of enhanced
compressed images: (1) blurring in the textured area and (2) blocky effects in
the smooth area.

Specifically, the enhanced image is first partitioned into non-overlapping
patches. The patches should cover all potential compression block boundaries.
Then, these patches are classified into smooth and textured ones according to
their sum of squared non-DC Tchebichef moment (SSTM) values that mea-
sure the patch energy [29, 23]. We take a 4 × 4 patch as an example, of which
Tchebichef moments can be denoted by M:

M =

m00 · · · m03

...
. . .

...
m30 · · · m33

 . (3)

If the patch is classified as a smooth one, we evaluate its score of blocky effects
QS by calculating the ratio of the summed absolute 3rd order moments to the
SSTM value [24]:

eh =

∑3
i=0 |mi3|(∑3

i=0

∑3
j=0 |mij |

)
− |m00|+ C

, (4)

ev =

∑3
j=0 |m3j |(∑3

i=0

∑3
j=0 |mij |

)
− |m00|+ C

, (5)

QS = log(1−Te)

(
1− ev + eh

2

)
, (6)

where ev and eh measure the energy of vertical and horizontal blocky effects, re-
spectively; C is a small constant to ensure numerical stability; Te is a perception
threshold. The average quality score of all smooth patches is denoted by Q̄S. If
the patch is classified as a textured one, we first blur it using a Gaussian filter.
Similarly, we obtain the Tchebichef moments of this blurred patch M′. Then,
we evaluate its blurring score QT by calculating the similarity between M and
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M′:

S(i, j) =
2mijm

′
ij + C

(mij)2 + (m′ij)
2 + C

, i, j = 0, 1, 2, 3, (7)

QT = 1− 1

3× 3

3∑
i=0

3∑
j=0

S(i, j), (8)

where S(i, j) denotes the similarity between two moment matrices. The average
quality score of all textured patches is denoted by Q̄T. The final quality score Q
of the enhanced image is calculated as

Q = (Q̄S)α · (Q̄T)β , (9)

where α and β are the exponents balancing the relative importance between
blurring and blocky effects. If Q exceeds a threshold TQ, the enhanced image
is directly output at early exits of the enhancement process. Otherwise, the
compressed image needs to be further enhanced by RBQE. Please refer to the
supplementary material for additional details.

The advantages of IQAM are as follow: (1) IQAM is constructed based on
Tchebichef moments [29], which are highly interpretable for evaluating blurring
and blocky effects. (2) The quality score Q obtained by IQAM is positively
and highly correlated to the evaluation metrics of objective image quality, e.g.,
PSNR and structural similarity (SSIM) index. See the supplementary mate-
rial for the validation of such correlation, which is verified over 1,000 pairs of
raw/compressed images. (3) With IQAM, we can balance the tradeoff between
enhanced quality and efficiency by simply tuning threshold TQ.

3.4 Loss Function

For each output, we minimize the mean-squared error (MSE) between the input
compressed image and output enhanced image:

Lj(θj) = ‖Sout,j(θj)− Sin‖22, j = 2, 3, ..., I. (10)

Although MSE is known to have limited correlation with the perceptual quality
of images [44], it can still yield high accuracy in terms of other metrics, such as
PSNR and SSIM [14, 12]. The loss function of our RBQE approach (i.e., LRBQE)
can be formulated as the weighted combination of these MSE losses:

LRBQE =

I∑
j=2

wj · Lj(θj), (11)

where wj denotes the weight of Lj(θj). By minimizing the loss function, we can
obtain the converged RBQE model that simultaneously enhances the quality of
input compressed images with different quality in a resource-efficient manner.
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4 Experiments

In this section, we present the experimental results to verify the performance of
the proposed RBQE approach for resource-efficient blind quality enhancement.
Since HEVC-MSP [37] is a state-of-the-art image codec and JPEG [40] is a
widely used image codec, our experiments mainly focus on quality enhancement
of both HEVC-MSP and JPEG images.

4.1 Dataset

The recent works have adopted large-scale image datasets such as BSDS500 [1]
and ImageNet [7], which are widely used for image denoising, segmentation and
other vision tasks. However, the images of these datasets are compressed by
unknown codecs and compression settings, thus containing various unknown ar-
tifacts. To obtain “clean” data without any unknown artifact, we adopt the
RAISE dataset, from which 3,000, 1,000 and 1,000 non-overlapping raw images
are as the training, validation and test sets, respectively. These images are all
center-cropped into 512 × 512 images. Then, we compress the cropped raw im-
ages by HEVC-MSP using HM16.5 under intra-coding configuration [37], with
QP = 22, 27, 32, 37 and 42. Note that QPs ranging from 22 to 42 can reflect
the dramatically varying quality of compressed images, also in accordance with
existing works [42, 46, 12]. For JPEG, we use the JPEG encoder of Python Imag-
ing Library (PIL) [27] to compress the cropped raw images with quality factor
(QF) = 10, 20, 30, 40 and 50. Note that these QFs are also used in [49].

4.2 Implementation Details

We set the number of levels I = 6 for the DNN architecture of RBQE. Then,
{Ci,1}6i=1 are conducted by two successive 32 × 3 × 3 convolutions. The other
Ci,j are conducted by two successive separable convolutions [3]. Note that each
separable convolution consists of a depth-wise k × 3 × 3 convolution (k is the
input channel number) and a point-wise 32 × 1 × 1 convolution. The down-
sampling is achieved through a 32× 3× 3 convolution with the stride of 2, while
the up-sampling is achieved through a transposed 32 × 2 × 2 convolution with
the stride of 2. For each group of feature maps Fi,j , it is further processed by
an efficient channel attention layer [41] before being feeding into other convolu-
tional layers. Additionally, ReLU [30] nonlinearity activation is adopted between
neighboring convolutions, except the successive depth-wise and point-wise con-
volutions within each separable convolution. For IQAM, we set α = 0.9, β = 0.1,
C = 1e−8 and Te = 0.05 through a 1000-image validation. Additionally, as dis-
cussed in Sec. 4.3, TQ is set to 0.89 and 0.74 for HEVC-MSP-compressed and
JPEG-compressed images, respectively.

In the training stage, batches with QP from 22 to 42 are mixed and randomly
sampled. In accordance with the “easy to hard” paradigm, we set {wj}6j=2 to
{2, 1, 1, 0.5, 0.5} for QP = 22 or QF = 50, to {1, 2, 1, 0.5, 0.5} for QP = 27 or QF
= 40, to {0.5, 1, 2, 1, 0.5} for QP = 32 or QF = 30, to {0.5, 0.5, 1, 2, 1} for QP
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Table 1. Average ∆PSNR (dB) over the HEVC-MSP and JPEG test sets.

HEVC-MSP JPEG

QP CBDNet DnCNN DCAD QE-CNN RBQE QF CBDNet DnCNN DCAD QE-CNN RBQE

22 0.470 0.264 0.311 0.082 0.604 50 1.342 1.078 1.308 1.230 1.552
27 0.385 0.414 0.278 0.182 0.487 40 1.393 1.362 1.356 1.290 1.582
32 0.375 0.405 0.314 0.275 0.464 30 1.459 1.550 1.415 1.352 1.626
37 0.403 0.314 0.353 0.313 0.494 20 1.581 1.572 1.501 1.420 1.713
42 0.411 0.186 0.321 0.264 0.504 10 1.726 1.121 1.676 1.577 1.920

ave. 0.409 0.317 0.316 0.223 0.510 ave. 1.500 1.337 1.451 1.374 1.678

= 37 or QF = 20, and to {0.5, 0.5, 1, 1, 2} for QP = 42 or QF = 10. This way,
high-quality samples are encouraged to output at early exits, while low-quality
samples are encouraged to output at late exits. We apply the Adam optimizer [20]
with the initial learning rate lr = 1e−4 to minimize the loss function.

4.3 Evaluation

In this section, we validate the performance of our RBQE approach for the blind
quality enhancement of compressed images. In our experiments, we compare our
approach with 4 state-of-the-art approaches: DnCNN [49], CBDNet [14], QE-
CNN [46] and DCAD [42]. Among them, QE-CNN and DCAD are the latest non-
blind quality enhancement approaches for compressed images. For these non-
blind approaches, the training batches of different QPs are mixed and randomly
sampled in the training stage, such that they can also manage blind quality
enhancement. Note that there is no blind approach for quality enhancement
of compressed images. Thus, the state-of-the-art blind denoisers (i.e., DnCNN
and CBDNet) are used for comparison, which are modified for blind quality
enhancement by retraining over compressed images. For fair comparison, all
compared approaches are retrained over our training set.

Evaluation on efficacy. To evaluate the efficacy of our approach, Table 1
presents the ∆PSNR results of our RBQE approach and other compared ap-
proaches over the images compressed by HEVC-MSP. As shown in this table,
the proposed RBQE approach outperforms all other approaches in terms of
∆PSNR. Specifically, the average ∆PSNR of RBQE is 0.510 dB, which is 24.7%
higher than that of the second-best CBDNet (0.409 dB), 60.9% higher than that
of DnCNN (0.317 dB), 61.4% higher than that of DCAD (0.316 dB), and 128.7%
higher than that of QE-CNN (0.223 dB). Similar results can be found in Table 1
for the quality enhancement of JPEG images.

Evaluation on efficiency. More importantly, the proposed RBQE approach
is in a resource-efficient manner. To evaluate the efficiency of the RBQE ap-
proach, Fig. 5 shows the average consumed floating point operations (FLOPs)4

4 Note that the definition of FLOPs follows [15, 18], i.e., the number of multiply-adds.
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Fig. 5. (a) Average FLOPs (GMacs) over the HEVC-MSP test set. (b) Average FLOPs
(GMacs) vs. improved peak signal-to-noise ratio (∆PSNR), for blind quality enhance-
ment by our RBQE and compared approaches over the HEVC-MSP test set.
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Fig. 6. (a) Average ∆PSNR and FLOPs under a series TQ on HEVC test set. (b)
Ablation results of the early-exit strategy.

by our RBQE and other compared approaches. Note that the results of Fig. 5
are averaged over all images in our test set. As can be seen in this figure, RBQE
consumes only 27.5 GMacs for the “hardest” samples, i.e., the images com-
pressed at QP = 42 and 17.9 GMacs for the “easiest” samples, i.e., the images
compressed at QP = 22. In contrast, DCAD, QE-CNN, CBDNet and DnCNN
consume constantly 77.8, 118.4, 160.5 and 175.8 GMacs for all samples that are
either “easy” or “hard” samples compressed at 5 different QPs. Similar results
can also be found for the JPEG test set, as reported in the supplementary ma-
terial. In summary, our RBQE approach achieves the highest ∆PSNR results,
while consuming minimal computational resources especially for “easy” samples.

Tradeoff between efficacy and efficiency. As aforementioned, we can sim-
ply control the tradeoff between efficacy and efficiency by tuning TQ. As shown
in Fig. 6 (a), the average ∆ PSNR improves along with the increased consumed
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FLOPs by enlarging TQ. In this paper, we choose TQ = 0.89 for HEVC-MSP-
compressed images, since the improvement of average ∆ PSNR gradually be-
comes saturated, especially when TQ > 0.89. Due to the similar reason, we
choose TQ = 0.74 for JPEG-compressed images. In a word, the tradeoff between
efficacy and efficiency of quality enhancement can be easily controlled in our
RBQE approach.

Ablation studies. To verify the effectiveness of the early-exit structure of
our RBQE approach, we progressively ablate the 5 outermost decoding paths.
Specifically, for the HEVC-MSP images compressed at QP = 22, we force their
enhancement process to be terminated at 5 different exits (i.e., ignoring the au-
tomatic decision by IQAM), respectively, and then we obtain the brown curve in
Fig. 6 (b). Similarly, we can obtain the other 4 curves. As shown in this figure,
“simplest” (i.e., QP = 22 ) samples can achieve ∆PSNR = 0.601 dB at the first
exit, which is only 0.02 dB lower than that at the last exit. However, the ex-
pense is 270% FLOPs when outputting those samples at the last exit instead of
the first one. In the opposite, the ∆PSNR of “hardest” (i.e., QP = 42) samples
output from the last exit is 0.192 dB higher than that from the first exit. There-
fore, “easy” samples can be simply enhanced while slightly sacrificing quality
enhancement performance; meanwhile, more resources provided to “hard” sam-
ples can result in significantly higher ∆PSNR. This is in accordance with our
motivation and also demonstrates the effectiveness of the early exits proposed
in our RBQE approach.

5 Conclusions

In this paper, the RBQE approach has been proposed with a simple yet effective
DNN structure to blindly enhance the quality of compressed images in a resource-
efficient manner. Different from the traditional quality enhancement approaches,
the proposed RBQE approach progressively enhances the quality of compressed
images, which assesses the enhanced quality and then automatically terminates
the enhancement process according to the assessed quality. To achieve this, our
RBQE approach incorporates the early-exit strategy into a UNet-based struc-
ture, such that compressed images can be enhanced in an “easy to hard” manner.
This way, “easy” samples can be simply enhanced and output at the early ex-
its, while “hard” samples can be further enhanced and output at the late exits.
Finally, we conducted extensive experiments on enhancing HEVC-compressed
and JPEG-compressed images, and the experimental results validated that our
proposed RBQE approach consistently outperforms the state-of-the-art quality
enhancement approaches, while consuming minimal computational resources.
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