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Supplementary Material of “MotionSqueeze: Neural
Motion Feature Learning for Video Understanding”

We present additional results and details that are omitted in our main paper
due to the lack of space. All our code and data are released online at our project
page: http://cvlab.postech.ac.kr/research/MotionSqueeze/

1 Effects of depth-wise separable (DWS) convolutions

We use DWS convolutions rather than standard convolutions to build the fea-
ture transformation (FT) layers deeper and wider while saving computational
cost. Table 1 shows the results of different forms of FT layers on Something-
Something V1 [3] . The accuracy increases as the FT layers become deeper and
have wider receptive fields, and the DWS convolutions show the best accuracy-
FLOPs tradeoff.

2 Comparison with the CP module [9].

As we mentioned in the main paper, the CP module is the one of the most rele-
vant work to our method in the sense that it leverage correspondences between
input video frames. Here we provide more detailed comparisons to it.

Difference in motivation and design. Unlike our MS module, which focuses
on extracting effective motion features across consecutive frames, the CP mod-
ule [9] is designed to capture long-term spatio-temporal relationship within an
input video [11] by computing a non-local correlation tensor across all frames.
The CP module selects k most likely corresponding features in the correlation
tensor with an ‘arg top-k’ operation, and the operation thus makes the correla-
tion tensor non-differentiable.

Performance comparison. We have already shown in Table 1 of the main pa-
per that the result of our method is better than that of the CP module (from the
original paper [9]) on Something-Something V2 [3]. The comparison, however,
may not be totally fair in the sense that the backbone and the other experimen-
tal settings are not the same. For an apples-to-apples comparison between the
MS module and the CP module, we conduct an additional experiment using the
same backbone and setup. We re-implement the CP module in Pytorch based on
the official Tensorflow code1. As a baseline network, we use ImageNet pre-trained
TSM ResNet-18 using 8 input frames. Either MS or CP module is inserted after
the third stage of the network. Table 2 summarizes the comparative results of the
MS module and the CP module on Something-Something V1 [3]. The CP mod-
ule is effective for improving accuracy while consuming almost 6G FLOPs more
than the baseline; the computational cost of the non-local correlation tensor is
quadratic to the number of input frames. In contrast, the MS module performs
0.9% points and 0.8% points higher at top-1 and top-5 accuracy, respectively,
while consuming 26% less FLOPs, compared to the CP module.

1 https://github.com/xingyul/cpnet

http://cvlab.postech.ac.kr/research/MotionSqueeze/
https://github.com/xingyul/cpnet
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Table 1: Performance comparison with different forms of feature transformation
(FT) layers. n× (k, k) denotes n standard convolution layers with a kernel size
of k. * denotes our FT layers in Fig. 3 of the paper.

model FT layers FLOPs Top-1

TSM-R50 - 33.1G 46.7

MSNet-R50 1 × (1, 1) 33.4G 49.3
MSNet-R50 1 × (3, 3) 33.5G 49.8
MSNet-R50 4 × (3, 3) 35.8G 50.4
MSNet-R50 ours* 33.7G 50.9

Table 2: Performance comparison between the CP module [9] and the MS mod-
ule.

model FLOPs Top-1 Top-5

baseline 14.6G 41.5 71.8

CP module [9] 20.4G 44.9 75.6
MS module 15.0G 45.8 76.4

3 Backbone architectures in experiments

In our main paper, we evaluate the effect of the MS module on different backbone
architectures: ResNet [4], TSM ResNet [8], MobileNet-V2 [10] and I3D [2]. We
provide details of the backbone architectures here.

ResNet & TSM ResNet. Table 3 shows the architecture of ResNet [4] and
TSM ResNet [8]. As a default, one MS module is inserted right after res3.

I3D. Figure 1a, 1b show the architecture of I3D [2] used in our experiment;
we reduce the first convolution kernel from 7×7×7 to 1×7×7 as we only use a
sampled clip of 8 frames. The MS module is inserted after Inc(b) of Figure 1b.

MobileNet-V2. Figure 2 and Table 4 show the architecture of MobileNet-
V2 [10]. The MS module is inserted right after stage3 of Table 4. As the feature
channel size of the backbone is small enough, we omit the channel reduction
layer in the MS module.

4 Additional examples of visualization

We present more results of visualization on Something-Something V1 [3] in Fig-
ure 3 and Kinetics-400 [7] in Figure 4. From the top of each figure, RGB frames,
color-coded displacement maps [1], and confidence maps are illustrated. We vi-
sualize examples of horizontal, vertical movements (Figure 3a, 3b, 3c, 4a, 4b, 4c),
rotations (Figure 3d, 4d), scale changes (Figure 3e, 4e), and deformations (Fig-
ure 3f, 4f). We also report some failure cases in the last row of figures (Fig-
ure 3g, 3h, 4g, 4h); estimated displacement maps around regions of occlusion or
severe deformation are often inaccurate.
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Table 3: ResNet & TSM ResNet backbone.
Layers ResNet-18 TSM ResNet-18 ResNet-50 TSM ResNet-50 Output size

conv1 1×7×7, 64, stride 1,2,2 T×112×112

res2

1×3×3 max pool, stride 2

T×56×56[
1×3×3, 64
1×3×3, 64

]
×2

 TSM
1×3×3, 64
1×3×3, 64

×2

1×1×1, 256
1×3×3, 256
1×1×1, 256

×3


TSM

1×1×1, 256
1×3×3, 256
1×1×1, 256

×3

res3

[
1×3×3, 128
1×3×3, 128

]
×2

 TSM
1×3×3, 128
1×3×3, 128

×2

1×1×1, 512
1×3×3, 512
1×1×1, 512

×4


TSM

1×1×1, 512
1×3×3, 512
1×1×1, 512

×4 T×28×28

res4

[
1×3×3, 256
1×3×3, 256

]
×2

 TSM
1×3×3, 256
1×3×3, 256

×2

1×1×1, 1024
1×3×3, 1024
1×1×1, 1024

×6


TSM

1×1×1, 1024
1×3×3, 1024
1×1×1, 1024

×6 T×14×14

res5

[
1×3×3, 512
1×3×3, 512

]
×2

 TSM
1×3×3, 512
1×3×3, 512

×2

1×1×1, 2048
1×3×3, 2048
1×1×1, 2048

×3


TSM

1×1×1, 2048
1×3×3, 2048
1×1×1, 2048

×3 T×7×7

global average pool, FC # of classes

(a) A 3D Inception module of
I3D [2]

(b) I3D [2] architecture.

Fig. 1: I3D (BN-Inception [6]) backbone.

Fig. 2: A bottleneck(p, C ′) module of
MobileNet-V2 [10]. The module trans-
forms C channels to C ′ channels with
an expansion factor p. DW-conv de-
notes a depth-wise convolution [5].

Table 4: MobileNet-V2 backbone. Bot-
tleneck modules in Figure 2 are applied
to the backbone.
Layers MobileNet-V2 Output size

stage1 1×7×7, 32, stride 1,2,2 T×112×112

stage2
bottleneck(1,16)

T×56×56
bottleneck(6,24) × 2

stage3 bottleneck(6,32) × 3 T×28×28

stage4
bottleneck(6,64) × 4

T×14×14
bottleneck(6,96) × 3

stage5

bottleneck(6,160) × 3
T×7×7bottleneck(6,320)

1×1×1, 1280, stride 1,1,1

global average pool, FC # of classes
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(a) “Moving sth. closer to sth.”. (b) “Removing sth., revealing sth. be-
hind”.

(c) “Moving sth. and sth. away from each
other”.

(d) “Pouring sth. into sth.”.

(e) “Pretending to put sth. on a surface”. (f) “Pulling two ends of sth. so that it gets
stretched”.

(g) “Pretending to squeeze sth.”. (h) “Tearing sth. into two pieces”.

Fig. 3: Visualization on Something-Something V1 [3] dataset. Video frames, dis-
placement maps, and confidence maps are shown from the top row in each sub-
figure.
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(a) “Cleaning floor”. (b) “Cleaning pool”.

(c) “Playing trombone”. (d) “Sharpening pencil”.

(e) “Capoeira”. (f) “Deadlifting”.

(g) “Salsa dancing”. (h) “Washing feet”.

Fig. 4: Visualization on Kinetics-400 [7] dataset. Video frames, displacement
maps, and confidence maps are shown from the top row in each subfigure.
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