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1 Implementation Details

In this section we provide all the implementation details about our method ROS
and the parameters used in running all our experiments. We ran ROS on Office-
31 [11], Office-Home [14] and using two different backbones, ResNet-50 [6] and
VGGNet [13]. For an overall scheme of our architecture, we refer the reader to
Figure 1 of the main paper.

Encoder E, ResNet-50 : it is composed by all the layers of a standard ResNet-50
up to the average pooling layer. We start from the encoder model pre-trained
on ImageNet [3] and we update only the last convolutional block, finetuning it
with learning rate 0.0003.

Classifiers C1, C2, ResNet-50 : they are both mainly composed by two Fully
Connected (FC) layers. Specifically the first FC has output 256 and is followed
by a Batch Normalization [8] layer and Leakly-ReLU (with negative slope angle
as 0.2). The second FC changes depending on the classifier: for C1 it has |Cs|
outputs, while for C2 it has |Cs|+1 outputs including the unknown category. All
the layers are learned from scratch with learning rate 0.003.

Rotation classifiers R1, R2, ResNet-50 : they both have the same structure of
the classifiers described above. The only difference is in the number of outputs
which is 4×|Cs| for R1 and 4 for R2. All the layers are learned from scratch with
learning rate 0.003.

Stage I and Stage II, ResNet-50 : The network trained in Stage I is used as
starting point for Stage II, and we know that for the semantic classifier the set
of categories increases by one. To take it into consideration, in Stage II we set
the learning rate of the new unknown class to twice that of the known classes
(already learned in Stage I).

? equal contributions
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Table 1s. Office-Home Resnet50

Office-Home

Pr → Rw Pr → Cl
OS OS* UNK HOS OS OS* UNK HOS

STAsum [9]
77.5±2.3 78.1±2.2 63.3±8.9 69.7±5.9 45.7±2.1 44.7±1.9 71.5±6.6 55.0±3.3

STAmax 75.7±2.4 76.2±2.2 64.3±9.8 69.5±6.2 45.1±4.5 44.2±4.7 67.1±1.9 53.2±2.8
OSBP [12] 76.0±1.3 76.2±1.3 71.7±1.6 73.9±1.4 45.3±1.1 44.5±1.2 66.3±1.8 53.2±0.8
UAN [17] 81.0±0.1 84.0±0.1 0.1±0.0 0.2±0.0 57.1±0.2 59.1±0.8 0.0±0.0 0.0±0.0

ROS 71.1±1.3 70.8±1.4 78.4±1.8 74.4±0.1 47.5±0.9 46.5±1.0 71.2±0.9 56.3±0.5

Pr → Ar Ar → Pr
OS OS* UNK HOS OS OS* UNK HOS

STAsum 56.1±2.8 55.4±2.5 73.7±12.0 63.1±5.6 68.4±3.4 68.7±3.8 59.7±5.5 63.7±1.4
STAmax 54.9±6.3 54.2±6.4 72.4±7.6 61.9±6.3 67.3±1.0 68.0±1.8 48.4±22.6 54.0±17.5
OSBP 59.4±0.7 59.1±0.8 68.1±0.8 63.2±0.2 71.3±0.5 71.8±0.5 59.8±0.5 65.2±0.4
UAN 78.1±0.1 81.1±0.2 0.0±0.0 0.0±0.0 78.1±0.1 81.1±0.2 0.0±0.0 0.0±0.0
ROS 57.6±0.8 57.3±0.8 64.3±1.7 60.6±1.2 68.4±1.1 68.4±1.2 70.3±1.6 69.3±0.2

Ar → Rw Ar → Cl
OS OS* UNK HOS OS OS* UNK HOS

STAsum 80.0±0.6 81.1±0.4 50.5±6.3 62.1±5.0 51.3±2.5 50.8±2.7 63.4±3.4 56.3±1.2
STAmax 77.9±0.4 78.6±0.4 60.4±1.9 68.3±1.2 47.0±5.8 46.0±6.3 72.3±6.2 55.8±2.6
OSBP 78.8±0.8 79.3±0.9 67.5±0.3 72.9±0.5 50.7±0.7 50.2±0.9 61.1±0.7 55.1±0.4
UAN 85.1±0.1 88.2±0.2 0.1±0.0 0.2±0.0 60.0±0.1 62.4±0.1 0.0±0.0 0.0±0.0
ROS 75.9±1.1 75.8±1.2 77.2±0.9 76.5±0.4 51.5±1.0 50.6±1.1 74.1±1.0 60.1±0.4

Rw → Ar Rw → Pr
OS OS* UNK HOS OS OS* UNK HOS

STAsum 67.7±2.8 67.9±2.8 62.3±2.8 65.0±2.8 77.1±1.7 77.9±1.7 58.0±4.5 66.4±3.3
STAmax 67.5±1.7 67.5±1.8 66.7±3.0 67.1±1.2 76.3±0.4 77.1±0.5 55.4±1.5 64.5±1.0
OSBP 66.1±0.5 66.1±0.6 67.3±0.6 66.7±0.4 76.0±0.7 76.3±0.7 68.6±2.1 72.3±1.3
UAN 74.8±0.0 77.5±0.1 0.1±0.0 0.2±0.0 82.1±0.1 85.0±0.2 0.1±0.1 0.1±0.1
ROS 67.1±1.0 67.0±1.1 70.8±2.0 68.8±0.6 72.2±0.7 72.0±0.6 80.0±1.1 75.7±0.9

Rw → Cl Cl → Rw
OS OS* UNK HOS OS OS* UNK HOS

STAsum 51.7±3.0 51.4±3.3 57.9±5.3 54.2±0.9 69.5±2.7 69.8±2.4 63.2±8.9 66.3±5.9
STAmax 50.4±2.5 49.9±2.9 61.1±9.8 54.5±2.6 67.0±3.0 67.0±2.8 66.7±8.7 66.8±5.7
OSBP 48.5±0.5 48.0±0.5 63.0±0.6 54.5±0.2 71.9±0.9 72.0±0.9 69.2±0.2 70.6±0.4
UAN 63.5±0.1 66.2±0.5 0.0±0.0 0.0±0.0 77.7±0.4 80.6±0.4 0.1±0.0 0.2±0.0
ROS 52.3±0.9 51.5±0.9 73.0±0.8 60.4±0.5 65.6±0.3 65.3±0.3 72.2±1.6 68.6±0.7

Cl → Ar Cl → Pr Avg.
OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

STAsum 53.5±3.0 53.0±3.1 63.9±1.2 57.9±2.3 61.5±2.4 61.4±2.4 63.5±3.3 62.5±2.8 63.3±2.1 63.4±2.1 62.6±2.3 61.9±2.1
STAmax 52.0±2.2 51.4±2.3 65.0±2.2 57.4±0.7 61.7±1.6 61.8±1.7 59.1±1.1 60.4±0.7 61.9±2.4 61.8±2.6 63.3±1.9 61.1±0.3
OSBP 59.8±0.4 59.4±0.5 70.3±1.3 64.3±0.4 66.9±1.5 67.0±1.6 62.7±2.3 64.7±0.7 64.2±0.1 64.1±0.1 66.3±0.4 64.7±0.2
UAN 67.8±0.3 70.5±0.5 0.0±0.0 0.0±0.0 71.3±0.1 74.0±0.2 0.1±0.0 0.2±0.0 72.5±0.0 75.2±0.1 0.0±0.0 0.1±0.0
ROS 54.1±1.0 53.6±1.1 65.5±2.8 58.9±0.5 60.3±0.4 59.8±0.4 71.6±1.1 65.2±0.7 62.0±0.2 61.6±0.2 72.4±0.8 66.2±0.3

Encoder E, VGGNet : it is composed by all the layers of a standard VGG-19 up
to the second fully connected layer. We start from the encoder model pre-trained
on ImageNet [3] and we update only the last two FC layers, finetuning it with
learning rate 0.0003.

Classifiers C1, C2, R1, R2, VGGNet : they have exactly the same structure used
for the ResNet-50 case described above.

Stage I and Stage II, VGGNet : The network trained in Stage I is not used
as starting point for Stage II. Still we consider the learning rate of the extra
unknown class in Stage II higher with respect to the other classes (1.5), but
lower than the value used in case of ResNet-50 (2), where Stage II was inheriting
the model of Stage I. We also tried to inherit the Stage I model for Stage II as
done in the ResNet case, but for VGG that setting produced lower results.

Office-31, ResNet-50 : batch size 32, learning rate defined as specified above
and decreasing during training with inverse decay scheduling. We used SGD
with momentum, setting the weight decay as 0.0005 and momentum as 0.9. The
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Table 2s. Office-31

Office-31 ResNet-50

A → W A → D
OS OS* UNK HOS OS OS* UNK HOS

STAsum
[9]

89.0±4.0 92.1±4.6 58.0±5.7 71.0±4.0 90.8±2.6 95.4±2.8 45.5±1.6 61.6±1.7
STAmax 85.0±4.8 86.7±5.4 67.6±1.3 75.9±1.3 88.5±2.1 91.0±2.6 63.9±3.8 75.0±2.2

OSBP [12] 86.0±1.1 86.8±1.2 79.2±0.4 82.7±0.6 89.2±0.4 90.5±0.4 75.5±1.4 82.4±0.9
UAN [17] 89.4±0.4 95.5±0.1 31.0±0.9 46.8±1.0 89.5±0.4 95.6±0.5 24.4±0.9 38.9±1.1

ROS 87.3±1.5 88.4±1.7 76.7±2.4 82.1±1.4 86.7±0.5 87.5±0.6 77.8±0.6 82.4±0.6

D → W W → D
OS OS* UNK HOS OS OS* UNK HOS

STAsum 92.8±1.3 97.1±0.8 49.7±8.1 65.5±7.0 92.2±0.5 96.6±0.4 48.5±6.0 64.4±5.1
STAmax 90.6±2.8 94.1±3.2 55.5±1.3 69.8±0.2 83.4±6.4 84.9±7.2 67.8±5.0 75.2±3.6
OSBP 97.5±0.5 97.7±0.2 96.7±2.7 97.2±1.4 97.8±1.1 99.1±1.0 84.2±2.2 91.1±1.6
UAN 95.5±0.1 99.8±0.0 52.5±1.1 68.8±1.0 94.7±0.4 81.5±32.0 41.4±4.2 53.0±9.0
ROS 98.7±0.5 99.3±0.4 93.0±2.5 96.0±1.5 99.9±0.0 100.0±0.0 99.4±0.0 99.7±0.0

D → A W → A Avg.
OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

STAsum 90.5±1.9 94.1±2.1 55.0±1.7 69.4±1.2 87.9±7.6 92.1±9.0 46.2±8.2 60.9±5.4 90.6±1.8 94.6±2.0 50.5±0.8 65.5±0.3
STAmax 81.5±5.1 83.1±6.2 65.9±5.0 73.2±0.9 66.4±14.5 66.2±16.3 68.0±5.2 66.1±7.1 82.6±2.1 84.3±2.4 64.8±0.9 72.5±0.8
OSBP 75.8±0.3 76.1±0.4 72.3±1.2 75.1±1.2 73.1±0.2 73.0±0.2 74.4±0.7 73.7±0.3 86.6±0.1 87.2±0.1 80.4±0.7 83.7±0.4
UAN 89.9±0.2 93.5±0.1 53.4±0.6 68.0±0.5 89.5±0.6 94.1±0.2 38.8±0.5 54.9±0.5 91.4±0.1 93.4±5.3 40.3±0.7 55.1±1.4
ROS 75.4±0.8 74.8±1.0 81.2±0.9 77.9±0.2 71.3±0.5 69.7±0.6 86.6±2.8 77.2±1.0 86.6±0.4 86.6±0.5 85.8±0.1 85.9±0.2

Office-31 VGGNet

A → W A → D
OS OS* UNK HOS OS OS* UNK HOS

OSBP [12] 79.1±0.8 79.4±1.2 75.8±3.4 77.5±1.2 86.8±6.3 87.9±6.4 75.2±6.1 81.0±6.0
ROS 80.4±2.4 80.3±2.5 81.7±1.7 81.0±2.1 81.3±1.0 81.8±1.0 76.5±0.6 79.0±0.8

AoD [4] 86.4 87.7 73.4 79.9 90.1 92.0 71.1 79.3

D → W W → D
OS OS* UNK HOS OS OS* UNK HOS

OSBP 96.4±0.6 96.8±0.7 93.4±0.8 95.0±0.4 97.5±0.3 98.9±0.4 84.2±0.8 91.0±0.5
ROS 98.7±0.4 99.5±0.4 89.9±0.9 94.4±0.6 99.4±0.0 99.3±0.0 100.0±0.0 99.7±0.0

AoD [4] 97.9 99.8 78.9 88.1 98.2 99.3 87.2 92.9

D → A W → A Avg.
OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

OSBP 75.1±1.3 74.4±1.5 82.4±1.2 78.2±0.6 70.3±4.5 69.7±4.5 76.4±5.3 72.9±4.8 84.2±0.4 84.5±0.4 81.2±1.4 82.6±0.8
ROS 77.0±0.0 76.7±0.4 79.6±3.5 78.1±1.4 64.9±0.2 62.2±0.2 91.6±0.5 74.1±0.0 83.6±0.4 83.3±0.4 86.5±0.3 84.4±0.2

AoD [4] 81.6 88.4 13.6 23.6 80.3 82.6 57.3 67.7 89.1 91.6 63.6 71.9

loss weights are set as λ1,1 = λ2,2 = 3 and λ1,2 = λ2,1 = 0.1. We ran ROS with
80 epochs for Stage I and 80 for Stage II. Each experiment is repeated three
times taking the result on the target at the last epoch.

Office-31, VGGNet : batch size 32, learning rate defined as specified above and
decreasing during training with inverse decay scheduling. We used SGD with
momentum, setting the weight decay as 0.0005 and momentum as 0.9. The loss
weights are set as λ1,1 = λ2,2 = 3 and λ1,2 = λ2,1 = 0.1. We ran ROS with 100
epochs for Stage I and 200 for Stage II. Each experiment is repeated three times
taking the result on the target at the last epoch.

Office-Home, ResNet-50 : batch size 32, learning rate defined as specified above
and decreasing during training with inverse decay scheduling. We used SGD
with momentum, setting the weight decay as 0.0005 and momentum as 0.9. The
loss weights are set as λ1,1 = λ2,2 = 3 and λ2,1 = 0.1. With respect to the
previous cases, for this dataset adding the center loss to the rotation classifier
R1 seems less relevant: we kept it in the optimization process with a low weight
λ1,2 = 0.001. We ran ROS with 150 epochs for Stage I and 45 for Stage II. Each
experiment is repeated three times taking the result on the target at the last
epoch.
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Table 3s. Reported vs reproduced OS accuracy (%) averaged over three runs on all
the sub-domains of Office-31 and Office-Home with the indicated backbones.

Reproducibility Study

Office-31 (ResNet-50) Office-31 (VGGNet) Office-Home (ResNet-50)

STAsum UAN OSBP STAsum UAN
OSreported OSours gap OSreported OSours gap OSreported OSours gap OSreported OSours gap OSreported OSours gap

92.9 90.6±1.8 2.3 89.2 87.9±0.03 1.3 89.1 84.2 ±0.4 4.9 69.5 63.3±2.1 6.2 77.0 75.1 ±0.2 1.9

It is worth noting that we essentially use the same set of parameters for all
settings. This highlights that our method can generalize across datasets and
network architectures without specific finetuning of the hyper-parameters. For
the sake of completeness, we also provide a fully detailed evaluation of ROS
including the OS metric and standard deviation for all our experiments in Tables
1s and 2s. We remark that, in terms of OS and OS*, STA is extremely unstable
with large standard deviations over multiple runs.

2 Reproducibility Study

We extend here the reproducibility study presented in the main paper consid-
ering also further results on the Office-Home dataset. Specifically, in Table 3s
we compare the results published in the official papers of STA [9], OSBP [12],
and UAN [17] considering the OS accuracy since it is the only metric shared
by all the works. For UAN we replicated the particular settings described in
the original publication: for Office-Home the first 10 classes in alphabetic order
are shared between source and target, the next five are private source classes
and all the others are private target classes. For Office-31 the first 10 classes in
alphabetic order are shared between source and target, the next 10 are private
source classes and all the others are private target classes. It is worth noting
that, although we used the code provided by the authors and we followed the
instructions provided in the related papers, the obtained results are lower than
the declared ones, with gaps that range between 1.9% and 6.2%. For complete
transparency, we summarize here all the details about implementation, code and
hyper-parameters used for running the competitor methods.

STA [9] https://github.com/thuml/Separate_to_Adapt
The code provides a full description of how to run STA for the the A→D domain
shift of Office-31 with ResNet-50 backbone. For the experiments on Office-31 we
trained for 900 iterations in Stage I (400 for the multi-binary classifier and 500
for the known/unknown classifier) and 1900 iterations in Stage II. We used batch
size 32, SGD with momentum 0.9 and weight decay 0.0005. We used the inverse
scheduling for the learning rate that is set as 0.001 in Stage I and 0.0005 in Stage
II (10 times smaller for finetuned layers). Since the paper does not differentiate
between Office-31 and Office-Home in terms of hyper-parameters, we ran the
experiments on Office-Home with the same exact values.

It is worth noting that there is some ambiguity around the value of the
learning rate for STA. The paper indicates that the learning rate may be adjusted
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in the {0.001, 1} range with cross-validation. However the code does not provide
any validation routine, thus it is unclear how this parameter should be further
refined. In addition, the learning rate set for Stage II in the code is outside the
range indicated in the paper. In our experiments, we kept always the learning
rate set in the code. We also found other ambiguities between the paper and
the code. The paper indicates that in Stage I the feature extractor is trained
on the source samples, while the feature extractor is frozen with the original
weights from ImageNet. Moreover, as already discussed in our main submission,
the paper presents a similarity score based on the max operator, while it is
implemented with a sum operator in the released code. Finally, although the
paper includes results with VGGNet, the code for this variant is not provided,
nor specific details are discussed in the paper, which prevents reproducibility.

OSBP [12] https://github.com/ksaito-ut/OPDA_BP
This repository provides the code for OSBP, both with the VGGNet and ResNet-
50 backbones. Specifically, the instructions explain how to run OSBP on the
VisDA-2017 dataset [10] with VGG-19. For the experiments using VGGNet on
Office-31, we used the provided implementation and we followed the description
of the OSDA paper in using batch size 32, SGD with momentum 0.9, learning
rate 0.001, and weight decay 0.0005. We trained only the new layers for 500
epochs, while the others were frozen with ImageNet weights. For the experiments
using ResNet-50, we use batch size 32, learning rate 0.001, and train for 300
epochs for Office-Home and 500 for Office-31. Since the authors mentioned that
the library version can make a significant difference in the results, for all the
experiments we used exactly their declared version (Pytorch 0.3).

UAN [17] https://github.com/thuml/Universal-Domain-Adaptation
This repository provides the code for UAN with ResNet-50 as backbone: specific
files contain instructions to run experiments on both Office-31 and Office-Home.
On Office-31 we trained for 20000 iterations with batch size 36, SGD with and
momentum 0.9, learning rate 0.001 for new layers and 0.0001 for finetuned layers
with inverse scheduling, and weight decay 0.0005. On Office-Home we trained for
40000 iterations with batch size 36, SGD with and momentum 0.9, learning rate
0.01 for new layers and 0.001 for finetuned layers with inverse scheduling, and
weight decay 0.0005. It is worth noting that the original evaluation implemented
in the code would have saved the performance of UAN on the test data at each
epoch and presented the best accuracy (OS) at the end of the training. This is not
a standard procedure. To avoid its possibly unfair beneficial effect we provide
the results obtained after the last epoch as done for all the other benchmark
methods in our experiments.

3 Extended Openness Analysis

Following the openness analysis of Figure 4 of the main paper, we also extend
the evaluation to include a case with lower openness: 40 known classes O =
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Office-Home (Avg.)

40 known classes 25 known classes

OS OS* UNK HOS OS OS* UNK HOS

STAsum[9] 53.9±1.7 53.5±1.7 71.1±3.0 60.1±1.7 63.5±2.6 63.3±3.3 65.1±2.2 61.4±1.5
OSBP[12] 56.3±1.6 55.9±1.6 71.8±3.6 62.3±1.8 61.4±2.5 61.0±2.8 64.2±2.8 62.0±2.8
ROS 56.2±1.2 55.9±1.2 71.1±2.8 62.1±1.8 59.9±1.9 59.5±1.9 70.4±4.0 63.9±2.7

10 known classes 5 known classes

OS OS* UNK HOS OS OS* UNK HOS

STAsum[9] 72.5±5.8 73.8±6.6 61.4±14.5 62.5±8.6 74.4±2.8 78.9±6.3 52.1±17.7 57.5±12.3
OSBP[12] 73.6±5.7 76.2±5.7 47.9±4.8 58.0±5.1 72.3±4.9 82.5±5.6 21.5±1.6 33.3±2.6
ROS 69.9±5.2 68.9±5.5 78.9±2.9 73.0±4.4 73.4±6.7 71.1±7.6 86.3±2.7 77.2±5.9

Fig. 1s. Accuracy (%) averaged over the three configurations designed for each degree
of openness considered: with 40, 25, 10 and 5 known classes. The table reports in details
the values used to prepare the plots

1 − 40
65 = 0.38 using ID:{0-39, 15-54, 25-64}. The results in Figure 1s confirms

the trend already observed in the main paper. Given the low UNK and HOS
results of UAN we did not include this method in the ablation and focused only
on the two best competitors of ROS: OSBP and STA.

4 Sensitivity analysis of the hyper-parameters

We perform a sensitivity analysis to evaluate the impact of changes in the hyper-
parameter values on the performance of ROS. The experiments are performed
on Office-31 with ResNet-50 as backbone and the results are displayed in Figure
6s. ROS is not very sensitive to the value of the hyper-parameters, with only
λ2,1 causing a variation in HOS > 1.0. Please note that it is safe to set the
entropy weight to 0.1 without hyper-parameters tuning, exactly as done in [2,
9, 16]. Regardless of the specific hyper-parameters, ROS outperforms its best
competitor OSBP (HOS=83.7) confirming that the superior performance is the
result of algorithmic novelty rather than from hyper-parameters tuning. More-
over, we underline that we use the same hyper-parameters for all 18 domain
pairs demonstrating that the choice of the hyper-parameters’ value is robust
across datasets. As a final remark, we note that ROS has a comparable number
of parameters with respect to competing approaches. Indeed λ1,1 and λ2,2 are
defined separaterly, but they are in fact constrained to the same value. So overall
ROS has three parameters and two for the training iterations, the same as the
most recent AoD (see Equation (3) of [4]).
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Fig. 6s. Hyper-parameter analysis

Table 4s. Analysis on the use of self-supervised tasks for the two stages of the method
and further ablation.

Other Self-Supervised Tasks & Ablation Study

STAGE I (AUC-ROC) A → W A → D D → W W → D D → A W → A Avg.

ROS 90.1 88.1 99.4 99.9 87.5 83.8 91.5
ROS - Translation 80.8 74.9 82.2 98.8 72.0 79.1 81.3
ROS - Rotation+Translation 82.4 79.3 99.0 99.4 82.6 82.8 87.6
ROS - 4-Class Rotation 58.7 57.2 70.0 78.4 55.8 56.9 62.9

STAGE II (HOS) A → W A → D D → W W → D D → A W → A Avg.

ROS 82.1 82.4 96.0 99.7 77.9 77.2 85.9
ROS - Jigsaw 83.1 79.3 93.5 100.0 75.5 76.1 84.6
ROS - Rotation+Jigsaw 85.7 80.5 95.0 100.0 76.0 76.7 85.7
ROS Stage I - λ2,1 = 0 Stage II 79.4 82.0 95.3 99.6 75.1 72.5 84.0
ROS Stage I - ROS Stage II+Center Loss 79.6 82.8 95.1 99.5 77.8 76.3 85.2

Table 5s. Runtime analysis on Office-31(A-W) with ResNet-50. Hardware - CPU:
Intel(R) Core(TM) i7-5930K @ 3.50GHz, GPU (x1): Nvidia GeForce GTX 1080Ti.

Time analysis

STA[9] UAN[17] OSBP[12] ROS

1069s 9615s 3672s 1875s

5 Other Self-Supervised Tasks and Further Ablation

Our goal is to show that it is possible to successfully tackle both sub-tasks of
OSDA, known/unknown separation and domain alignment, with a single self-
supervised task. From the literature of CSDA [15, 2] and anomaly detection [5,
1, 7], rotation classification clearly emerges as the most reliable candidate for
our purpose. To confirm our claim, we run additional experiments on Office-31
(ResNet-50) with alternative self-supervised tasks. Following [5], we considered
the self-supervised task of translation classification for anomaly detection (Stage
I). Moreover, following [2], we considered the self-supervised task of solving a
jigsaw puzzle for domain alignment (Stage II). Table 4s show the obtained re-
sults: in both sets of experiments, rotation recognition alone outperforms both
the alternative task and combination of the two tasks.

We also confirm the crucial contribution of the multi-rotation task instead of
the standard 4-Class task in Stage I. Table 4s shows that the standard rotation
decreases the AUC-ROC by an astonishing 28.6%. Of course we keep the anchor
(relative rotation) also in this 4-Class experiment.
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Since using the entropy loss in the object classification process across do-
mains is standard practice, we did not include an ablation for Stage II of ROS
on this term in the main paper. For completeness we present it here. We set
λ2,1 = 0 including the results in Table 4s: as expected, without the entropy loss
the performance drop on average of 1.9 percentage points, confirming that the
entropy helps to adapt with a more evident effect in case of large domain gaps
(e.g . A→W, W→A). Moreover, in Stage II, the center loss is not as relevant as
for Stage I, and it would imply the introduction of an extra hyper-parameter.

Algorithm 1 Compute normality score and Generate Dknw
t & Dunk

t

Input:
Trained networks E and R1

Target dataset Dt = {xt
j}Nt

j=1

Output:

Known target dataset Dknw
t = {xt,knw

j }Nt,knw

j=1

Unknown target dataset Dunk
t = {xt,unk

j }Nt,unk

j=1

procedure getRotationScore(z,i)
o = zeros(|Cs|) # vector of |Cs| zeros
for each k in {1, ..., |Cs|} do

[o]k = [z]k×4+i # [a]b indicated the b-th element of vector a

return o
procedure getEntropyScore(z)

return z · log(z)/ log(|Cs|)
procedure getNormalityScore(E,R1,Dt)

for each xt
j in Dt do

Initialize: h = {}, o = zeros(|Cs|)
for each i in {1, ..., 4} do

x̃j = rot90(xj , i)
zj = softmax

(
R1(E(xj)||E(x̃j))

)
h← getEntropyScore(zj)
o += getRotationScore(zj , i) # element-wise sum of vectors

h = mean(h)
o = max(o)
N ← ηj = max(o, 1− h)

return N

procedure Main( )
Initialize: Dknw

t = {}, Dunk
t = {}

A = getNormalityScore(E,R1,Dt)
for each (xj , ηj) in (Dt,N ) do

if ηj ≥ mean(N ) then
Dknw

t ← xj

else
Dunk

t ← xj
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Indeed, the results in in Table 4s indicate that adding the center loss to Stage
II might even produce a slight drop in performance.

6 Time analysis

We executed a training runtime analysis on Office-31(A-W) with ResNet-50 for
all the methods discussed in the paper with their indicated hyper-parameters.
The results in Table 5s show that that the time is not an issue and ROS is even
twice as fast as its best competitor in terms of HOS performance (OSBP).

7 Normality Score Pseudo-code

As promised in the main paper we summarize in Algorithm 1 the procedure used
to calculate the normality score at the end of Stage I of ROS.
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