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A More Related Work

Non-local Attention Networks. Keeping track of non-local architectures [13]
as a self-attention mechanism, A2-Net [4] gathers global features with a second-
order attention pooling and distributes the information to each local position
in a two-step configuration. AA-Net [3] and Fully Attention model [11] further
develop a two-dimensional relative self-attention mechanism to replace convolu-
tions entirely. DANet [5] and CCNet [8] consider spatial and channel non-local
modules simultaneously to strengthen contextual modeling for semantic segmen-
tation. EMANet [9] is inspired by the EM algorithm and computes the attention
map in an iterative fashion. Without exception, our proposed learning method
could also be applied to these specialized attention modules for quality-aware
image classification by inspecting their feature state and the corresponding non-
local attention action in the same manner.
Reinforcement Learning for Network Engineering. Deep reinforcement
learning has been adopted in the area of neural network slimming. For example,
BlockDrop [15] utilizes a policy network to learn the optimal block dropping
strategy for each image sample, simultaneously selecting minimal layer config-
urations for the inference route and preserving the desired prediction accuracy.
SkipNet [14] uses a gating network to selectively skip redundant layers condi-
tioned on the preceding activation and proposes a hybrid learning regime to
optimize the discrete skipping decisions. RNP [10] leverages the Q-learning al-
gorithm to assess the importance of feature maps and dynamically prunes the
network based on the input images and the current feature maps to retain the
recognition ability. N2N [1] applies a reinforcement learning model to learn the
policy of channel selection, condensing a large teacher network into a small
student one by removing redundant layers and shrinking the size of remaining
layers. AMC [6] employs reinforcement learning to efficiently sample from the
network architecture space, leading to highly compressed models while preserv-
ing their accuracy. In this regime, the automatically learned deep compression
policy could outperform the conventional rule-based pipelines. In addition to
these post-processing approaches, reinforcement learning has been applied to
automate the design process of neural architectures, referred to as Neural Ar-
chitecture Search (NAS). NASNet [16, 17] and MetaQNN [2] lead this trend of
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utilizing reinforcement learning skills to search for a well-performing network
architecture. Unlike these methods which concentrate on network compression
and architecture search, we propose to measure and boost the quality of at-
tention generation under the reinforcement learning framework. To the best of
our knowledge, little progress with reinforcement learning has been made in
the fundamental problem of handcrafted attention networks, which is of vital
importance in the neural architecture design.

B Visualization Results

B.1 Channel Attention

As illustrated in Fig. 1, we compare the distributions of channel attention vec-
tors in all building blocks of SE-ResNet-50 before and after applying our method.
The most significant difference lies in the last stage (conv5 x), where the atten-
tion weights tend to be more diverse across different channels in our reinforced
attention networks. Since each object category always exhibits preference to
discriminative visual features in certain channels, our method facilitates better
adaption and specialization of high-level features by improving the recalibration
quality of attention modules. The enhanced representation learning ultimately
boosts the visual recognition performance of the original attention networks, as
validated by the quantitative results in the main paper.

B.2 Spatial Attention

Although our method is not directly designed to explore attended regions in the
image space, the intermediate feature maps in the backbone network could be
back-projected to the image space using Grad-CAM [12], merely in order to pro-
vide an intuition of the improved spatial attention with our method. Grad-CAM
computes the importance of each location in the image space using gradients
with respect to a specific class. We provide representative visualization results
by applying Grad-CAM to the last convolutional layer of CBAM-ResNet-50 and
our proposed reinforced attention version on the ImageNet validation set, as
shown in the heat maps in Fig. 2 and 3. By observing and comparing salient re-
gions where the network allocates more resources for correct prediction, it is clear
that those regions covering the main objects enjoy higher quality of attention in
our reinforced attention networks.

Specifically, we make the observations that the attended regions in our rein-
forced attention networks are guided to be more correct (such as the top four
comparisons in Fig. 2) and more complete (such as the bottom four comparisons
in Fig. 2 and the top four comparisons in Fig. 3), covering the objects of interest.
The attended regions could be precise even with objects heavily occluded (see
“hippopotamus, hippo, river horse, Hippopotamus amphibius” in Fig. 3) or par-
tially observed (see “barometer” in Fig. 3). When the critical feature regions for
recognition are disconnected (see “acoustic guitar” in Fig. 3) or occupy a small
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Fig. 1: Distributions of channel-attention vectors on the ImageNet validation set
with SE-ResNet-50 before (top) and after (bottom) applying DREAL. The x-axis
represents channel index and the y-axis represents magnitude.
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Fig. 2: Grad-CAM visualization results for spatial attention. Evaluated images
are selected from eight categories with the ground truth labels annotated at the
bottom of each pair. The top one in each pair corresponds to results from the
baseline CBAM-ResNet50, while the bottom one represents the result improved
using our DREAL method.
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Fig. 3: Grad-CAM visualization results for spatial attention. Evaluated images
are selected from eight categories with the ground truth labels annotated at the
bottom of each pair. The top one in each pair corresponds to results from the
baseline CBAM-ResNet-50, while the bottom one represents results improved
using our DREAL method.
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portion in the whole image (see “basketball” in Fig. 3), our proposed reinforced
attention network can still localize them successfully, taking advantage of the
quality-aware guidance from the extra critic network for image classification.

Furthermore, our method could bring about substantial performance im-
provement on the person re-identification benchmarks. Analogously, the success
of reinforced spatial attention model in this specific task may also arise from
removing its attention from misleading regions of the pedestrian image to effec-
tively alleviate the negative effects of occlusion and cluttered backgrounds. For
DukeMTMC-reID, a more complicated scenario usually with multiple objects in
the scene, we choose two images of the same person from the gallery and query
sets respectively and observe that our method helps the attention map to always
focus on the same informative parts of this person, such as the bag, pants and
so on, while the baseline attention map fails to locate these salient regions more
often.

B.3 Critique and Reward

We track the predicted critic value and the reward for each attention module in
the SE-ResNet-50 during the entire training period, as demonstrated in Fig. 4.
The variation of expected critiques closely follows their corresponding actual
rewards, speaking for the effectiveness of the regression loss Lr in updating
the critic network φ to make precise predictions. The values of critique and
reward rise up gradually as the optimization goes (they may drop before the
first learning rate decay arrives since the model predictions can be noisy and not
reliable enough even with the aid of attention modules at this very early period),
speaking for the effectiveness of the quality loss Lq in updating the attention
module θ to yield high-quality attention maps in favor of the final recognition
performance. The visual analysis of critique and reward further discloses the
learning dynamics of our proposed DREAL method and justifies the principle of
our design.

As an additional note, the first line of Fig. 4 shows a trend that the critic
network doesn’t converge quite well in the shallower layers when compared to
the deeper ones where the critic and reward values are much closer. This obser-
vation somewhat reveals that our DREAL method shows more effectiveness in
the deeper layers. We conduct ablation studies by separately applying DREAL
to each stage of the top-performing SRM-ResNet-101 and summarize the top-
1 error on ImageNet in Table 1. Though there is a performance improvement
regarding each stage compared to the baseline, applying DREAL to all stages
leads to the best result as what we show in the main paper. But in some cases
where computational budget becomes the key consideration, we may remove
our method from some shallow layers as a trade-off. Furthermore, we note that
the attention modules themselves are more important in deeper layers, such as
conv4 x and conv5 x, as claimed in the SENet paper [7] and our visual analysis.
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Table 1: Top-1 error on the ImageNet validation set when applying DREAL to
different stages of SRM-ResNet-101.

Stage conv2 x conv3 x conv4 x conv5 x None (baseline) Full (ours default)

Top-1 Err.(%) 21.132 20.946 20.858 20.794 21.404 20.474
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Fig. 4: The critique Q and reward R in each attention module of the SE-ResNet-
50 during all the 100 training epochs. The x-axis represents the training epoch
and the y-axis represents the value.
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