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Abstract. We revisit the one-shot Neural Architecture Search (NAS)
paradigm and analyze its advantages over existing NAS approaches. Ex-
isting one-shot method, however, is hard to train and not yet effective
on large scale datasets like ImageNet. This work propose a Single Path
One-Shot model to address the challenge in the training. Our central idea
is to construct a simplified supernet, where all architectures are single
paths so that weight co-adaption problem is alleviated. Training is per-
formed by uniform path sampling. All architectures (and their weights)
are trained fully and equally.
Comprehensive experiments verify that our approach is flexible and ef-
fective. It is easy to train and fast to search. It effortlessly supports
complex search spaces (e.g., building blocks, channel, mixed-precision
quantization) and different search constraints (e.g., FLOPs, latency). It
is thus convenient to use for various needs. It achieves start-of-the-art
performance on the large dataset ImageNet.

1 Introduction

Deep learning automates feature engineering and solves the weight optimiza-
tion problem. Neural Architecture Search (NAS) aims to automate architecture
engineering by solving one more problem, architecture design. Early NAS ap-
proaches [36, 32, 33, 11, 16, 21] solves the two problems in a nested manner. A
large number of architectures are sampled and trained from scratch. The com-
putation cost is unaffordable on large datasets.

Recent approaches [23, 4, 12, 26, 15, 31, 3, 2] adopt a weight sharing strategy
to reduce the computation. A supernet subsuming all architectures is trained
only once. Each architecture inherits its weights from the supernet. Only fine-
tuning is performed. The computation cost is greatly reduced.

∗Equal contribution. This work is done when Haoyuan Mu and Zechun Liu are
interns at MEGVII Technology.
†Corresponding author.
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Most weight sharing approaches use a continuous relaxation to parameter-
ize the search space [23, 4, 12, 26, 31]. The architecture distribution parameters
are jointly optimized during the supernet training via gradient based methods.
The best architecture is sampled from the distribution after optimization. There
are two issues in this formulation. First, the weights in the supernet are deeply
coupled. It is unclear why inherited weights for a specific architecture are still
effective. Second, joint optimization introduces further coupling between the ar-
chitecture parameters and supernet weights. The greedy nature of the gradient
based methods inevitably introduces bias during optimization and could easily
mislead the architecture search.

The one-shot paradigm [3, 2] alleviates the second issue. It defines the su-
pernet and performs weight inheritance in a similar way. However, there is no
architecture relaxation. The architecture search problem is decoupled from the
supernet training and addressed in a separate step. Thus, it is sequential. It com-
bines the merits of both nested and joint optimization approaches above. The
architecture search is both efficient and flexible.

The first issue is still problematic. Existing one-shot approaches [3, 2] still
have coupled weights in the supernet. Their optimization is complicated and
involves sensitive hyper parameters. They have not shown competitive results
on large datasets.

This work revisits the one-shot paradigm and presents a new approach that
further eases the training and enhances architecture search. Based on the ob-
servation that the accuracy of an architecture using inherited weights should be
predictive for the accuracy using optimized weights, we propose that the super-
net training should be stochastic. All architectures have their weights optimized
simultaneously. This gives rise to a uniform sampling strategy. To reduce the
weight coupling in the supernet, a simple search space that consists of single
path architectures is proposed. The training is hyperparameter-free and easy to
converge.

This work makes the following contributions.

1. We present a principled analysis and point out drawbacks in existing NAS
approaches that use nested and joint optimization. Consequently, we hope
this work will renew interest in the one-shot paradigm, which combines the
merits of both via sequential optimization.

2. We present a single path one-shot approach with uniform sampling. It over-
comes the drawbacks of existing one-shot approaches. Its simplicity enables
a rich search space, including novel designs for channel size and bit width, all
addressed in a unified manner. Architecture search is efficient and flexible.
Evolutionary algorithm is used to support real world constraints easily, such
as low latency.

Comprehensive ablation experiments and comparison to previous works ver-
ify that the proposed approach is state-of-the-art in terms of accuracy, memory
consumption, training time, architecture search efficiency and flexibility.
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2 Review of NAS Approaches

Without loss of generality, the architecture search space A is represented by
a directed acyclic graph (DAG). A network architecture is a subgraph a ∈ A,
denoted as N (a,w) with weights w.

Neural architecture search aims to solve two related problems. The first is
weight optimization,

wa = argmin
w
Ltrain (N (a,w)) , (1)

where Ltrain(·) is the loss function on the training set.
The second is architecture optimization. It finds the architecture that is

trained on the training set and has the best accuracy on the validation set,
as

a∗ = argmax
a∈A

ACCval (N (a,wa)) , (2)

where ACCval(·) is the accuracy on the validation set.
Early NAS approaches perform the two optimization problems in a nested

manner [35, 36, 32, 33, 1]. Numerous architectures are sampled fromA and trained
from scratch as in Eq. (1). Each training is expensive. Only small dataset (e.g.,
CIFAR 10) and small search space (e.g, a single block) are affordable.

Recent NAS approaches adopt a weight sharing strategy [4, 12, 23, 26, 2, 3,
31, 15]. The architecture search space A is encoded in a supernet§, denoted as
N (A,W ), where W is the weights in the supernet. The supernet is trained once.
All architectures inherit their weights directly from W . Thus, they share the
weights in their common graph nodes. Fine tuning of an architecture is performed
in need, but no training from scratch is incurred. Therefore, architecture search
is fast and suitable for large datasets like ImageNet.

Most weight sharing approaches convert the discrete architecture search space
into a continuous one [23, 4, 12, 26, 31]. Formally, space A is relaxed to A(θ),
where θ denotes the continuous parameters that represent the distribution of
the architectures in the space. Note that the new space subsumes the original
one, A ⊆ A(θ). An architecture sampled from A(θ) could be invalid in A.

An advantage of the continuous search space is that gradient based meth-
ods [12, 4, 23, 22, 26, 31] is feasible. Both weights and architecture distribution
parameters are jointly optimized, as

(θ∗,Wθ∗) = argmin
θ,W

Ltrain(N (A(θ),W )). (3)

or perform a bi-level optimization, as

θ∗ = argmax
θ

ACCval (N (A(θ),W ∗θ ))

s.t. W ∗θ = argmin
W

Ltrain(N (A(θ),W ))
(4)

§“Supernet” is used as a general concept in this work. It has different names and
implementation in previous approaches.
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After optimization, the best architecture a∗ is sampled from A(θ∗).
Optimization of Eq. (3) is challenging. First, the weights of the graph nodes

in the supernet depend on each other and become deeply coupled during opti-
mization. For a specific architecture, it inherits certain node weights from W .
While these weights are decoupled from the others, it is unclear why they are
still effective.

Second, joint optimization of architecture parameter θ and weights W intro-
duces further complexity. Solving Eq. (3) inevitably introduces bias to certain
areas in θ and certain nodes in W during the progress of optimization. The bias
would leave some nodes in the graph well trained and others poorly trained.
With different level of maturity in the weights, different architectures are actu-
ally non-comparable. However, their prediction accuracy is used as guidance for
sampling in A(θ) (e.g., used as reward in policy gradient [4]). This would further
mislead the architecture sampling. This problem is in analogy to the “dilemma
of exploitation and exploration” problem in reinforcement learning. To alleviate
such problems, existing approaches adopt complicated optimization techniques
(see Table 1 for a summary).

Task constraints Real world tasks usually have additional requirements on a net-
work’s memory consumption, FLOPs, latency, energy consumption, etc. These
requirements only depends on the architecture a, not on the weights wa. Thus,
they are called architecture constraints in this work. A typical constraint is that
the network’s latency is no more than a preset budget, as

Latency(a∗) ≤ Latmax. (5)

Note that it is challenging to satisfy Eq. (2) and Eq. (5) simultaneously for most
previous approaches. Some works augment the loss function Ltrain in Eq. (3)
with soft loss terms that consider the architecture latency [4, 23, 26, 22]. However,
it is hard, if not impossible, to guarantee a hard constraint like Eq. (5).

3 Our Single Path One-Shot Approach

As analyzed above, the coupling between architecture parameters and weights
is problematic. This is caused by joint optimization of both. To alleviate the
problem, a natural solution is to decouple the supernet training and architecture
search in two sequential steps. This leads to the so called one-shot approaches [3,
2].

In general, the two steps are formulated as follows. Firstly, the supernet
weight is optimized as

WA = argmin
W

Ltrain (N (A,W )) . (6)

Compared to Eq. (3), the continuous parameterization of search space is absent.
Only weights are optimized.
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Fig. 1. Comparison of single path strategy
and drop path strategy
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Secondly, architecture searched is performed as

a∗ = argmax
a∈A

ACCval (N (a,WA(a))) . (7)

During search, each sampled architecture a inherits its weights from WA as
WA(a). The key difference of Eq. (7) from Eq. (1) and (2) is that architecture
weights are ready for use. Evaluation of ACCval(·) only requires inference. Thus,
the search is very efficient.

The search is also flexible. Any adequate search algorithm is feasible. The
architecture constraint like Eq. (5) can be exactly satisfied. Search can be re-
peated many times on the same supernet once trained, using different constraints
(e.g., 100ms latency and 200ms latency). These properties are absent in previous
approaches. These make the one-shot paradigm attractive for real world tasks.

One problem in Sec. 2 still remains. The graph nodes’ weights in the supernet
training in Eq.( 6) are coupled. It is unclear why the inherited weights WA(a)
are still good for an arbitrary architecture a.

The recent one-shot approach [2] attempts to decouple the weights using
a “path dropout” strategy. During an SGD step in Eq. (6), each edge in the
supernet graph is randomly dropped. The random chance is controlled via a
dropout rate parameter. In this way, the co-adaptation of the node weights is
reduced during training. Experiments in [2] indicate that the training is very
sensitive to the dropout rate parameter. This makes the supernet training hard.
A carefully tuned heat-up strategy is used. In our implementation of this work,
we also found that the validation accuracy is very sensitive to the dropout rate
parameter.

Single Path Supernet and Uniform Sampling. Let us restart to think about the
fundamental principle behind the idea of weight sharing. The key to the success
of architecture search in Eq. (7) is that, the accuracy of any architecture a on a
validation set using inherited weight WA(a) (without extra fine tuning) is highly
predictive for the accuracy of a that is fully trained. Ideally, this requires that the
weight WA(a) to approximate the optimal weight wa as in Eq. (1). The quality of
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the approximation depends on how well the training loss Ltrain (N (a,WA(a))) is
minimized. This gives rise to the principle that the supernet weights WA should
be optimized in a way that all architectures in the search space are optimized
simultaneously. This is expressed as

WA = argmin
W

Ea∼Γ (A) [Ltrain(N (a,W (a)))] , (8)

where Γ (A) is a prior distribution of a ∈ A. Note that Eq. (8) is an implemen-
tation of Eq. (6). In each step of optimization, an architecture a is randomly
sampled. Only weights W (a) are activated and updated. So the memory usage
is efficient. In this sense, the supernet is no longer a valid network. It behaves
as a stochastic supernet [22]. This is different from [2].

To reduce the co-adaptation between node weights, we propose a supernet
structure that each architecture is a single path, as shown in Fig. 3 (a). Compared
to the path dropout strategy in [2], the single path strategy is hyperparameter-
free. We compared the two strategies within the same search space (as in this
work). Note that the original drop path in [2] may drop all operations in a block,
resulting in a short cut of identity connection. In our implementation, it is forced
that one random path is kept in this case since our choice block does not have
an identity branch. We randomly select sub network and evaluate its valida-
tion accuracy during the training stage. Results in Fig.1 show that drop rate
parameters matters a lot. Different drop rates make supernet achieve different
validation accuracies. Our single path strategy corresponds to using drop rate
1. It works the best because our single path strategy can decouple the weights
of different operations. The Fig.1 verifies the benefit of weight decoupling.

The prior distribution Γ (A) is important. In this work, we empirically find
that uniform sampling is good. This is not much of a surprise. A concurrent
work [10] also finds that purely random search based on stochastic supernet is
competitive on CIFAR-10. We also experimented with a variant that samples the
architectures uniformly according to their constraints, named uniform constraint
sampling. Specifically, we randomly choose a range, and then sample the archi-
tecture repeatedly until the FLOPs of sampled architecture falls in the range.
This is because a real task usually expects to find multiple architectures satisfy-
ing different constraints. In this work, we find the uniform constraint sampling
method is slightly better. So we use it by default in this paper.

We note that sampling a path according to architecture distribution during
optimization is already used in previous weight sharing approaches [22, 4, 31,
28, 6, 20]. The difference is that, the distribution Γ (A) is a fixed prior during
our training (Eq. (8)), while it is learnable and updated (Eq. (3)) in previous
approaches (e.g. RL [15], policy gradient [22, 4], Gumbel Softmax [23, 26], APG
[31]). As analyzed in Sec. 2, the latter makes the supernet weights and architec-
ture parameters highly correlated and optimization difficult. There is another
concurrent work [10] that also proposed to use random sampling of paths in
One-Shot model, and performed random search to find the superior architecture.
This paper [10] achieved competitive results to several SOTA NAS approaches
on CIFAR-10, but didn’t verify the method on large dataset ImageNet. It didn’t
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prove the effectiveness of single path sampling compared to the “path dropout”
strategy and analyze the correlation of the supernet performance and the final
evaluation performance. These questions will be answered in our work, and our
experiments also show that random search is not good enough to find superior
architecture from the large search space.

Comprehensive experiments in Sec. 4 show that our approach achieves better
results than the SOTA methods. Note that there is no such theoretical guarantee
that using a fixed prior distribution is inherently better than optimizing the
distribution during training. Our better result likely indicates that the joint
optimization in Eq. (3) is too difficult for the existing optimization techniques.

Supernet Architecture and Novel Choice Block Design. Choice blocks are used
to build a stochastic architecture. Fig. 3 (a) illustrates an example case. A choice
block consists of multiple architecture choices. For our single path supernet, each
choice block only has one choice invoked at the same time. A path is obtained
by sampling all the choice blocks.

The simplicity of our approach enables us to define different types of choice
blocks to search various architecture variables. Specifically, we propose two novel
choice blocks to support complex search spaces.

Channel Number Search. We propose a new choice block based on weight
sharing, as shown in Fig. 3 (b). The main idea is to preallocate a weight tensor
with maximum number of channels, and the system randomly selects the channel
number and slices out the corresponding subtensor for convolution. With the
weight sharing strategy, we found that the supernet can converge quickly.

In detail, assume the dimensions of preallocated weights are (max c out,
max c in, ksize). For each batch in supernet training, the number of current
output channels c out is randomly sampled. Then, we slice out the weights for
current batch with the form Weights[: c out, : c in, :], which is used to produce
the output. The optimal number of channels is determined in the search step.

Mixed-Precision Quantization Search. In this work, We design a novel choice
block to search the bit widths of the weights and feature maps, as shown in Fig. 3
(c). We also combine the channel search space discussed earlier to our mixed-
precision quantization search space. During supernet training, for each choice
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block feature bit width and weight bit width are randomly sampled. They are
determined in the evolutionary step. See Sec. 4 for details.

Evolutionary Architecture Search. For architecture search in Eq. (7), previous
one-shot works [3, 2] use random search. This is not effective for a large search
space. This work uses an evolutionary algorithm. Note that evolutionary search
in NAS is used in [16], but it is costly as each architecture is trained from scratch.
In our search, each architecture only performs inference. This is very efficient.

Algorithm 1: Evolutionary Architecture Search

1 Input: supernet weights WA, population size P, architecture constraints C,
max iteration T , validation dataset Dval

2 Output: the architecture with highest validation accuracy under architecture
constraints

3 P0 := Initialize population(P, C); Topk := ∅;
4 n := P/2; Crossover number
5 m := P/2; Mutation number
6 prob := 0.1; Mutation probability
7 for i = 1 : T do
8 ACCi−1 := Inference(WA,Dval,Pi−1);
9 Topk := Update Topk(Topk,Pi−1,ACCi−1);

10 Pcrossover := Crossover(Topk, n, C);
11 Pmutation := Mutation(Topk,m, prob, C);
12 Pi := Pcrossover ∪ Pmutation;

13 end
14 Return the architecture with highest accuracy in Topk;

The algorithm is elaborated in Algorithm 1. For all experiments, population
size P = 50, max iterations T = 20 and k = 10. For crossover, two randomly
selected candidates are crossed to produce a new one. For mutation, a randomly
selected candidate mutates its every choice block with probability 0.1 to produce
a new candidate. Crossover and mutation are repeated to generate enough new
candidates that meet the given architecture constraints. Before the inference of
an architecture, the statistics of all the Batch Normalization (BN) [9] opera-
tions are recalculated on a random subset of training data (20000 images on
ImageNet). It takes a few seconds. This is because the BN statistics from the
supernet are usually not applicable to the candidate nets. This is also referred
in [2].

Fig. 2 plots the validation accuracy over generations, using both evolutionary
and random search methods. It is clear that evolutionary search is more effective.
Experiment details are in Sec. 4.

The evolutionary algorithm is flexible in dealing with different constraints in
Eq. (5), because the mutation and crossover processes can be directly controlled
to generate proper candidates to satisfy the constraints. Previous RL-based [21]
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Table 1. Overview and comparison of SOTA weight sharing approaches. Ours is the
easiest to train, occupies the smallest memory, best satisfy the architecture (latency)
constraint, and easily supports the large dataset. Note that those approaches belong-
ing to the joint optimization category (Eq. (3)) have “Supernet optimization” and
“Architecture search” columns merged

Approach
Supernet

optimization
Architecture

search
Hyper parameters in

supernet Training
Memory consumption
in supernet training

How to satisfy
constraint

Experiment
on ImageNet

ENAS[15]
Alternative RL
and fine tuning

Short-time
fine tuning setting

Single path +
RL system

None No

BSN[22]
Stochastic super networks

+ policy gradient
Weight of

cost penalty
Single path

Soft constraint in training.
Not guaranteed

No

DARTS[12]
Gradient-based
path dropout

Path dropout rate.
Weight of auxiliary loss

Whole supernet None Transfer

Proxyless[4]
Stochastic relaxation of
the discrete search +

policy gradient

Scaling factor
of latency loss

Two paths
Soft constraint in training.

Not guaranteed.
Yes

FBNet[23]

Stochastic relaxation of
the discrete search to

differentiable optimization
via Gumbel softmax

Temperature parameter
in Gumbel softmax.

Coefficient in
constraint loss

Whole supernet
Soft constraint in training.

Not guaranteed.
Yes

SNAS[26] Same as FBNet Same as FBNet Whole supernet
Soft constraint in training.

Not guaranteed.
Transfer

SMASH[3] Hypernet Random None Hypernet+Single Path None No

One-Shot[2] Path dropout Random Drop rate Whole supernet Not investigated Yes

Ours
Uniform path

sampling
Evolution None Single path

Guaranteed in searching.
Support multiple constraints.

Yes

and gradient-based [4, 23, 22] methods design tricky rewards or loss functions to
deal with such constraints. For example, [23] uses a loss function CE(a,wa) ·
α log(LAT(a))β to balance the accuracy and the latency. It is hard to tune the
hyper parameter β to satisfy a hard constraint like Eq. (5).

Summary. The combination of single path supernet, uniform sampling training
strategy, evolutionary architecture search, and rich search space design makes
our approach simple, efficient and flexible. Table 1 performs a comprehensive
comparison of our approach against previous weight sharing approaches on var-
ious aspects. Ours is the easiest to train, occupies the smallest memory, best
satisfies the architecture (latency) constraint, and easily supports large datasets.
Extensive results in Sec. 4 verify that our approach is the state-of-the-art.

4 Experiment Results

Dataset. All experiments are performed on ImageNet [17]. We randomly split the
original training set into two parts: 50000 images are for validation (50 images
for each class exactly) and the rest as the training set. The original validation set
is used for testing, on which all the evaluation results are reported, following [4].

Training. We use the same settings (including data augmentation, learning rate
schedule, etc.) as [14] for supernet and final architecture training. Batch size is
1024. Supernet is trained for 120 epochs and the best architecture for 240 epochs
(300000 iterations) by using 8 NVIDIA GTX 1080Ti GPUs.
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Search Space: Building Blocks. First, we evaluate our method on the task of
building block selection, i.e. to find the optimal combination of building blocks
under a certain complexity constraint. Our basic building block design is inspired
by a state-of-the-art manually-designed network – ShuffleNet v2 [14]. Table 2
shows the overall architecture of the supernet. The “stride” column represents
the stride of the first block in each repeated group. There are 20 choice blocks
in total. Each choice block has 4 candidates, namely “choice 3”, “choice 5”,
“choice 7” and “choice x” respectively. They differ in kernel sizes and the number
of depthwise convolutions. The size of the search space is 420.

Table 2. Supernet architecture. CB -
choice block. GAP - global average pooling

input shape block channels repeat stride

2242 × 3 3× 3 conv 16 1 2
1122 × 16 CB 64 4 2
562 × 64 CB 160 4 2
282 × 160 CB 320 8 2
142 × 320 CB 640 4 2
72 × 640 1× 1 conv 1024 1 1
72 × 1024 GAP - 1 -
1024 fc 1000 1 -

Table 3. Results of building block search.
SPS – single path supernet

model FLOPs top-1 acc(%)

all choice 3 324M 73.4
all choice 5 321M 73.5
all choice 7 327M 73.6
all choice x 326M 73.5

random select (5 times) ∼320M ∼73.7
SPS + random search 323M 73.8

ours (fully-equipped) 319M 74.3

We use FLOPs ≤ 330M as the complexity constraint, as the FLOPs of a
plenty of previous networks lies in [300,330], including manually-designed net-
works [8, 18, 30, 14] and those obtained in NAS [4, 23, 21].

Table 3 shows the results. For comparison, we set up a series of baselines as
follows: 1) select a certain block choice only (denoted by “all choice *” entries);
note that different choices have different FLOPs, thus we adjust the channels to
meet the constraint. 2) Randomly select some candidates from the search space.
3) Replace our evolutionary architecture optimization with random search used
in [3, 2]. Results show that random search equipped with our single path supernet
finds an architecture only slightly better that random select (73.8 vs. 73.7). It
does no mean that our single path supernet is less effective. This is because the
random search is too naive to pick good candidates from the large search space.
Using evolutionary search, our approach finds out an architecture that achieves
superior accuracy (74.3) over all the baselines.

Search Space: Channels. Based on our novel choice block for channel number
search, we first evaluate channel search on the baseline structure “all choice 3”
(refer to Table 3): for each building block, we search the number of “mid-
channels” (output channels of the first 1x1 conv in each building block) varying
from 0.2x to 1.6x (with stride 0.2), where “k-x” means k times the number
of default channels. Same as building block search, we set the complexity con-
straint FLOPs ≤ 330M . Table 4 (first part) shows the result. Our channel search
method has higher accuracy (73.9) than the baselines.
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Table 4. Results of channel search. * Performances are reported in the form “x (y)”,
where “x” means the accuracy retrained by us and “y” means accuracy reported by
the original paper

Model FLOPs/Params Top-1 acc(%)

all choice 3 324M/3.1M 73.4
rand sel. channels (5 times) ∼ 323M/3.2M ∼ 73.1
choice 3 + channel search 329M/3.4M 73.9

rand sel. blocks + channels ∼ 325M/3.2M ∼ 73.4
block search 319M/3.3M 74.3
block search + channel search 328M/3.4M 74.7

MobileNet V1 (0.75x) [8] 325M/2.6M 68.4
MobileNet V2 (1.0x) [18] 300M/3.4M 72.0
ShuffleNet V2 (1.5x) [14] 299M/3.5M 72.6

NASNET-A [36] 564M/5.3M 74.0
PNASNET [11] 588M/5.1M 74.2
MnasNet [21] 317M/4.2M 74.0
DARTS [12] 595M/4.7M 73.1
Proxyless-R (mobile)* [4] 320M/4.0M 74.2 (74.6)
FBNet-B* [23] 295M/4.5M 74.1 (74.1)

To further boost the accuracy, we search building blocks and channels jointly.
There are two alternatives: 1) running channel search on the best building block
search result; or 2) searching on the combined search space directly. Our experi-
ments show that the first pipeline is slightly better. As shown in Table 4, search-
ing in the joint space achieves the best accuracy (74.7% acc.), surpassing the
previous state-of-the-art manually-designed [14, 18] and automatically-searched
models [21, 36, 11, 12, 4, 23] under complexity of ∼ 300M FLOPs.

Comparison with State-of-the-arts. Results in Table 4 shows our method is
superior. Nevertheless, the comparisons could be unfair because different search
spaces and training methods are used in previous works [4]. To make direct
comparisons, we benchmark our approach to the same search space of [4, 23].
In addition, we retrain the searched models reported in [4, 23] under the same
settings to guarantee the fair comparison.

The search space and supernet architecture in ProxylessNAS [4] is inspired
by MobileNet v2 [18] and MnasNet [21]. It contains 21 choice blocks; each choice
block has 7 choices (6 different building blocks and one skip layer). The size of
the search space is 721. FBNet [23] also uses a similar search space.

Table 5 reports the accuracy and complexities (FLOPs and latency on our
device) of 5 models searched by [4, 23], as the baselines. Then, for each baseline,
our search method runs under the constraints of same FLOPs or same latency,
respectively. Results shows that for all the cases our method achieves comparable
or higher accuracy than the counterpart baselines.

Furthermore, it is worth noting that our architectures under different con-
straints in Table 5 are searched on the same supernet, justifying the flexibility
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Table 5. Compared with state-of-the-art NAS methods [23, 4] using the same search
space. The latency is evaluated on a single NVIDIA Titan XP GPU, with batchsize =
32. Accuracy numbers in the brackets are reported by the original papers; others are
trained by us. All our architectures are searched from the same supernet via evolu-
tionary architecture optimization

baseline network FLOPs/ latency top-1 acc(%) top-1 acc(%) top-1 acc(%)
Params baseline (same FLOPs) (same latency)

FBNet-A [23] 249M/4.3M 13ms 73.0 (73.0) 73.2 73.3
FBNet-B [23] 295M/4.5M 17ms 74.1 (74.1) 74.2 74.8
FBNet-C [23] 375M/5.5M 19ms 74.9 (74.9) 75.0 75.1

Proxyless-R(mobile) [4] 320M/4.0M 17ms 74.2 (74.6) 74.5 74.8
Proxyless(GPU) [4] 465M/5.3M 22ms 74.7 (75.1) 74.8 75.3

and efficiency of our approach to deal with different complexity constraints: su-
pernet is trained once and searched multiple times. In contrast, previous methods
[23, 4] have to train multiple supernets under various constraints. According to
Table 7, searching is much cheaper than supernet training.

Application: Mixed-Precision Quantization. We evaluate our method on ResNet-
18 and ResNet-34 as common practice in previous quantization works (e.g. [5,
24, 13, 34, 29]). Following [34, 5, 24], we only search and quantize the res-blocks,
excluding the first convolutional layer and the last fully-connected layer. Choices
of weight and feature bit widths include {(1, 2), (2, 2), (1, 4), (2, 4), (3, 4), (4, 4)}
in the search space. As for channel search, we search the number of “bottleneck
channels” (i.e. the output channels of the first convolutional layer in each residual
block) in {0.5x, 1.0x, 1.5x}, where “k-x” means k times the number of original
channels. The size of the search space is (3×6)N = 18N , where N is the number
of choice blocks (N = 8 for ResNet-18 and N = 16 for ResNet-34). Note that
for each building block we use the same bit widths for the two convolutions. We
use PACT [5] as the quantization algorithm.

Table 6 reports the results. The baselines are denoted as kWkA (k = 2, 3, 4),
which means uniform quantization of weights and activations with k-bits. Then,
our search method runs under the constraints of the corresponding BitOps. We
also compare with a recent mixed-precision quantization search approach [24].
Results shows that our method achieves superior accuracy in most cases. Also
note that all our results for ResNet-18 and ResNet-34 are searched on the same
supernet. This is very efficient.

Search Cost Analysis. The search cost is a matter of concern in NAS methods.
So we analyze the search cost of our method and previous methods [23, 4] (reim-
plemented by us). We use the search space of our building blocks to measure the
memory cost of training supernet and overall time cost. All the supernets are
trained for 150000 iterations with a batch size of 256. All models are trained with
8 GPUs. Table 7 shows that our approach clearly uses less memory than other
two methods because of the single path supernet. And our approach is much
more efficient overall although we have an extra search step that costs less than
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Table 6. Results of mixed-precision quantization search. “kWkA” means k-bit quan-
tization for all the weights and activations

Method BitOPs top1-acc(%) Method BitoPs top1-acc(%)

ResNet-18 float point 70.9 ResNet-34 float point 75.0

2W2A 6.32G 65.6 2W2A 13.21G 70.8
ours 6.21G 66.4 ours 13.11G 71.5

3W3A 14.21G 68.3 3W3A 29.72G 72.5
DNAS [24] 15.62G 68.7 DNAS [24] 38.64G 73.2
ours 13.49G 69.4 ours 28.78G 73.9

4W4A 25.27G 69.3 4W4A 52.83G 73.5
DNAS [24] 25.70G 70.6 DNAS [24] 57.31G 74.0
ours 24.31G 70.5 ours 51.92G 74.6

1 GPU day. Note Table 7 only compares a single run. In practice, our approach
is more advantageous and more convenient to use when multiple searches are
needed. As summarized in Table 1, it guarantees to find out the architecture
satisfying constraints within one search. Repeated search is easily supported.

Correlation Analysis. Recently, the effectiveness of many neural architecture
search methods based on weight sharing is questioned because of lacking fair
comparison on the same search space and adequate analysis on the correla-
tion between the supernet performance and the stand-alone model performance.
Some papers [27, 25, 19] even show that several the state-of-the-art NAS methods
perform similarly to the random search. In this work, the fair comparison on the
same search space has been showed in Table 5, so we further provider adequate
correlation analysis in this part to evaluate the effectiveness of our method.

Table 7. Search Cost. Gds - GPU days

Method Proxyless FBNet Ours

Memory cost (8 GPUs in total) 37G 63G 24G

Training time 15 Gds 20 Gds 12 Gds
Search time 0 0 <1 Gds
Retrain time 16 Gds 16 Gds 16 Gds
Total time 31 Gds 36 Gds 29 Gds

Correlation analysis requires to achieve the performances of a large number
of architectures, but training lots of architectures from scratch is very time-
consuming, which also requires a large number of GPU resources, so we use the
NAS-Bench-201 [7] to analyze our method. NAS-Bench-201 is a cell-based search
space which includes 15,625 architectures in total. It provides the performance
of each architecture on CIFAR-10, CIFAR-100, and ImageNet-16-120. So the
results on it will be more credible and comparable.
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Table 8. Correlation in Different Search Spaces

Dataset Original Reduce-1 Reduce-2 Reduce-3

CIFAR-10 0.55 0.55 0.58 0.64
CIFAR-100 0.56 0.54 0.53 0.59
ImageNet-16-120 0.54 0.42 0.55 0.53

We apply our method on different search spaces and different datasets to
verify the effectiveness adequately. The original search space of NAS-Bench-201
consists of 5 possible operations: zeroize, skip connection, 1-by-1 convolution,
3-by-3 convolution, and 3-by-3 average pooling. Based on it, we further design
several reduced search spaces, named Reduce-1, Reduce-2, Reduce-3, by deleting
some operations. In detail, we delete 1-by-1 convolution and 3-by-3 average pool-
ing respectively from original search space to produce Reduce-1 and Reduce-2
search spaces, and delete both to produce Reduce-3 search space.

As Table.8 shows, our method performs better than random search on dif-
ferent search spaces and different datasets, since the Kendall Tau τ metric of
random search should be 0. So the performances of architectures predicted by su-
pernet can reflect the real ranking of architectures to a certain degree. However,
the results in Table.8 also reveals a limitation of our method that the predicted
ranking of our supernet is partially correlated, but not perfectly correlated to the
real ranking. So our method can not guarantee to find the real best architecture
in the search space, but is able to find some superior architectures around the
best. And we think that the correlation of supernet depends on search space.
The simpler search space is, the higher correlation will be achieved.

5 Conclusion

In this paper, we revisit the one-shot NAS paradigm and analyze the drawbacks
of previous method. Then we propose a single path one-shot approach which
is more simple and effective. Experiments show that our method can achieve
better results on several different search spaces. We also analyze the search
cost and correlation of our methods. Our method is more efficient can achieve
significant correlation on different search spaces. However, there is a limitation
in our method that the predicted ranking of our supernet is partially correlated,
but not perfectly correlated to the real ranking. And we think that it depends on
search space. The simpler search space is, the higher correlation will be achieved.
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