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Abstract. In interactive object segmentation a user collaborates with
a computer vision model to segment an object. Recent works employ
convolutional neural networks for this task: Given an image and a set of
corrections made by the user as input, they output a segmentation mask.
These approaches achieve strong performance by training on large datasets
but they keep the model parameters unchanged at test time. Instead, we
recognize that user corrections can serve as sparse training examples and
we propose a method that capitalizes on that idea to update the model
parameters on-the-fly to the data at hand. Our approach enables the
adaptation to a particular object and its background, to distributions
shifts in a test set, to specific object classes, and even to large domain
changes, where the imaging modality changes between training and
testing. We perform extensive experiments on 8 diverse datasets and
show: Compared to a model with frozen parameters, our method reduces
the required corrections (i) by 9%-30% when distribution shifts are small
between training and testing; (ii) by 12%-44% when specializing to a
specific class; (iii) and by 60% and 77% when we completely change
domain between training and testing.

1 Introduction

In interactive object segmentation a human collaborates with a computer vision
model to segment an object of interest [12,46,53,11]. The process iteratively
alternates between the user providing corrections on the current segmentation
and the model refining the segmentation based on these corrections. The objective
of the model is to infer an accurate segmentation mask from as few user corrections
as possible (typically point clicks [8,16] or strokes [46,22] on mislabeled pixels).
This enables fast and accurate object segmentation, which is indispensable for
image editing [2] and collecting ground-truth segmentation masks at scale [11].

Current state-of-the-art methods train a convolutional neural network (CNN)
which takes an image and user corrections as input and predicts a foreground / back-
ground segmentation [53,32,10,35,30,11,27]. At test time, the model parameters
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Fig. 1: Example results for a frozen model (top) and our adaptive meth-
ods (bottom). A frozen model performs poorly when foreground and background
share similar appearance (left), when it is used to segment new object classes
absent in the training set (center, donut class), or when the model is tested on a
different image domain (aerial) than it is trained on (consumer) (right). By using
corrections to adapt the model parameters to a specific test image, or to the test
image sequence, our method substantially improves segmentation quality. The
input is four corrections in all cases shown.

are frozen and corrections are only used as additional input to guide the model
predictions. But in fact, user corrections directly specify the ground-truth la-
belling of the corrected pixels. In this paper we capitalize on this observation: we
treat user corrections as training examples to adapt our model on-the-fly. We use
these user corrections in two ways: (1) in single image adaptation we iteratively
adapt model parameters to one specific object in an image, given the corrections
produced while segmenting that object; (2) in image sequence adaptation we
adapt model parameters to a sequence of images with an online method, given
the set of corrections produced on these images. Each of these leads to distinct
advantages over using a frozen model:

During single image adaptation our model learns the specific appearance of the
current object instance and the surrounding background. This allows the model
to adapt even to subtle differences between foreground and background for that
specific example. This is necessary when the object to be segmented has similar
color to the background (Fig. 1, 1st column), has blurry object boundaries, or low
contrast. In addition, a frozen model can sometimes ignore the user corrections
and overrule them in its next prediction. We avoid this undesired behavior by
updating the model parameters until its predictions respect the user corrections.

During image sequence adaptation we continuously adapt the model to a
sequence of segmentation tasks. Through this, the model parameters are optimized
to the image and class distribution in these tasks, which may consist of different
types of images or a set of new classes which are unseen during training. An
important case of this is specializing the model for segmenting objects of a single
class. This is useful for collecting many examples in high-precision domains,
such as pedestrians for self-driving car applications. Fig. 1, middle column shows
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an example of specializing to the single, unseen class donut. Furthermore, an
important property of image sequence adaptation is that it enables us to handle
large domain changes, where the imaging modality changes dramatically between
training and testing. We demonstrate this by training on consumer photos while
testing on medical and aerial images (Fig. 1, right column).

Naturally, single image adaptation and image sequence adaptation can be
used jointly, leading to a method that combines their advantages.

In summary: Our innovative idea of treating user corrections as training exam-
ples allows to update the parameters of an interactive segmentation model at test
time. To update the parameters we propose a practical online adaptation method.
Our method operates on sparse corrections, balances adaptation vs. retaining old
knowledge and can be applied to any CNN-based interactive segmentation model.
We perform extensive experiments on 8 diverse datasets and show: Compared to
a model with frozen parameters, our method reduces the required corrections
(i) by 9%-30% when distribution shifts are small between training and testing;
(ii) by 12%-44% when specializing to a specific class; (iii) and by 60% and 77%
when we completely change domain between training and testing. (iv) Finally,
we evaluate on four standard datasets where distribution shifts between training
and testing are minimal. Nevertheless, our method did set a new state-of-the-art
on all of them, when it was initially released [29].

2 Related Work

Interactive Object Segmentation. Traditional methods approach interactive
segmentation via energy minimization on a graph defined over pixels [12,46,7,22,41].
User inputs are used to create an image-specific appearance model based on
low-level features (e.g. color), which is then used to predict foreground and back-
ground probabilities. A pairwise smoothness term between neighboring pixels
encourages regular segmentation outputs. Hence these classical methods are
based on a weak appearance model which is specialized to one specific image.

Recent methods rely on Convolutional Neural Networks (CNNs) to interac-
tively produce a segmentation mask [53,32,10,35,30,16,26,27,3]. These methods
take the image and user corrections (transformed into a guidance map) as input
and map them to foreground and background probabilities. This mapping is
optimized over a training dataset and remains frozen at test time. Hence these
models have a strong appearance model but it is not optimized for the test image
or dataset at hand.

Our method combines the advantages of traditional and recent approaches: We
use a CNN to learn a strong initial appearance model from a training set. During
segmentation of a new test image, we adapt the model to it. It thus learns an
appearance model specifically for that image. Furthermore, we also continuously
adapt the model to the new image and class distribution of the test set, which
may be significantly different from the one the model is originally trained on.
Gradient Descent at test time. Several methods iteratively minimize a loss
at test time. The concurrent work of [51] uses self-supervision to adapt the feature
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extractor of a multi-tasking model to the test distribution. Instead, we directly
adapt the full model by minimizing the task loss. Others iteratively update
the inputs of a model [21,23,27], e.g. for style transfer [21]. In the domain of
interactive segmentation, [27] updates the guidance map which encodes the user
corrections and is input to the model. [49] made this idea more computationally
efficient by updating intermediate feature activations, rather than the guidance
maps. Instead, our method updates the model parameters, making it more general
and allowing it to adapt to individual images as well as sequences.

In-domain Fine-Tuning. In other applications it is common practice to fine-
tune on in-domain data when transferring a model to a new domain [13,39,52,58].
For example, when supervision for the first frame of a test video is available
[40,52,13], or after annotating a subset of an image dataset [39,58]. In interactive
segmentation the only existing attempt is [1], which performs polygon annota-
tion [15,1,34]. However, it does not consider adapting to a particular image; their
process to fine-tune on a dataset involves 3 different models, so they do it only
a few times per dataset; they cannot directly train on user corrections, only on
complete masks from previous images; finally, they require a bounding box on
the object as input.

Few-shot and Continual Learning. Our method automatically adapts to
distribution shifts and domain changes. It performs domain adaptation from
limited supervision, similar to few-shot learning [43,20,48,42]. It also relates to
continual learning [44,19], except that the output label space of the classifier
is fixed. As in other works, our method needs to balance between preserving
existing knowledge and adapting to new data. This is often done by fine-tuning
on new tasks while discouraging large changes in the network parameters, either
by penalizing changes to important parameters [28,55,5,6] orchanging predictions
of the model on old tasks [31,47,38]. Alternatively, some training data of the
old task is kept and the model is trained on a mixture of the old and new task
data [44,9].

3 Method

We adopt a typical interactive object segmentation process [12,53,35,30,11,27]: the
model is given an image and makes an initial foreground / background prediction
for every pixel. The prediction is then overlaid on the image and presented to
the user, who is asked to make a correction. The user clicks on a single pixel to
mark that it was incorrectly predicted to be foreground instead of background
or vice versa. The model then updates the predicted segmentation based on all
corrections received so far. This process iterates until the segmentation reaches a
desired quality level.

We start by describing the model we build on (Sec. 3.1). Then, we describe
our core contribution: treating user corrections as training examples to adapt
the model on-the-fly at test-time (Sec. 3.2). Lastly, we describe how we simulate
user corrections to train and test our method (Sec. 3.3).
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Fig. 2: Corrections as training examples. For learning the initial model
parameters, full supervision is available, allowing to compute a loss over all the
pixels in the image. At test time, the user provides sparse supervision in the form
of corrections. We use these to adapt the model parameters.

3.1 Interactive Segmentation Model

As the basis of our approach, we use a strong re-implementation of [35], an
interactive segmentation model based on a convolutional neural network. The
model takes an RGB image and the user corrections as input and produces a
segmentation mask. As in [11] we encode the position of user corrections by
placing binary disks into a guidance map. This map has the same resolution as
the image and consists of two channels (one channel for foreground and one for
background corrections). The guidance map is concatenated with the RGB image
to form a 5-channel map x which is provided as input to the network.

We use DeepLabV3+ [17] as our network architecture, which has demonstrated
good performance on semantic segmentation. However, we note that our method
does not depend on a specific architecture and can be used with others as well.

For training the model we need a training dataset D with ground-truth object
segmentations, as well as user corrections which we simulate as in [35] (Sec. 3.3).
We train the model using the cross-entropy loss over all pixels in an image:

LCE(x,y;θ) =
1

|y|
{−y log f(x;θ)− (1− y) log(1− f(x;θ))} (1)

where x is the 5-channel input defined above (image plus guidance maps),
y ∈ {0, 1}H×W are the pixel labels of the ground-truth object segmentations,
and f(x;θ) represents the mapping of the convolutional network parameterized
by θ. | · | denotes the l1 norm.

We produce the initial parameters θ∗ of the segmentation model by minimizing∑
(xi,yi)∈D

LCE(xi,yi;θ) over the training set using stochastic gradient descent.

3.2 Learning from Corrections at Test-Time

Previous interactive object segmentation methods do not treat corrections as
training examples. Thus, the model parameters remain unchanged/frozen at test
time [53,10,35,30,11,27] and corrections are only used as inputs to guide the
predictions. Instead, we treat corrections as ground-truth labels to adapt the



6 Kontogianni∗, Gygli∗, Uijlings, Ferrari

model at test time. We achieve this by minimizing the generalized cross-entropy
loss over the corrected pixels:

LGCE(x, c;θ) =
1[c6=−1]T

|1[c6=−1]|

{
− c log f(x;θ)− (1− c) log (1− f (x;θ))

}
(2)

where 1 is an indicator function and c is a vector of values {1, 0,−1}, indicating
what pixels were corrected to what label. Pixels that were corrected to be positive
are set to 1 and negative pixels to 0. The remaining ones are set to −1, so that
they are ignored in the loss. As there are very few corrections available at test
time, this loss is computed over a sparse set of pixels. This is in contrast to the
initial training which had supervision at every pixel (Sec. 3.1). We illustrate the
contrast between the two forms of supervision in Fig. 2.

Dealing with label sparsity. In practice, corrections c are extremely sparse
and consist of just a handful of scattered points (Fig. 3). Hence, they offer limited
information on the spatial extent of objects and special care needs to be taken to
make this form of supervision useful in practice. As our model is initially trained
with full supervision, it has learned strong shape priors. Thus, we propose two
auxiliary losses to prevent forgetting these priors as the model is adapted. First,
we regularize the model by treating the initial mask prediction p as ground-truth
and making it a target in the cross-entropy loss, i.e. LCE(x,p;θ). This prevents
the model from focusing only on the user corrections while forgetting the initially
good predictions on pixels for which no corrections were given.

Second, inspired by methods for class-incremental learning [28,55,5], we
minimize unnecessary changes to the network parameters to prevent it from
forgetting crucial patterns learned on the initial training set. Specifically, we add
a cost for changing important network parameters:

LF(θ) = ΩT (θ − θ∗)
�2 (3)

where θ∗ are the initial model parameters, θ are the updated parameters and Ω
is the importance of each parameter. (·)�2 is the element-wise square (Hadamard
square). Intuitively, this loss penalizes changing the network parameters away
from their initial values, where the penalty is higher for important parameters.
We compute Ω using Memory-Aware Synapses (MAS) [5], which estimates
importance based on how much changes to the parameters affect the prediction
of the model.

Combined loss. Our full method uses a linear combination of the above losses:

LADAPT(x,p, c;θ) = λLGCE(x, c;θ) + (1− λ)LGCE(x,p;θ) + γLF(θ) (4)

where λ balances the importance of the user corrections vs. the predicted mask,
and γ defines the strength of parameter regularization. Next, we introduce single
image adaptation and image sequence adaptation, which both minimize Eq. (4).
Their difference lies in how the model parameters θ are updated: individually for
each object or over a sequence.
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Adapting to a single image. We adapt the segmentation model to a particular
object in an image by training on the click corrections. We start from the
segmentation model with parameters θ∗ fit to the initial training set (Sec. 3.1).
Then we update them by running several gradient descent steps to minimize
our combined loss Eq. (4) every time the user makes a correction (Algo. in
supp. material). We choose the learning rate and the number of update steps
such that the updated model adheres to the user corrections. This effectively
turns corrections into constraints. This process results in a segmentation mask p,
predicted using the updated parameters θ.

Adapting the model to the current test image brings two core advantages.
First, it learns about the specific appearance of the object and background in the
current image. Hence corrections have a larger impact and can also improve the
segmentation of distant image regions which have similar appearance. The model
can also adapt to low-level photometric properties of this image, such as overall
illumination, blur, and noise, which results in better segmentation in general.
Second, our adaptation step makes the corrections effectively hard constraints,
so the model will preserve the corrected labeling in later iterations too.

This adaptation is done for each object separately, and the updated θ is
discarded once an object is segmented.

Adapting to an image sequence. Here we describe how to continuously adapt
the segmentation model to a sequence of test images using an online algorithm.
Again, we start from the model parameters θ∗ fit to the initial training set
(Sec. 3.1). When the first test image arrives, we perform interactive segmentation
using these initial parameters. Then, after segmenting each image It = (xt, ct),
the model parameters are updated to θt+1 by doing a single gradient descent
step to minimize Eq. (4) for that image. Thereby we subsample the corrections
in the guidance maps to avoid trivial solutions (predict the corrections given the
corrections themselves, see supp. material). The updated model parameters are
used to segment the next image It+1.

Through the method described above our model adapts to the whole test
image sequence, but does so gradually, as objects are segmented in sequence. As
a consequence, this process is fast, does not require storing a growing number
of images, and can be used in a online setting. In this fashion it can adapt to
changing appearance properties, adapt to unseen classes, and specialize to one
particular class. It can even adapt to radically different image domains as we
demonstrate in Sec. 4.3.

Combined adaptation. For a test image It, we segment the object using
single image adaptation (Algo. in supp. material). After segmenting a test image,
we gather all corrections provided for that image and apply a image sequence
adaptation step to update the model parameters from θt to θt+1. At the next
image, the image adaptation process will thus start from parameters θt+1 better
suited for the test sequence. This combination allows to leverage the distinct
advantages of the two types of adaptation.
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3.3 Simulating user corrections

To train and test our method we rely on simulated user corrections, as is common
practice [53,32,10,35,30,27].
Test-time corrections. When interactively segmenting an object, the user clicks
on a mistake in the predicted segmentation. To simulate this we follow [53,10,35],
which assume that the user clicks on the largest error region. We obtain this error
region by comparing the model predictions with the ground-truth and select its
center pixel.
Train-time corrections. Ideally one wants to train with the same user model
that is used at test-time. To make this computationally feasible, we train the
model in two stages as in [35]. First, we sample corrections using ground-truth
segmentations [10,27,30,32,53]. Positive user corrections are sampled uniformly at
random on the object. Negative user corrections are sampled according to three
strategies: (1) uniformly at random from pixels around the object, (2) uniformly
at random on other objects, and (3) uniformly around the object. We use these
corrections to train the model until convergence. Then, we continue training by
iteratively sampling corrections following [35]. For each image we keep a set of
user corrections c. Given c we predict a segmentation mask, simulate the next
user correction (as done at test time), and add it to c. Based on this additional
correction, we predict a new segmentation mask and minimize the loss (Eq. (1)).
Initially, c corresponds to the corrections simulated in the first stage, and over
time more user corrections are added. As we want the model to work well even
with few user corrections, we thus periodically reset c to the initial clicks [35].

4 Experiments

We extensively evaluate our single image adaptation and image sequence adap-
tation methods on several standard datasets as well as on aerial and medical
images. These correspond to increasingly challenging adaptation scenarios.
Adaptation scenarios. We first consider distribution shift, where the training
and test image sets come from the same general domain, consumer photos, but
differ in their image and object statistics (Sec. 4.1). This includes differences in
image complexity, object size distribution, and when the test set contains object
classes absent during training. Then, we consider a class specialization scenario,
where a sequence of objects of a single class has to be iteratively segmented
(Sec. 4.2). Finally we test how our method handles large domain changes where
the imaging modality changes between training and testing. We demonstrate this
by going from consumer photos to aerial and medical images (Sec. 4.3).
Model Details. We use a strong re-implementation of [35] as our interactive seg-
mentation model (Sec. 3.1). We pre-train its parameters on PASCAL VOC12 [18]
augmented with SBD [24] (10582 images with 24125 segmented instances of 20
object classes). As a baseline, we use this model as in [35], i.e. without updating
its parameters at test time. We call this the frozen model. This baseline already
achieves state-of-the-art results on the PASCAL VOC12 validation set, simply
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Table 1: Adapting to distribution shifts. Mean number of clicks required to
attain a particular IoU score on Berkeley, YouTube-VOS and COCO datasets
(Lower is better). Both of our adaptive methods, single image adaptation (IA)
and image sequence adaptation (SA) improve over the model that keeps the
weights frozen at test time.

Berkeley YouTube -VOS COCO [33]
[37] [54] seen unseen unseen 6k

Method clicks@90% clicks@85% clicks@85%

Frozen model [35] 5.4 7.9 10.0 11.9 13.2

IA 4.9 7.0 9.1 10.7 10.6
SA 5.3 6.9 9.7 10.6 10.0
IA+SA 4.9 6.7 9.1 9.9 9.3

∆ over frozen model 8.5% 15.2% 9.0% 16.8% 29.5%

by increasing the encoder resolution compared to [35] (3.44 clicks). This shows
that using a fixed set of model parameters works well when the train and test
distributions match. We evaluate our proposed method by adapting the parame-
ters of that same model at test time using single image adaptation (IA), image
sequence adaptation (SA), and their combination (IA + SA).
Evaluation metrics. We use two standard metrics [53,32,10,35,30,11,27]: (1)
IoU@k, the average intersection-over-union between the ground-truth and pre-
dicted segmentation masks, given k corrections per image, and (2) clicks@q%,
the average number of corrections needed to reach an IoU of q% on every image
(thresholded at 20 clicks). We always report mean performance over 10 runs
(standard deviation is negligible at ≈ 0.01 for clicks@q%).
Hyperparameter selection. We optimize the hyperparameters for both adap-
tation methods on a subset of the ADE20k dataset [56,57]. Hence, the hyperpa-
rameters are optimized for adapting from PASCAL VOC12 to ADE20k, which is
distinct from the distribution shifts and domain changes we evaluate on.
Implementation Details are provided in the supplementary material.

4.1 Adapting to distribution shift

We test how well we can adapt the model which is trained on PASCAL VOC12
to other consumer photos datasets.
Datasets. We test on: (1) Berkeley [37], 100 images with a single foreground
object. (2) YouTube -VOS [54], a large video object segmentation dataset. We use
the test set of the 2019 challenge, where we take the first frame with ground truth
(1169 objects, downscaled to 855× 480 maximal resolution). (3) COCO [33], a
large segmentation dataset with 80 object classes. 20 of those overlap with the
ones in the PASCAL VOC12 dataset and are thus seen during training. The
other 60 are unseen. We sample 10 objects per class from the validation set and
separately report results for seen (200 objects) and unseen classes (600 objects)
as in [53,36]. We also study how image sequence adaptation behaves on longer
sequences of 100 objects for each unseen class (named COCO unseen 6k).
Results. We report our results in Tab. 1 and Fig. 4. Both types of adaptation
improve performance on all tested datasets. On the first few user corrections
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single image adaptation (IA) performs similarly to the frozen model as it is
initialized with the same parameters. But as more corrections are provided, it
uses these more effectively to adapt its appearance model to a specific image.
Thus, it performs particularly well in the high-click regime, which is most useful
for objects that are challenging to segment (e.g. due to low illumination, Fig. 3),
or when very accurate masks are desired.

Initial model IA+SA (combined) Ground truthFrozen SA + IA GT

k=1 k=1

k=10 k=4

k=5 k=4

Fig. 3: Qualitative results of the
frozen and our combined adaptation
model. Red circles are negative clicks
and green ones are positive. Green and
red areas respectively show the pixels
that turned to FG/BG with the latest
clicks. Our method produces accurate
masks with fewer clicks k.

During image sequence adapta-
tion (SA), the model adapts to the test
image distribution and thus learns to
produce good segmentation masks given
just a few clicks (Fig. 4a). As a result,
SA outperforms using a frozen model
on all datasets with distribution shifts
(Tab. 1). By adapting from images to
the video frames of YouTube -VOS, SA
reduces the clicks needed to reach 85%
IoU by 15%. Importantly, we find that
our method adapts fast, making a real
difference after just a few images, and
then keeps on improving even as the test
sequence becomes thousands of images
long (Fig. 4b). This translates to a large
improvement given a fixed budget of 4
clicks per object: on the COCO unseen
6k split it achieves 69% IoU compared
to the 57% of the frozen model (Fig. 4a).

Generally, the curves for image se-
quence adaptation grow faster in the low click regime than the single image
adaptation ones, but then exhibit stronger diminishing returns in the higher click
regime (Fig. 4a). Hence, combining the two compounds their advantages leading
to a method that considerably improves over the frozen model on the full range
of number of corrections and sequence lengths (Fig. 4a). Compared to the frozen
model, our combined method significantly reduces the number of clicks needed
to reach the target accuracy on all datasets: from a 9% reduction on Berkeley
and COCO seen, to a 30% reduction on COCO unseen 6k.

4.2 Adapting to a specific class

When a user segments objects of a single class at test-time, image sequence
adaptation naturally specializes its appearance model to that class. We evaluate
this phenomenon on 4 COCO classes. We form 4 test image sequences, each
focusing on a single class, containing objects of varied appearance. The classes
are selected based on how image sequence adaptation performs compared to the
frozen model in Sec. 4.1. We selected the following classes, with increasing order
of difficulty for image sequence adaptation: (1) donut (2540 objects) (2) bench
(3500) (3) umbrella (3979) and (4) bed (1450).
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Fig. 4: Results for adapting to dist. shift (a,b) or a specific class (c).

0 5 10 15 20
Number of clicks

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 I
o
U

Frozen model

Image Adaptation (IA)

Sequence Adaptation (SA)

IA+SA

0 20 40 60 80 100
Number of processed images

0

2

4

6

8

10

12

14

16

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

cl
ic

ks
@

9
0

%
 I
o
U

Frozen model

Sequence Adaptation (SA)

Image Adaptation (IA)

(a) DRIONS-DB dataset.
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(b) Rooftop Aerial dataset.

Fig. 5: Results for domain change. For each dataset, we show the mean IoU
at k corrections (left in 5a, 5b) and the number of clicks to reach the target
IoU as a function of the number of images processed (right in 5a, 5b). Single
image adaptation provides a consistent improvement over the test sequences.
Instead, image sequence adaptation adapts its appearance model to the new
domain gradually, improving with every image processed (right in 5a, 5b).

Results. Tab. 2, Fig. 4c present results. The class specialization brought by
our image sequence adaptation (SA) leads to good masks from very few clicks.
For example, on the donut class it reduces clicks@85% by 39% compared to the
frozen model and by 44% when combined with single image adaptation (Tab. 2).
Given just 2 clicks, SA reaches 66% IoU for that class, compared to 25% IoU
for the frozen model (Fig. 4c). The results for the other classes follow a similar
pattern, showing that image sequence adaptation learns an effective appearance
model for a single class.

4.3 Adapting to domain changes

We test our method’s ability of adapting to domain changes by training on con-
sumer photos (PASCAL VOC12) and evaluating on aerial and medical imagery.
Datasets. We explore two test datasets: (1) Rooftop Aerial [50], a dataset of
65 aerial images with segmented rooftops and (2) DRIONS-DB [14], a dataset
of 110 retinal images with a segmentation of the optic disc of the eye fundus.
(we use the masks of the first expert). Importantly, the initial model parameters
θ∗ were optimized for the PASCAL VOC12 dataset, which consists of consumer
photos. Hence, we explore truly large domain changes here.
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Results. Both our forms of adaptation significantly improve over the frozen
model (Tab. 3, Fig. 5). Single image adaptation can only adapt to a limited extent,
as it independently adapts to each object instance, always starting from the same
initial model parameters θ∗. Nonetheless, it offers a significant improvement,
reducing the number of clicks needed to reach the desired IoU by 14%-29%.
Image sequence adaptation (SA) shows extremely strong performance, as its
adaptation effects accumulate over the duration of the test sequence. It reduces
the needed user input by 60% for the Rooftop Aerial dataset and by over 70%
for DRIONS-DB. When combining the two types of adaptation, the reduction
increases to 77% for the DRIONS-DB dataset (Tab. 3). Importantly, our method
adapts fast: on DRIONS-DB clicks@90% drops quickly and converges to just 2
corrections, as the length of the test sequence increases (Fig. 5a). In contrast, the
frozen model performs poorly on both datasets. On the Rooftop Aerial dataset,
it needs even more clicks than there are points in the ground truth polygons (8.9
vs. 5.1). This shows that even a state-of-the-art model like [35] fails to generalize
to truly different domains and highlights the importance of adaptation.

To summarize: We show that our method can bridge large domain changes
spanning varied datasets and sequence lengths. With just a single gradient descent
step per image, our image sequence adaptation successfully addresses a major
shortcoming of neural networks, for the case of interactive segmentation: Their
poor generalization to changing distributions [45,4].

4.4 Comparison to Previous Methods

While the main focus of our work is tackling challenging adaptation scenarios,
we also compare our method against state-of-the-art interactive segmentation
methods on standard datasets. These datasets are typically similar to PASCAL
VOC12, hence have a small distribution mismatch between training and testing.
Datasets. (1) Berkeley, introduced in Sec. 4.1 (2) GrabCut [46], 49 images with
segmentation masks. (3) DAVIS16 [40], 50 high-resolution videos out of which
we sample 10% of the frames uniformly at random as in [30,27] (We note that
the standard evaluation protocol of DAVIS16 favors adaptive methods, as the
same objects appear repeatedly in the test sequence.) and (4) PASCAL VOC12
validation, with 1449 images.

Table 2: Class specialization. We test segmenting objects of only one
specific class. Our adaptive methods outperforms the frozen model on all
tested classes. Naturally, gains are larger for image sequence adaptation, as
it can adapt to the class over time.

clicks @ 85% IoU
Donut Bench Umbrella Bed

Frozen model [35] 11.6 15.1 13.1 6.8

IA (Ours) 9.2 14.1 11.9 5.5
SA (Ours) 7.1 14.0 11.1 5.5

IA+SA (Ours) 6.5 13.3 10.2 5.0

∆ over frozen model 44.0% 11.9% 22.1% 26.5%
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Table 3: Domain change results. We evaluate our model on 2 datasets
that belong to different domains: aerial (Rooftop) and medical (DRIONS-
DB). Both types of adaptation (IA and SA) outperform the frozen model.

DRIONS-DB [14] Rooftop [50]
Method clicks@90% IoU clicks@80% IoU

Frozen model [35] 13.3 8.9

IA (Ours) 11.4 6.3
SA (Ours) 3.6 3.6

IA+SA (Ours) 3.1 3.6

∆ over frozen model 76.7% 59.6%

Table 4: The focus of our work is handling distribution shifts and domain changes
between training and testing (Tab. 1, 2 & 3). For completeness, we also compare
our method against existing methods on standard datasets, where the distribution
mismatch between training and testing is small. At the time of initially releasing
our work [29], our method outperformed all previous state-of-the-art models on
all datasets. Later, F-BRS [49] (CVPR 2020) achieved even better results.

VOC12 [18] GrabCut [46] Berkeley [37] DAVIS [40]
validation 10% of frames

Method clicks@85% clicks@90% clicks@90% clicks@85%

iFCN w/ GraphCut [53] 6.88 6.04 8.65 -
RIS [32] 5.12 5.00 6.03 -
TSLFN [26] 4.58 3.76 6.49 -
VOS-Wild [10] 5.6 3.8 - -
ITIS [35] 3.80 5.60 - -
CAG [36] 3.62 3.58 5.60 -
Latent Diversity [30] - 4.79 - 5.95
BRS [27] - 3.60 5.08 5.58

F-BRS [49] (Concurrent Work) - 2.72 4.57 5.04

IA+SA combined (Ours) 3.18 3.07 4.94 5.16

Results. Tab. 4 shows results. Our adaptation method achieves strong results:
At the time of initially releasing our work [29], it outperformed all previous
state-of-the-art methods on all datasets (it was later overtaken by [49]). It brings
improvements even when the previous methods (which have frozen model param-
eters) already offers strong performance and need less than 4 clicks on average
(PASCAL VOC12, GrabCut). The improvement on PASCAL VOC12 further
shows that our method helps even when the training and testing distributions
match exactly (the frozen model needs 3.44 clicks).

Importantly, we find that our method outperforms [30,27], even though we use
a standard segmentation backbone [17] which predicts at 1

4 of the input resolution.
Instead [30,27] propose specialized network architectures in order to predict at
full image resolution, which is crucial for their good performance [27]. We note
that our adaptation method is orthogonal to these architectural optimizations
and can be combined with them easily.

4.5 Ablation Study

We ablate the benefit of treating corrections as training examples (on COCO
unseen 6k). For this, we selectively remove them from the loss (Eq. (4)). For single
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image adaptation, this leads to a parameter update that makes the model more
confident in its current prediction, but this does not improve the segmentation
masks. Instead, training on corrections improves clicks@85% from 13.2 to 10.6.
For image sequence adaptation, switching off the corrections corresponds to
treating the predicted mask as ground-truth and updating the model with it.
This approach implicitly contains corrections in the mask and thus improves
clicks@85% from 13.2 for the frozen model to 11.9. Explicitly using correction
offers an additional gain of almost 2 clicks, down to 10. This shows that treating
user corrections as training examples is key to our method: They are necessary
for single image adaptation and highly beneficial for image sequence adaptation.

4.6 Adaptation speed
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Fig. 6: Iterations vs. relative
improvement over a frozen
model (mean over all datasets).

While our method updates the parameters at
test time, it remains fast enough for interactive
usage. For the model used throughout our paper
a parameter update step takes 0.16 s (Nvidia
V100 GPU, mixed-precision training, Berkeley
dataset). Image sequence adaptation only needs
a single update step, done after an object is
segmented (Sec. 3.2). Thus, the adaptation over-
head is negligible here. For single image adap-
tation we used 10 update steps, for a total time
of 1.6 s. We chose this number of steps based on
hyperparameter search (see supp. material). In
practice, fewer update steps can be used to increase speed, as they quickly show
diminishing returns (Fig. 6). We recommend to use 3 update steps, reducing
adaptation time to 0.5 s, with a negligible effect on the number of corrections
required (average difference of less than 1%, over all datasets).
To increase speed further, the following optimizations are possible: (1) Using a
faster backbone, e.g. with a ResNet-50 [25], the time for an update step reduces
to 0.06 s; (2) Using faster accelerators such as Google Cloud TPUs; (3) Employing
a fixed feature extractor and only updating a light-weight segmentation head [30].

5 Conclusion

We propose to treat user corrections as sparse training examples and introduce a
novel method that capitalizes on that idea to update the model parameters on-
the-fly at test time. Our extensive evaluation on 8 datasets shows the benefits of
our method. When distribution shifts between training and testing are small, our
methods offers gains of 9%-30%. When specializing to a specific class, our gains
are 12%-44%. For large domain changes, where the imaging modality changes
between training and testing, it reduces the required number of user corrections
by 60% and 77%.
Acknowledgement. We thank Rodrigo Benenson, Jordi Pont-Tuset, Thomas
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