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1 Network Architecture Details

The detailed network architectures for the coarse depth estimation and semantic
segmentation are shown in Table 1. The encoder is based on the ResNet-18
architecture with modified input blocks [4]. The rectangle filters in the input
blocks are connected in parallel and resolutions vary to account for different
distortion levels. The encoder is shared for both the coarse depth estimation
and semantic segmentation. The decoders restore the original input resolution by
means of up-sampling operators followed by 3×3 convolutions. Skip connections
are also added to link to the corresponding resolution in the encoder. The two
decoders do not share weights. The network architecture for the layout depth
estimation is similar to this architecture however without input blocks and only
one decoder with respect to the layout depth estimation.

The detailed network architecture for the depth refinement is shown in Ta-
ble 2. The first part is the semantic-guided depth fusion network. The input is
the concatenation of the coarse depth prediction, estimated layout depth and
semantic segmentation and the output is the semantic-guided attention map.
This attention map maximizes the exploitation of the coarse depth and layout
depth. Then, the depth refinement module takes the fused depth as input to
predict the final refined depth. The encoder-decoder architecture is similar to
the previous depth estimation network.

2 Layout Depth Generation

Here we describe how to generate the layout depth map from the original corner
labeling for supervised learning. The 3D layout can be recovered by fitting planar
surfaces to the corner positions. As shown in Fig. 1, we assume the dimensions
of the panorama image is W ×H. Since the panorama image covers 360 degree
field of view horizontally and 180 degree field of view vertically, so W = 2H, and
the focal length is W/2π, which is also the radius of the cylinder: R = W/2π.
From Fig. 1, it can be derived that for a 3D point (x, y, z):
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Table 1. Details of the network architecture for the coarse depth estimation and se-
mantic segmentation. The encoder uses modified input blocks in front of the ResNet-18
architecture to reduce the distortion effect. The network for the layout depth estimation
is similar to this architecture with slight modifications

name layer kernel size output feature map size

Input Block 1

conv 5x11x8 512x1024x8
conv 3x9x8 512x1024x8
conv 5x7x8 512x1024x8
conv 7x7x8 512x1024x8

concat 512x1024x32

Input Block 2

conv 3x9x16 512x1024x16
conv 3x7x16 512x1024x16
conv 3x5x16 512x1024x16
conv 5x5x16 512x1024x16

concat 512x1024x64

Conv1 conv
3x3x64 }x2 256x512x64
3x3x64

Conv2 conv
3x3x128 }x2 128x256x128
3x3x128

Conv3 conv
3x3x256 }x2 64x128x256
3x3x256

Conv4 conv
3x3x512 }x2 32x64x512
3x3x512

up-sampling 64x128x512

De-conv4 Sem conv 3x3x256 64x128x256

up-sampling 128x256x256

De-conv3 Sem conv 3x3x128 128x256x128

up-sampling 256x512x128

De-conv2 Sem conv 3x3x64 256x512x64

up-sampling 512x1024x64

De-conv1 Sem conv 3x3x64 512x1024x64

De-conv0 Sem conv 3x3x13 512x1024x13

De-conv4 Dep conv 3x3x256 64x128x256

up-sampling 128x256x256

De-conv3 Dep conv 3x3x128 128x256x128

up-sampling 256x512x128

De-conv2 Dep conv 3x3x64 256x512x64

up-sampling 512x1024x64

De-conv1 Dep conv 3x3x64 512x1024x64

De-conv0 Dep conv 3x3x1 512x1024x1
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Table 2. Details of the network architecture for the depth refinement. The first part
is the semantic-guided depth fusion network which outputs the attention map to fuse
the previous depth maps. The following encoder-decoder architecture is similar to the
previous depth estimation network

name layer kernel size output feature map size

concat 512x1024x15

Conv1 Sem guided conv 3x3x32 256x512x32

Conv2 Sem guided conv 3x3x64 128x256x64

Conv3 Sem guided conv 3x3x128 64x128x128

Conv4 Sem guided conv 3x3x256 32x64x256

up-sampling 64x128x256

De-conv3 Sem guided conv 3x3x128 64x128x128

up-sampling 128x256x128

De-conv2 Sem guided conv 3x3x64 256x512x64

up-sampling 512x1024x64

De-conv1 Sem guided conv 3x3x1 512x1024x1

fusion 512x1024x1

Conv1 conv
3x3x64 }x2 256x512x64
3x3x64

Conv2 conv
3x3x128 }x2 128x256x128
3x3x128

Conv3 conv
3x3x256 }x2 64x128x256
3x3x256

Conv4 conv
3x3x512 }x2 32x64x512
3x3x512

up-sampling 64x128x512

De-conv4 Dep refine conv 3x3x256 64x128x256

up-sampling 128x256x256

De-conv3 Dep refine conv 3x3x128 128x256x128

up-sampling 256x512x128

De-conv2 Dep refine conv 3x3x64 256x512x64

up-sampling 512x1024x64

De-conv1 Dep refine conv 3x3x64 512x1024x64

De-conv0 Dep refine conv 3x3x1 512x1024x1

α = arctan(
x

z
) (1)

v =
√
x2 + z2 (2)

x′ = Rα = R · arctan(
x

z
) (3)

y′ = R · arctan(
y√

x2 + z2
) (4)

d′ =
√
x2 + y2 + z2 (5)
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Fig. 1. Geometry derivation for equirectangular reprojecting layout depth map from
3D layout points

where x′ and y′ are the reprojected coordinates on the panorama. d′ is the
corresponding depth value. Fig. 2 shows additional results for the layout depth
map.

3 Additional Qualitative Results for Layout Prediction

Additional qualitative results for layout prediction are shown in Fig. 3. The first
four rows demonstrate the results of the baseline LayoutNet [5] and our pro-
posed method on the Stanford 2D-3D dataset. The last four rows are computed
for the PanoContext dataset. For each example, we show the predicted layout
(LayoutNet: blue, our proposed method: green) and the ground truth (orange)
under equirectangular view. By explicitly incorporating the layout depth map,
the proposed method can locate the corners more precisely (avoiding locations
in the middle of the wall which has continuous depth, e.g. the third, fourth and
eighth examples for the Stanford 2D-3D and the third, sixth and eighth exam-
ples for the PanoContext). Constrained by the layout depth map, the proposed
method is also able to handle occluded corners (e.g. the second, fourth and sixth
examples for the Stanford 2D-3D and the fifth example for the PanoContext).
Thus, it can be derived that for both the Stanford 2D-3D and PanoContext
dataset, the proposed method obtains better performance for layout prediction.

Additional qualitative results for non-cuboid room layout prediction are shown
in Fig. 4 and Fig. 5. To verify the generalization ability of our proposed method
to non-cuboid layout, we fine-tune our model on the non-cuboid rooms labeled
by [2]. It can be shown that the proposed method is able to handle non-cuboid
layout rooms.

4 Additional Qualitative Results for Depth Estimation

Additional qualitative results for depth estimation are shown in Fig. 6. The
baseline RectNet [4], state-of-the-art Plane-aware network [1] and our proposed
method are compared. Additional 3D reconstruction comparison of the depth
estimation are shown in Fig. 7 and Fig. 8. In Fig. 7, the panorama input splits
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Fig. 2. Additional results of the layout depth map. From left to right: the panorama
input image, the original layout corner map and the corresponding layout depth map.
The first three rows are images from the Stanford 2D-3D dataset and the last three
rows are from the non-cuboid rooms of the PanoContext dataset labeled by [2]

the window into two parts, the leftmost and rightmost part of the panorama.
Without any constraint, the RectNet [4] estimates the discontinuous depth for
the window, resulting to disjointed 3D reconstruction, as circled by the red dash
ellipses. Constrained by the layout depth map, our proposed method correctly
estimates the continuous depth for the window. Explicitly inter-positioning the
layout depth, the 3D reconstruction of the proposed method also obtains more
planar ceiling and walls. In Fig. 8, similar disjointed 3D reconstruction is shown
for the whiteboard of RectNet, but our 3D reconstruction can overcome this issue
and preserve more planarity. Additional internal qualitative comparison between
the coarse depth estimation and the final refined depth are shown in Fig. 9, which
provides more insights about the depth refinement. The depth map below the
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coarse depth map is the estimated layout depth map which we use to refine
the depth estimation. For the first example, the depth of the window region is
incorrect for the coarse depth estimation. Combined with the layout depth map,
the refined depth map correctly estimates the depth for the ambiguous window
region. For the second example, the depth of the right bookcases are too difficult
to estimate for the coarse depth estimation. Constrained by the layout depth
map, the proposed method obtains proper depth estimation.

5 Timing Statistics

Table 3 summarizes the time comparison for a single forward pass of the network
and the post optimization step between LayoutNet [5], DuLa-Net [3], Horizon-
Net [2] and our proposed method. Note that the computation time of our pro-
posed method is with the depth refinement module. Optimization directly in 3D
space makes our proposed method more efficient. Our proposed method is the
fastest for both the network prediction and the optimization step.

Table 3. Time consumption comparison for a single forward pass of the neural network
and the optimization step between different methods

Method Optimization avg. CPU Time(ms) Network avg. GPU Time(ms)

LayoutNet [5] 1583 39
DuLa-Net [3] 22 35

HorizonNet [2] 18 58

Ours 15 32

References

1. Eder, M., Moulon, P., Guan, L.: Pano popups: Indoor 3d reconstruction with a
plane-aware network. In: 2019 International Conference on 3D Vision (3DV). pp.
76–84. IEEE (2019)

2. Sun, C., Hsiao, C.W., Sun, M., Chen, H.T.: Horizonnet: Learning room layout with
1d representation and pano stretch data augmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1047–1056 (2019)

3. Yang, S.T., Wang, F.E., Peng, C.H., Wonka, P., Sun, M., Chu, H.K.: Dula-net: A
dual-projection network for estimating room layouts from a single rgb panorama. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 3363–3372 (2019)

4. Zioulis, N., Karakottas, A., Zarpalas, D., Daras, P.: Omnidepth: Dense depth esti-
mation for indoors spherical panoramas. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 448–465 (2018)

5. Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2051–2059 (2018)



Joint 3D Layout and Depth Prediction from a Single Panorama 7

Fig. 3. Additional qualitative results on layout prediction. Results are shown of testing
the baseline LayoutNet [5] and our proposed method on the Stanford 2D-3D dataset
(top four rows) and PanoContext dataset (bottom four rows). For each example, we
show the predicted layout (LayoutNet: blue, the proposed method: green) and the
ground truth (orange) under equirectangular view
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Fig. 4. Additional qualitative results for non-cuboid room layout prediction. It can be
derived that the proposed method can also handle non-cuboid layout rooms
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Fig. 5. Additional qualitative results for non-cuboid room layout prediction. It can be
derived that the proposed method can also handle non-cuboid layout rooms
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Fig. 6. Additional qualitative results on depth estimation. Results are shown for exper-
iments of testing the estimated layout depth map, the baseline RectNet [4], Plane-aware
network [1] and our proposed method on the Stanford 2D-3D dataset

Fig. 7. Additional 3D reconstruction comparison. Due to the explicitly inter-
positioning of the layout depth, the proposed method predicts a relatively good depth
map for the distant regions. So the 3D reconstruction of the proposed method is more
proper and provides more planar ceiling and walls
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Fig. 8. Additional 3D reconstruction comparison. The proposed method preserves more
accurate scale of the room and the wall planes are more consistent

Fig. 9. Additional internal qualitative comparison between the coarse depth estimation
and the final refined depth. Constrained by the layout depth map, the proposed method
refines better depth estimation based on the coarse depth estimation


