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Abstract. In this paper, we propose a method which jointly learns the
layout prediction and depth estimation from a single indoor panorama
image. Previous methods have considered layout prediction and depth
estimation from a single panorama image separately. However, these two
tasks are tightly intertwined. Leveraging the layout depth map as an in-
termediate representation, our proposed method outperforms existing
methods for both panorama layout prediction and depth estimation.
Experiments on the challenging real-world dataset of Stanford 2D-3D
demonstrate that our approach obtains superior performance for both
the layout prediction tasks (3D IoU: 85.81% v.s. 79.79%) and the depth
estimation (Abs Rel: 0.068 v.s. 0.079).

Keywords: Indoor Panorama Image · Layout Prediction · Depth Esti-
mation · Layout Depth Map

1 Introduction

Extracting 3D information from 2D indoor images is an important step towards
the enabling of 3D understanding of indoor scenes and is beneficial for many
applications such as robotics and virtual/augmented reality. Using the 3D in-
formation of indoor scenes, a computer vision system is able to understand the
scene geometry, including both the apparent and hidden relationships between
scene elements.

Although scene layout and depth can both be used for 3D scene understand-
ing, previous methods focus on solving these two problems separately. For 3D
layout prediction, methods mostly use 2D geometrical cues such as edges [20, 25,
35], corners [16, 25, 35], 2D floor-plans [19, 30] or they make assumptions about
the 3D scene geometry such that rooms are modelled by cuboids or by a Manhat-
tan World. For depth estimation, different features are used such as normals [17],
planar surfaces [21] and semantic cues [22]. Hence, existing methods impose ge-
ometric assumptions but ignore to exploit the complementary characteristics of
layout and depth information. In this paper, a different approach is taken. We
propose a method that, from a single panorama, jointly exploits the 3D layout
and depth cues via an intermediate layout depth map, as shown in Fig. 1. The
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Fig. 1: Given (a) an indoor panorama as input, our proposed method utilizes the
(b) coarse depth estimation to compute the (c) layout depth map. Leveraging the
estimated layout depth map, our method improves the (d) 3D layout prediction
and (e) refines the depth estimation (e.g. the ambiguous window depth is inferred
correctly compared to the coarse depth estimation)

intermediate layout depth map represents the distances from the camera to the
room layout components (e.g. ceiling, floor and walls) and excludes all objects
in the room (e.g. furniture), as illustrated in Fig. 2. Estimating the layout depth
as an intermediate representation of the network encompasses the geometric in-
formation needed for both tasks. The use of depth information is beneficial to
produce room layouts by reducing the complexity of object clutter and occlu-
sion. Likewise, the use of room layout information diminishes the ambiguity of
depth estimation and interposes planar information for the room layout parts
(e.g. ceiling, floor and walls).

The proposed method estimates the 3D layout and detailed depth informa-
tion from a single panorama image. To combine the depth and layout infor-
mation, the proposed method predicts the layout depth map to relate these two
tightly intertwined tasks. Previous methods on layout prediction provides proper
reconstruction by predicting the layout edges and corners on the input panorama
and by post-processing them to match the (Manhattan) 3D layout [16, 25, 35].
However, object clutter in the room poses a challenge to extract occluded edges
and corners. In addition, estimating the 3D layout from 2D edge and corner maps
is an ill-posed problem. Therefore, extra constraints are essential to perform 2D
to 3D conversion in the optimization. In contrast, our method estimates the lay-
out depth map by using more structural information to become less influenced
by occlusions. Furthermore, the predicted layout depth map serves as a coarse
3D layout as it can be converted to the 3D point cloud of the scene layout. Thus
the proposed method does not require extra constraints for the 2D to 3D con-
version. This makes the proposed method more generic for parameterizing a 3D
layout. After computing the estimated layout depth maps, the proposed method
further enables the refinement of a detailed depth map. Monocular depth esti-
mation methods usually have problems with planar room parts (ceiling, floor
and walls) being rugged after the 3D reconstruction process. The layout depth
map preserves the planar nature of the room layout components yielding robust-
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Fig. 2: Illustration of the layout depth maps. From left to right: the panorama
input image, the original layout corner map and the layout depth map

ness to these errors. Empirical results on the challenging Stanford 2D-3D indoor
dataset show that jointly estimating 3D layout and depth outperforms previous
methods for both tasks. The proposed method achieves state-of-the-art perfor-
mance for both layout prediction and depth estimation from a single panorama
image on the Stanford 2D-3D dataset. Our method also obtains state-of-the-art
performance for 3D layout prediction on the PanoContext dataset.

In summary, our contributions are as follows:

– We propose a novel neural network pipeline which jointly learns layout pre-
diction and depth estimation from a single indoor panorama image. We show
that layout and depth estimation tasks are highly correlated and joint learn-
ing improves the performance for both tasks.

– We show that leveraging the layout depth map as an intermediate repre-
sentation improves the layout prediction performance and refines the depth
estimation.

– The proposed method outperforms the state-of-the-art methods for both
layout prediction and depth estimation on the challenging real-world dataset
Stanford 2D-3D and PanoContext dataset for layout prediction.

2 Related Work

Panorama Images: Operating directly on panorama input images is the pri-
mary difference between our method and most of the other layout prediction
or depth estimation methods. Instead of perspective images, 360◦ panorama
images are used as input by our proposed method because the field of view
(FOV) of panoramas are larger and carry more scene information. However,
the equirectangular projections may suffer from strong horizontal distortions.
Su et al. [24] propose to learn a spherical convolutional network that translates
a planar CNN to process 360◦ panorama images directly in its equirectangular
projection. Tateno et al. [26] proposes a distortion-aware deformable convolu-
tion filter. Another approach is to use spherical convolutions as proposed by
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Cohen et al. [3]. Other recent papers [4, 8, 13] also focus on spherical CNNs and
icosahedron representations for panorama processing. In this paper, standard
convolutions with rectangular filter banks are applied on the input layers to
account for the different distortion levels.

Layout Prediction: There are numerous papers that address the problem
of predicting the 3D room layout from a single image taken from an indoor
scene. Traditional methods treat this task as an optimization problem. Delage
et al. [5] propose a dynamic Bayesian network model to recover the 3D model
of the indoor scene. Hedau [10] models the room with a parametric 3D box
by iteratively localizing clutter and refitting the box. Recently, neural network-
based methods took stride in tackling this problem. Methods that train deep
network to classify pixels into layout surfaces (e.g., walls, floor, ceiling) [12],
boundaries [20], corners [16], or a combination [23]. Zou et al. [35] predict the
layout boundary and corner map directly from the input panorama. Yang et
al. [30] leverage both the equirectangular panorama-view and the perspective
ceiling-view to learn different cues about the room layout. Sun et al. [25] encode
the room layout as three 1D vectors and propose to recover the 3D room layouts
from 1D predictions. Other work aims to leverage depth information for room
reconstruction [18, 32, 36], but they all deal with perspective images and use the
ground truth depth as input. In contrast, in our paper, we use the predicted
depth and semantic content of the scene to predict the layout depth map as our
intermediate representation to recover the 3D layout of the input panorama.

Depth Estimation: Single-view depth estimation refers to the problem of
estimating depth from a single 2D image. Eigen et al. [9] show that it is pos-
sible to produce pixel depth estimations using a two scale deep network which
is trained on images with their corresponding depth values. Several methods
extend this approach by introducing new components such as CRFs to increase
the accuracy [17], changing the loss from regression to classification [2], using
other more robust loss functions [15], and by incorporating scene priors [29].
Zioulis et al. [34] propose a learning framework to estimate the depth of a scene
from a single 360◦ panorama image. Eder et al. [7] present a method to train a
plane-aware convolutional network for dense depth and surface normal estima-
tion from panoramas. There are some other methods [6, 27] to regress the layered
depth image (LDI) to capture the occluded texture and depth. In our work, we
demonstrate that the layout prediction and depth estimation are tightly coupled
and can benefit from each other. Leveraging the estimated layout depth map,
our method refines the depth estimation.

3 Method

The goal of our approach is the joint learning of layout prediction and depth
estimation from a single indoor panorama image. The proposed method leverages
the layout depth map as an intermediate representation to relate the layout and
depth estimation. Fig. 3 shows an overview of our proposed pipeline.
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Fig. 3: Overview of the proposed pipeline. Our method first leverages the coarse
depth and semantic prediction to enforce the layout depth prediction, and then
uses the estimated layout depth map to recover the 3D layout and refine the
depth estimation

Inferring high-quality 3D room layout from an indoor panorama image relies
on the understanding of both the 3D geometry and the semantics of the indoor
scene. Therefore, the proposed method uses the predicted coarse depth map and
semantic segmentation of the input panorama to predict the layout depth map.
The proposed method enables the refinement of depth estimation by integrating
the coarse depth and layout depth with semantic information as a guidance.

3.1 Input and Pre-processing

Following [35], the first step of our method is to align the input panorama image
to match the horizontal floor plane. The floor plane direction under equirectan-
gular projection is estimated by first selecting the long line segments using the
Line Segment Detector (LSD) [28] in overlapping perspective views and then
vote for three mutually orthogonal vanishing directions [33]. This alignment en-
sures that wall-wall boundaries are vertical lines. The input of our network is
the concatenation of the panorama image and the corresponding Manhattan line
feature map provided by the alignment.

3.2 Coarse Depth and Semantics

Our approach receives the concatenation of a single RGB panorama and the
Manhattan line feature map as input. The output of this module is the coarse
depth estimation and semantic segmentation of the 2D panorama image.

An encoder-decoder architecture is used for the joint learning of the coarse
depth information and semantic segmentation. The input panorama images suf-
fer from horizontal distortions. To reduce the distortion effect, the encoder uses
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a modified input block in front of the ResNet-18 architecture. As shown by [34],
the input block uses rectangle filters and varies the resolution to account for
different distortion levels. The encoder is shared for both the depth estimation
and semantic segmentation. The decoders restore the original input resolution
by means of up-sampling operators followed by 3× 3 convolutions. Skip connec-
tions are also added to link to the corresponding resolution in the encoder. The
two decoders do not share weights and are trained to minimize the coarse depth
estimation loss and semantic segmentation loss, respectively.

Loss Function: For coarse depth estimation, to account for both pixel-
wise accuracy and spatially coherent results, this module incorporates the depth
gradient and normals with the logarithm of the standard L1 loss, as done by [11].
So the loss function consists of three parts:

Lcoarse depth = ldepth + λlgradient + µlnormal (1)

where λ, µ ∈ R are hyper-parameters to balance the contribution of each compo-
nent loss. The depth loss ldepth, the gradient loss lgradient and the surface normal
loss lnormal are defined by:

ldepth =
1

n

n∑
i=1

ln(ei + 1) (2)

where ei = ‖di − gi‖1, di and gi denote the predicted and ground truth depth
maps respectively. n is the total number of pixels.

lgradient =
1

n

n∑
i=1

(ln(|∇x(ei)|+ 1) + ln(|∇y(ei)|+ 1)) (3)

where ∇x(ei) is the spatial derivative of ei computed at the ith pixel with respect
to x, and so on.

lnormal =
1

n

n∑
j=1

(
1−

〈ndj , n
g
j 〉√

〈ndj , ndj 〉
√
〈ngj , n

g
j 〉

)
(4)

where ndi ≡ [−∇x(di),−∇(di), 1]
>

and ngi ≡ [−∇x(gi),−∇(gi), 1]
>

denote the
surface normal of the estimated depth map and the ground truth, respectively.

For semantic segmentation, the loss function is given by the per-pixel softmax
cross-entropy between the predicted and ground-truth pixel-wise semantic labels:

Lsemantic = −
n∑

i=1

pi log(p̂i) (5)

where p and p̂ are the ground truth and predicted semantic labels, respectively.
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3.3 Layout Prediction

To obtain the global geometric structure of the scene, the proposed approach
predicts the 3D layout of the scene. Instead of predicting 2D representations,
our method directly predicts the layout depth maps of the input panoramas.

The input of this proposed module is a 8-channel feature map: the concatena-
tion of RGB panorama, the corresponding Manhattan line feature map, and the
predicted depth and semantics obtained by the previous modules of the pipeline.
A ResNet-18 is used to build our encoder for the layout depth prediction network.
The decoder architecture is similar to the previous ones for depth estimation and
semantic segmentation, with nearest neighbor up-sampling operations followed
by 3×3 convolutions. The skip connections are also added to prevent shifting of
the prediction results during the up-sampling step. The output is the estimated
layout depth map with the same resolution as the input panorama.

Loss Function: In addition to the pixel-wise depth supervision as described
in Section 3.2, the virtual normal (VN) [31] is used as another geometric con-
straint to regulate the estimated layout depth map. The point cloud of the scene
layout can be reconstructed from the estimated layout depth map based on the
panoramic camera model. The virtual normal is the normal vector of a virtual
plane formed by three randomly sampled non-colinear points in 3D space, which
takes long-range relations into account from a global perspective. By minimiz-
ing the direction divergence between the ground-truth and predicted virtual
normals, serving as a high-order 3D geometric constraint, the proposed method
provides more accurate depth estimation and imposes the planar nature to the
prediction of the layout depth map.

N group points are randomly sampled from the point cloud. In each group
there are three points: Ω = {Pi = (Pa, Pb, Pc)i | i = 0, ..., N}. The three points
in a group are restricted to be non-colinear as defined by condition C:

C = {α ≥ ∠(
−−−→
PaPb,

−−−→
PaPc) ≤ β, α ≥ ∠(

−−→
PbPc,

−−−→
PbPa) ≤ β | Pi ∈ Ω} (6)

where α = 150◦, β = 30◦ in our experiments.
Three points in each group establishes a virtual plane. The normal vector of

the plane is computed by:

N = {ni =

−−−→
PaPb ×

−−−→
PaPc

‖
−−−→
PaPb ×

−−−→
PaPc‖

| Pi ∈ Ω} (7)

where ni is the normal vector of virtual plane Pi.
The virtual normal loss is computed by:

lvn =
1

N

N∑
i=1

‖npred
i − ngt

i ‖1 (8)

The overall loss for layout depth map estimation is defined by:

Llayout depth = ldepth + λlgradient + µlnormal + lvn (9)
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The layout depth loss is based on both the local surface normal and the global
virtual normal constraint. This ensures that the estimated layout depth map
preserves the geometric structure of the scene layout accurately.

3D Layout Optimization: To constrain the layout shape so that the floor
and ceiling are planar and the walls are perpendicular to each other (Manhattan
world assumption), the proposed method recovers the parameterized 3D layout
through optimization in 3D space. Previous methods [16, 35, 25] heavily rely on
2D image features (e.g. edge and corner maps). However, estimating the 3D
layout from 2D edge and corner maps is an ill-posed problem and thus requires
extra constraints. In contrast, our proposed method directly optimizes on the
3D layout point cloud and does not require extra constraints for the 2D to 3D
layout conversion.

Using the point cloud of the scene layout converted from the predicted layout
depth map, the floor/ceiling plan map is obtained by projecting the point cloud
to the XZ plane. Similar to [30], a regression analysis is applied on the edges
of the floor plan map and clustering them into sets of horizontal and vertical
lines in 3D space. Then, the floor plan is recovered by using the straight, axis-
aligned, wall-floor boundaries. The room height is efficiently computed by using
the ceiling-floor distances along the Y axis.

3.4 Depth Refinement

After the coarse depth map and the layout depth map are obtained from the
previous modules, a depth refinement step is taken.

A straight-forward way is to concatenate all the data representations as input
and use an encoder-decoder network to predict the final depth estimation. This
approach is denoted by direct refinement. The semantic approach is to use the
semantic information as a guidance to dynamically fuse the two depth maps.
This approach is denoted by semantic-guided refinement. The semantic-guided
refinement step produces an attention map incorporating the coarse depth map
and the layout depth map. For a structural background representing the scene
layout components (ceiling, floor and wall), the network focuses more on the lay-
out depth map. While for objects in the room (furniture), the network switches
the attention to the coarse depth estimation. Therefore, in this paper, we com-
bine these two concepts as shown in Fig. 3. First, an encoder-decoder network,
taking the concatenation of the coarse depth, layout depth and semantic seg-
mentation prediction as inputs, combines the previous depth maps with the
semantic-guided attention map. This semantic-guided depth fusion maximizes
the exploitation of the coarse depth and layout depth. Then, the depth refine-
ment module takes the fused depth as input to predict the final refined depth.
The encoder-decoder architecture of the depth refinement module is similar to
the previous coarse depth estimation network.

Loss Function: The loss function for the depth refinement is the same as
the layout depth estimation loss described in Section 3.3.
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3.5 Training Details

Following the experimental setting of [35], the proposed method uses horizontal
rotations, left-right flippings and luminance changes to augment the training
samples. Our network uses the ADAM [14] optimizer with β1 = 0.9 and β2 =
0.999 to update the network parameters. To train the network, we first train the
joint learning of coarse depth estimation and semantic segmentation, and then
fix the weights of the depth and semantic network, and train the layout depth
map prediction. Then, we set all the trained weights fixed to train the depth
refinement module. Finally, we jointly train the whole network end-to-end.

4 Experiments

In this section, the performance of our proposed method is evaluated for both
the layout prediction and depth estimation tasks.

Dataset: The dataset used for training is the Stanford 2D-3D dataset [1].
The Stanford 2D-3D dataset contains 1413 RGB panoramic images collected
from 6 large-scale indoor environments, including offices, classrooms, and other
open spaces like corridors, where 571 panoramas have layout annotations. Our
experiments follow the official train-val-test split for evaluation. The PanoCon-
text dataset is used to verify the generalizability of our approach for the task of
layout prediction. The PanoContext [33] dataset contains 514 RGB panoramic
images of two indoor environments, i.e., bedrooms and living rooms.

Evaluation Metrics: The following standard metrics are used to evaluate
our approach:

3D IoU : 3D IoU =
Vpred∩Vgt

Vpred∪Vgt
, where Vpred and Vgt stand for the volumetric

occupancy of the predicted and ground truth 3D layout.

Corner error (CE): CE = 1√
H2+W 2

∑
i∈corners‖c

pred
i − cgti ‖22, where H and

W are the image height and width, cpred and cgt denote the predicted and ground
truth corner positions.

Pixel error (PE): PE = 1
|N |
∑N

i=1 1(spredi 6= sgti ), where spred and sgt denotes

the predicted and ground truth pixel-wise semantic (ceiling, floor and wall).
1(.) is an indicator function, setting to 1 when the pixel semantic prediction is
incorrect.

Threshold : % of di that max(di

gi
, gidi

) = δ < thr

Absolute Relative Difference: Abs Rel = 1
|N |
∑N

i=1‖di − gi‖/gi
Squared Relative Difference: Sq Rel = 1

|N |
∑N

i=1‖di − gi‖2/gi

RMSE (linear): RMS =
√

1
|N |
∑N

i=1‖di − gi‖2

RMSE (log): RMS(log) =
√

1
|N |
∑N

i=1‖log di − log gi‖2

where we use 3D IoU, corner error and pixel error to evaluate the layout predic-
tion and the rest for depth estimation.
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Table 1: Quantitative results of layout estimation on the Stanford 2D-3D dataset.
Our method outperforms all existing methods

Method 3D IoU(%) Corner error(%) Pixel error(%)

LayoutNet [35] 76.33 1.04 2.70
DuLa-Net [30] 79.36 - -

HorizonNet [25] 79.79 0.71 2.39

Ours 85.81 0.67 2.20

Table 2: Quantitative results on the (a) Stanford 2D-3D and (b) PanoContext
for models trained with mixed PanoContext and Stanford 2D-3D training data.
Our method outperforms other methods on both datasets

Method 3D IoU(%) CE(%) PE(%)

LayoutNet [35] 77.51 0.92 2.42
HorizonNet [25] 83.51 0.62 1.97

Ours 86.21 0.71 2.08

(a) Results for Stanford 2D-3D

Method 3D IoU(%) CE(%) PE(%)

LayoutNet [35] 75.12 1.02 3.18
HorizonNet [25] 84.23 0.69 1.90

Ours 84.40 0.61 1.74

(b) Results for PanoContext

4.1 Layout Prediction

A quantitative comparison of different methods on the Stanford 2D-3D dataset
is summarized in Table 1. LayoutNet [35] predicts the layout boundary and cor-
ner maps directly from the input panorama. DuLa-Net [30] leverages both the
equirectangular panorama-view and the perspective ceiling-view to learn differ-
ent cues for the room layout. HorizonNet [25] encodes the room layout as three
1D vectors and proposes to recover the 3D room layout from 1D predictions by a
RNN. The proposed method shows state-of-the-art performance and outperforms
other existing methods. By leveraging the layout depth map as an intermediate
representation, the proposed network abstracts the geometric structure of the
scene from both a local and global perspective. This results in more geometric
cues for the scene layout prediction and is less affected by occlusions.

LayoutNet [35] and HorizonNet [25] also combine the Stanford 2D-3D [1] and
PanoContext [33] training data to train their methods. Since the PanoContext
dataset does not contain any depth or semantic ground truth, our model is first
initialized with the Stanford 2D-3D dataset, and then the model is trained on the
same mixed dataset with the weight-fixed coarse depth and semantic prediction
modules. Table 2 shows the quantitative results trained on this mixed train-
ing data. Although the PanoContext dataset has different indoor configurations
and no depth or semantic ground truth, our method still obtains competitive
performance.
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Fig. 4: Qualitative comparison on layout prediction. Results are shown of testing
the baseline LayoutNet [35] (blue), our proposed method (green) and the ground
truth (orange) on the Stanford 2D-3D dataset and PanoContext dataset

The qualitative results for the layout prediction are shown in Fig. 4. The first
two rows demonstrate the results of the LayoutNet and our proposed method
on the Stanford 2D-3D dataset. The last two rows are the results obtained for
the PanoContext dataset. The proposed method outperforms the other methods
on both datasets and shows robustness to occlusion. As presented by the second
example for Stanford 2D-3D, since the proposed method explicitly incorporates
the depth information, the corners are located more precisely (avoiding locations
in the middle of the wall which has continuous depth). The semantic content
ensures the detection of the occluded corners, as shown in the third example of
Stanford 2D-3D (corners occluded by the door). The last example of the Stanford
2D-3D shows a failure case for both methods. For non-negligible occlusions in
the scene, both methods fail to predict the corner positions accurately. Similar
improvements are shown for the results obtained for the PanoContext dataset.

Ablation Study: The goal is to evaluate the performance of our layout
prediction and layout depth estimation with different configurations: 1) wo/
depth&semantic: predicting the layout depth directly from the input; 2) w/ pred.
depth: only with the predicted depth; 3) w/ pred. semantic: only with the pre-
dicted semantic; 4) wo/ VN : without the VN loss; 5) edg&cor maps: predicting
the edge and corner maps from the concatenation of input panorama, predicted
depth and semantic; 6) layout depth -> edg&cor maps: predicting the edge and
corner maps from the layout depth map. As shown in Table 3, training with
either predicted depth or semantic information increases the accuracy. The VN
loss further regulates the estimated layout depth to preserve surface straight-
ness, thus improving the recovered layout. In comparison with the edge and
corner maps, the layout depth map contains both local and global information
to recover the 3D layout of the scene.
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Table 3: Ablation study of layout prediction and layout depth map estimation
on the Stanford 2D-3D dataset. We evaluate the influence of different modules
and show that our final proposed approach performs the best

lower is better higher is better

3D IoU(%) CE(%) PE(%) Abs Rel Sq Rel RMS RMS(log) δ < 1.25 δ < 1.252 δ < 1.253

wo/ depth & semantic 77.28 1.21 3.31 0.089 0.044 0.327 0.056 0.914 0.987 0.996
w/ pred. depth 82.65 0.83 2.92 0.069 0.029 0.257 0.045 0.952 0.993 0.998

w/ pred. semantic 78.57 1.14 3.18 0.079 0.034 0.311 0.053 0.927 0.990 0.997

wo/ VN 84.22 0.75 2.42 0.065 0.028 0.238 0.043 0.955 0.993 0.998

edg & cor maps 82.03 1.05 2.61 - - - - - - -

layout depth
–> edg & cor maps

83.67 0.92 2.52 0.067 0.029 0.238 0.044 0.955 0.992 0.998

Proposed Final 85.81 0.67 2.20 0.064 0.026 0.237 0.042 0.957 0.994 0.998

Fig. 5: Qualitative results of non-cuboid layout prediction. It can be derived that
our proposed method also works well for non-cuboid layouts

Non-cuboid Layout: To verify the generalization ability of our proposed
method to non-cuboid layout, our model is fine-tuned on the non-cuboid rooms
labeled by [25]. As shown in Fig. 5, our proposed method is able to handle
non-cuboid layout rooms. Please see more results in the supplemental materials.

4.2 Depth Estimation

Table 4 presents the quantitative results of different methods for depth estima-
tion on the Stanford 2D-3D dataset. FCRN [15] designs a supervised fully convo-
lutional residual network with up-projection blocks. RectNet [34] proposes a spe-
cific pipeline for depth estimation using panoramas as input. DistConv [26] trains
on perspective images and then regress depth for panorama images by distortion-
aware deformable convolution filters. Plane-aware [7] designs the plane-aware loss
which leverages principal curvature as an indicator of planar boundaries. The
results demonstrate that our proposed method obtains state-of-the-art depth
estimation results from a single panorama image. The qualitative comparison is
shown in Fig. 6. In the first image, the RectNet [34] is confused by the trans-
parent window, which is a common failure case in depth estimation. The Plane-
aware network [7] and our proposed network overcome this issue. Our result for
the window region is smoother due to the constraints from the layout depth.
In the second image, the distant regions are too ambiguous to predict the cor-
responding depth. Our proposed method predicts a proper depth map because
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Table 4: Quantitative results and ablation study of depth estimation on the
Stanford 2D-3D dataset. Our method outperforms all existing methods

lower is better higher is better

Abs Rel Sq Rel RMS RMS(log) δ < 1.25 δ < 1.252 δ < 1.253

FCRN [15] 0.091 0.057 0.364 0.134 0.913 0.982 0.995
RectNet[34] 0.082 0.046 0.399 0.123 0.928 0.988 0.997

DistConv [26] 0.176 - 0.369 0.083 - - -
Plane-aware [7] 0.079 0.029 0.290 0.120 0.934 0.990 0.998

Proposed Coarse-depth 0.105 0.045 0.352 0.094 0.934 0.989 0.997
Proposed Direct-refinement 0.089 0.033 0.269 0.095 0.944 0.989 0.998
Proposed Semantic-guided 0.086 0.033 0.273 0.096 0.944 0.989 0.998

Proposed Final 0.068 0.026 0.264 0.080 0.954 0.992 0.998

Fig. 6: Qualitative comparison on depth estimation. Results are shown for testing
the baseline RectNet [34], Plane-aware network [7] and our proposed method on
the Stanford 2D-3D dataset

of the explicit inter-positioning of the layout depth. Because of the proposed
semantic-guided refinement, the proposed method also preserves better object
details compared to the other two methods, as shown in the third and fourth im-
age. Fig. 7 illustrates the derived surface normals from the estimated depth map.
Constrained by the layout depth map, the surface normal results demonstrate
that our proposed method preserves the planar property for depth estimation.

Ablation Study: An ablation study is conducted to evaluate the perfor-
mance of the proposed method for different configurations, as shown in Table 4:
1) Proposed Coarse-depth: the depth estimation from the first decoder; 2) Pro-
posed Direct-refinement : the depth refinement using all the data representation
as input, as stated in Section 3.4; 3) Proposed Semantic-guided : the depth fusion
using semantic-guided attention map, as state in Section 3.4. It is shown that
the direct-refinement performs better than the coarse-depth. This indicates that
the joint learning with layout prediction already improves the depth estimation.
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Table 5: Quantitative comparison of the proposed method for joint training. It is
shown that joint training improves the performance for all the proposed modules

lower is better higher is better

3D IoU(%) CE(%) PE(%) Abs Rel Sq Rel RMS RMS(log) δ < 1.25 δ < 1.252 δ < 1.253

Coarse depth - - - 0.112 0.049 0.379 0.116 0.930 0.988 0.997
Coarse depth (joint) - - - 0.105 0.045 0.352 0.094 0.934 0.989 0.997

Depth refinement - - - 0.084 0.032 0.273 0.088 0.950 0.989 0.998
Depth refinement (joint) - - - 0.068 0.026 0.264 0.080 0.954 0.992 0.998

Layout depth 84.69 0.75 2.43 0.069 0.029 0.257 0.046 0.951 0.993 0.998
Layout depth (joint) 85.81 0.67 2.20 0.064 0.026 0.237 0.042 0.957 0.994 0.998

Fig. 7: Comparison of the derived surface normal from the depth estimation. Our
proposed method produces smoother surfaces for planar regions

Semantic-guided refinement improves the performance which supports our argu-
ment to dynamically fuse the layout depth map and the coarse depth estimation
based on background and foreground regions. Our proposed final method obtains
the best overall performance for all variations.

Table 5 shows the quantitative comparison for each module of the proposed
pipeline before and after joint training. It demonstrates that all the modules
benefit from joint training.

5 Conclusion

We proposed a method to jointly learn the layout and depth from a single in-
door panorama image. By leveraging the layout depth map as an intermediate
representation, the optimization of 3D layout does not require extra constraints
and the refined depth estimation preserves the planarity for the layout compo-
nents. Experiment results on challenging indoor datasets show that, with the
proposed method for joint learning, the performance of both the layout predic-
tion and depth estimation from single panorama images is significantly improved
and that our method outperforms the state-of-the-art.
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