
Supplementary Material: Memory-E�cient
Incremental Learning Through Feature

Adaptation

Ahmet Iscen1, Je↵rey Zhang2, Svetlana Lazebnik2, and Cordelia Schmid1

1 Google Research
2 University of Illinois at Urbana-Champaign

A Algorithm

An overview of our framework is described in Algorithm ??.

Algorithm 1 Memory-e�cient incremental learning
1: procedure Algorithm(Training examples X , labels Y)

2: Given T tasks

3: *** Train first task ***

4: X 1,Y1 2 X ,Y . Data examples for first task

5: ✓,W = Optimize(LCE(f✓,W (X 1
),Y1

)) . (4)

6: h1

✓ = h✓ . Freeze feature extractor

7: M1
= h1

✓(X
1
) . Store feature descriptors of images

8: M1
= Herding(M1

) . Reduce number of stored features

9: for t 2 [2, . . . , T] do
10: *** Train incremental tasks ***

11: X t,Yt 2 X ,Y . Data examples for current task

12: ✓,W = Optimize(L(f✓,W (X t
),Yt

)) . (6)

13: ht
✓ = h✓

14: � = Feature Adaptation(ht
✓, h

t�1

✓ ,X t,Yt
)

15: Mt
= ht

✓(X
t
) . Store new feature descriptors

16: Mt
= Herding(Mt

)

17: Mt
= Mt [� (Mt�1

) . Adapt stored features

18: W̃ = Train Classifier(Mt,Y1,...,t
) . (Sec. 4.3)

1: procedure FeatureAdaptation(hold
✓ , hnew

✓ ,X ,Y)

2: *** Returns transformation function ***

3: V = hold
✓ (X) . Feature descriptors of old extractor

4: V = hnew
✓ (X) . Feature descriptors of new extractor

5: = Optimize(LFA(V, V,Y)) . (7)

6: return �

B Feature Adaptation Quality

We evaluate the quality of our feature adaptation process by measuring the average
similarity between the adapted features and their ground-truth value. We compute
the feature adaptation quality as explained in Section 5.4. However, we compute two
distinct measurements this time. !t�1 measures the average feature adaptation quality
of features extracted in the previous task (i.e. y 2 Ct�1). This measurement does not

2 A. Iscen et al.

20 40 60 80 100

0.8

0.85

0.9

0.95

of classes

A
d
a
p
t
a
t
io
n

q
u
a
li
t
y

P = 50

P = 0

Fig. 1. Feature adaptation quality on CIFAR-100 for M = 10. P refers to the number
of images preserved in the memory. Solid and dashed lines correspond to vectors from
previous (!t�1) and first (!1) task respectively.

track the quality over time, but shows feature adaptation quality between two tasks.
!1 measures the feature adaptation quality of features originally extracted in the first
task (i.e. y 2 C1), showing how much the adapted features can diverge from their
optimal representation due to accumulated error. Adaptation quality is computed for
all L = 500 feature descriptors per class.

Figure ?? shows the adaptation quality !t�1 and !1 on CIFAR-100 with M =
10. We report the quality measures for when P number images are also preserved
in the memory. We observe that P = 0 achieves !t�1 greater than 0.9 in all tasks.
It increases as more classes are seen, most likely due to the network becoming more
stable. After 10 tasks, !1 is still close to 0.8, indicating our feature adaptation is
still relatively successful after training 9 subsequent tasks with no preserved images.
Adaptation quality improves as P increases, showing that preserving images also helps
with learning a better feature adaptation.

C Balanced Feature Classifier Training

Wu et al. [53] illustrated that training a classifier on fewer examples for previous classes
introduces a bias towards new classes. To verify the robustness of our method under
this setting, we investigate the e↵ect of training our feature classifier on class-balanced
and class-imbalanced training sets.

In our main experiments, we train our feature classifier gW̃ with a balanced number
of examples per class. We repeat our ImageNet-100 experiment in Table 1 without
balancing the classifier training samples. In the unbalanced setting, the old classes
contain 250 features per class in memory, whereas the new classes each contain ⇠ 1300
feature vectors. In the balanced setting, all classes contain 250 feature vectors. On
ImageNet-100, we achieve 0.893 accuracy with class-imbalanced training, compared to
0.913 accuracy with class-balanced training (reported in Table 1). This shows that even
though more training data is utilized in the class-imbalanced setting, the imbalanced
class bias leads to a drop in overall performance.

Our method addresses this problem by building a large balanced feature set for
training. Our feature adaptation method not only reduces the memory footprint com-
pared to [53] (see Table 1), but also allows substantially more stored data points from
old classes (250 features per class compared to 20 images per class for [53]). This may
explain some improvement in our results over previous methods. Lastly, the significant
increase in number of stored examples provides flexibility to remove examples to keep
classes balanced.

