Supplementary Material: Memory-Efficient Incremental Learning Through Feature Adaptation

Ahmet Iscen¹, Jeffrey Zhang², Svetlana Lazebnik², and Cordelia Schmid¹

 $^{1}\,$ Google Research $^{2}\,$ University of Illinois at Urbana-Champaign

A Algorithm

An overview of our framework is described in Algorithm ??.

A	lgorithm	1	Memory	-efficient	incremental	learning
	0		•/			0

1:	procedure Algorithm(Training examples \mathcal{X} , labels \mathcal{Y})	
2:	Given T tasks	
3:	*** Train first task ***	
4:	$\mathcal{X}^1, \mathcal{Y}^1 \in \mathcal{X}, \mathcal{Y}$	\triangleright Data examples for first task
5:	$\theta, W = \text{Optimize}(L_{CE}(f_{\theta, W}(\mathcal{X}^1), \mathcal{Y}^1))$	▷ (4)
6:	$h^1_ heta=h_ heta$	\triangleright Freeze feature extractor
7:	$\mathbf{M}^1 = h^1_{ heta}(\mathcal{X}^1)$	▷ Store feature descriptors of images
8:	$\mathbf{M}^1 = \operatorname{Herding}(\mathbf{M}^1)$	▷ Reduce number of stored features
9:	for $t \in [2, \ldots, T]$ do	
10:	*** Train incremental tasks ***	
11:	$\mathcal{X}^t, \mathcal{Y}^t \in \mathcal{X}, \mathcal{Y}$	\triangleright Data examples for current task
12:	$\theta, W = \text{Optimize}(L(f_{\theta, W}(\mathcal{X}^t), \mathcal{Y}^t))$	\triangleright (6)
13:	$h^t_ heta = h_ heta$	
14:	$\phi_{\psi} = \text{Feature Adaptation}(h_{\theta}^{t}, h_{\theta}^{t-1}, \mathcal{X}^{t}, \mathcal{Y}^{t})$	
15:	$\mathbf{M}^t = h^t_{\theta}(\mathcal{X}^t)$	▷ Store new feature descriptors
16:	$\mathbf{M}^t = \operatorname{Herding}(\mathbf{M}^t)$	
17:	$\mathbf{M}^t = \mathbf{M}^t \cup \phi_w(\mathbf{M}^{t-1})$	▷ Adapt stored features
18:	$\tilde{W} = \text{TRAIN CLASSIFIER}(\mathbf{M}^t, \mathcal{Y}^{1, \dots, t})$	\triangleright (Sec. 4.3)
1: 2:	procedure FEATUREADAPTATION $(h_{\theta}^{old}, h_{\theta}^{new}, \mathcal{X}, \mathcal{Y})$ *** Returns transformation function ***	
3:	$\overline{\mathbf{V}} = h_{ heta}^{old}(\mathcal{X})$	\triangleright Feature descriptors of old extractor
4:	$\mathbf{V} = h_{\theta}^{new}(\mathcal{X})$	\triangleright Feature descriptors of new extractor
5:	$\psi = \text{OPTIMIZE}(L_{\text{FA}}(\overline{\mathbf{V}}, \mathbf{V}, \mathcal{Y}))$	\triangleright (7)
6:	return ϕ_{ψ}	

B Feature Adaptation Quality

We evaluate the quality of our feature adaptation process by measuring the average similarity between the adapted features and their ground-truth value. We compute the feature adaptation quality as explained in Section 5.4. However, we compute two distinct measurements this time. ω_{t-1} measures the average feature adaptation quality of features extracted in the previous task (*i.e.* $y \in C^{t-1}$). This measurement does not

Fig. 1. Feature adaptation quality on CIFAR-100 for M = 10. P refers to the number of images preserved in the memory. Solid and dashed lines correspond to vectors from previous (ω_{t-1}) and first (ω_1) task respectively.

track the quality over time, but shows feature adaptation quality between two tasks. ω_1 measures the feature adaptation quality of features originally extracted in the first task (*i.e.* $y \in C^1$), showing how much the adapted features can diverge from their optimal representation due to accumulated error. Adaptation quality is computed for all L = 500 feature descriptors per class.

Figure ?? shows the adaptation quality ω_{t-1} and ω_1 on CIFAR-100 with M = 10. We report the quality measures for when P number images are also preserved in the memory. We observe that P = 0 achieves ω_{t-1} greater than 0.9 in all tasks. It increases as more classes are seen, most likely due to the network becoming more stable. After 10 tasks, ω_1 is still close to 0.8, indicating our feature adaptation is still relatively successful after training 9 subsequent tasks with no preserved images. Adaptation quality improves as P increases, showing that preserving images also helps with learning a better feature adaptation.

C Balanced Feature Classifier Training

Wu *et al.* [53] illustrated that training a classifier on fewer examples for previous classes introduces a bias towards new classes. To verify the robustness of our method under this setting, we investigate the effect of training our feature classifier on class-balanced and class-imbalanced training sets.

In our main experiments, we train our feature classifier $g_{\tilde{W}}$ with a balanced number of examples per class. We repeat our ImageNet-100 experiment in Table 1 without balancing the classifier training samples. In the unbalanced setting, the old classes contain 250 features per class in memory, whereas the new classes each contain ~ 1300 feature vectors. In the balanced setting, all classes contain 250 feature vectors. On ImageNet-100, we achieve 0.893 accuracy with class-imbalanced training, compared to 0.913 accuracy with class-balanced training (reported in Table 1). This shows that even though more training data is utilized in the class-imbalanced setting, the imbalanced class bias leads to a drop in overall performance.

Our method addresses this problem by building a large balanced feature set for training. Our feature adaptation method not only reduces the memory footprint compared to [53] (see Table 1), but also allows substantially more stored data points from old classes (250 features per class compared to 20 images per class for [53]). This may explain some improvement in our results over previous methods. Lastly, the significant increase in number of stored examples provides flexibility to remove examples to keep classes balanced.