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A Architecture

In total, our architecture has 30.4M parameters, comprising of modules:

– Perception, Eperception, 25.3M parameters ;

– Dynamics, Y, and present/future distributions, P and F , 0.8M parameters ;

– Future prediction, G, 3.5M parameters ;

– Control policy model, C, 0.7M parameters.

A.1 Perception

Semantics and Geometry. Our model is an encoder-decoder model with five
encoder blocks and three decoder blocks, followed by an atrous spatial pyramid pooling
(ASPP) module [9]. The encoders contain 2, 4, 8, 8, 8 layers respectively, downsampling
by a factor of two each time with a strided convolution. The decoders contain 3 layers
each, upsampling each time by a factor of two with a sub-strided convolution. All layers
have residual connections and many are low rank, with varying kernel and dilation sizes.
Furthermore, we employ skip connections from the encoder to decoder at each spatial
scale.

We pretrain the scene understanding encoder on a number of heterogeneous datasets
to predict semantic segmentation and depth: CityScapes [14], Mapillary Vistas [48],
ApolloScape [29] and Berkeley Deep Drive [67]. We collapse the classes to 14 seman-
tic segmentation classes shared across these datasets and sample each dataset equally
during training. We train for 200,000 gradient steps with a batch size of 32 using SGD
with an initial learning rate of 0.1 with momentum 0.9. We use cross entropy for seg-
mentation and the scale-invariant loss [44] to learn depth with a weight of 1.0 and 0.1,
respectively.

Motion. In addition to this semantics and geometry encoder, we also use a pre-
trained optical flow network, PWCNet [60]. We use the pretrained authors’ implemen-
tation.

Perception. To form our perception encoder we concatenate these two feature rep-
resentations (from the perception encoder and optical flow net) concatenated together.
We use the features two layers before the output optical flow regression as the feature
representation. The decoders of these networks are used for generating pseudo-ground
truth segmentation and depth labels to train our dynamics and future prediction mod-
ules.

A.2 Training

Our model was trained on 8 GPUs, each with a batch size of 4, for 200,000 steps using
an Adam optimiser with learning rate 3e−4. The input of our model is a sequence of
15 frames at resolution 224 × 480 and a frame rate of 5Hz (256 × 512 and 17Hz for
Cityscapes). The first 5 frames correspond to the past and present context (1s), and
the following 10 frames to the future we want to predict (2s). All layers in the network
use batch normalisation and a ReLU activation function. We now describe each module
of our architecture in more detail.
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Dynamics four temporal blocks with kernel size k = (2, 3, 3), stride s = 1 and
output channels c = [80, 88, 96, 104]. In between every temporal block, four 2D residual
convolutions (k = (3, 3), s = 1) are inserted.

Present and Future Distribution two downsampling 2D residual convolutions
(k = (3, 3), s = 2, c = [52, 52]). An average pooling layer flattens the feature spatially,
and a final dense layer maps it to a vector of size 2L (L = 16).

Future Prediction the main structure is a convolutional GRU (k = (3, 3), s = 1).
Each convolutional GRU is followed by three 2D residual convolutions (k = (3, 3),
s = 1). This structure is stacked five times. The decoders: two upsampling convolutions
(k = (3, 3), s = 1, c = 32), a convolution (k = (3, 3), s = 1, c = 16), and finally
a convolution without activation followed by a bilinear interpolation to the original
resolution 224× 480.

Control two downsampling convolutions (k = (3, 3), s = 2, c = [64, 32]), followed
by dense layers (c = [1024, 512, 256, 128, 64, 32, 16, 4]).

A.3 Temporal Block

We ablate the architecture of our proposed Temporal Block module on Cityscapes
by evaluating performance of future semantic segmentation prediction, at resolution
256× 512 and for future frames 5 and 10. Let kt denote the temporal kernel size and
ks the spatial kernel size of the 3D convolutions. We compare the following modules:

(i) (kt, ks, ks) and (1, ks, ks) convolutions. No global context.
(ii) (kt, ks, ks), (kt, 1, ks) and (1, ks, ks) convolutions. No global context.

(iii) (kt, ks, ks), (kt, ks, 1) and (1, ks, ks) convolutions. No global context.
(iv) (kt, ks, ks), (kt, 1, ks), (kt, ks, 1) and (1, ks, ks) convolutions. No global context.
(v) (kt, ks, ks), (kt, 1, ks), (kt, ks, 1) and (1, ks, ks) convolutions. With global context

(i.e. our proposed Temporal Block).

Temporal Model IoUi=5 (↑) IoUi=10 (↑)
Repeat frame 0.393 0.331

Probabilistic

(i) (kt, ks, ks) 0.454 0.411
(ii) (kt, ks, ks), (kt, 1, ks) 0.461 0.411
(iii) (kt, ks, ks), (kt, ks, 1) 0.449 0.413
(iv) (kt, ks, ks), (kt, 1, ks), (kt, ks, 1) 0.453 0.413
(v) Temporal Block (Ours) 0.464 0.416

Table 5: Ablation study of the Temporal Block on Cityscapes, evaluated on
future semantic segmentation performance at i = 5 and i = 10 frames in the
future. Our proposed Temporal Block module outperforms all the other variants.
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B Nomenclature

We detail the symbols used to describe our model in this paper.

Networks
Perception encoder Eperception

Temporal Block T
Dynamics module Y
Present network P
Future network F
Future prediction module G
Future decoders Ds,Dd,Df

Control module C
Tensors
Temporal context T
Future prediction horizon Nf

Future control horizon Nc

Input image it
Perception features xt = Eperception(it)
Dynamics features zt = Y(xt−T+1 : xt)
Present distribution µt,present, σt,present = P(zt)
Future distribution µt,future, σt,future = F(zt)
Noise vector (train) ηt ∼ N (µt,future, σ

2
t,future)

Noise vector (test) ηt ∼ N (µt,present, σ
2
t,present)

Future prediction inputs ut+i
t = ηt

Future prediction initial hidden state gtt = zt
Future prediction output features gt+i

t = G(ut+i
t , gt+i−1

t )

Future perception outputs
ôt+i
t = {ŝt+i

t , d̂t+i
t , f̂ t+i

t }
= {Ds(gt+i

t ),Dd(gt+i
t ),Df (gt+i

t )}

Control outputs
ĉt = {v̂t, ˆ̇vt, θ̂t, ˆ̇

θt}
= C(zt)
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C Cityscapes Qualitative Examples

(a) Our model can correctly predict future segmentation of small classes such as poles
or traffic lights.

(b) Dynamic agents, i.e. cars and cyclists, are also accurately predicted.

(c) In this example, the bus is correctly segmented, without any class bleeding contrary
to the pseudo-ground truth segmentation, showing that our model can reason in a
holistic way.

Fig. 5: Future prediction on the CityScapes dataset, for 10 frames in the future
at 17Hz and 256× 512 resolution.


