
Suppressing Mislabeled Data
via Grouping and Self-Attention

Xiaojiang Peng?1,2, Kai Wang?1,2, Zhaoyang Zeng?3, Qing Li4, Jianfei Yang5,
and Yu Qiao†1,2

1 Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine
Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese

Academy of Sciences, 518055, China
2 SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society

3 Sun Yat-sen University
4 Southwest Jiaotong University

5 Nanyang Technological University, Singapore

Abstract. Deep networks achieve excellent results on large-scale clean
data but degrade significantly when learning from noisy labels. To sup-
pressing the impact of mislabeled data, this paper proposes a concep-
tually simple yet efficient training block, termed as Attentive Feature
Mixup (AFM), which allows paying more attention to clean samples and
less to mislabeled ones via sample interactions in small groups. Specif-
ically, this plug-and-play AFM first leverages a group-to-attend module
to construct groups and assign attention weights for group-wise samples,
and then uses a mixup module with the attention weights to interpolate
massive noisy-suppressed samples. The AFM has several appealing bene-
fits for noise-robust deep learning. (i) It does not rely on any assumptions
and extra clean subset. (ii) With massive interpolations, the ratio of use-
less samples is reduced dramatically compared to the original noisy ratio.
(iii) It jointly optimizes the interpolation weights with classifiers, sup-
pressing the influence of mislabeled data via low attention weights. (iv)
It partially inherits the vicinal risk minimization of mixup to alleviate
over-fitting while improves it by sampling fewer feature-target vectors
around mislabeled data from the mixup vicinal distribution. Extensive
experiments demonstrate that AFM yields state-of-the-art results on two
challenging real-world noisy datasets: Food101N and Clothing1M.
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1 Introduction

In recent years, deep neural networks (DNNs) have achieved great success in var-
ious tasks, particularly in supervised learning tasks on large-scale image recog-
nition challenges, such as ImageNet [6] and COCO [21]. One key factor that
drives impressive results is the large amount of well-labeled images. However,
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Fig. 1: Suppressing mislabeled samples by grouping and self-attention mixup.
Different colors and shapes denote given labels and ground truths. Thick and
thin lines denote high and low attention weights, respectively. A0, A10, B0, and
B10 are supposed to be mislabeled samples, and can be suppressed by assigning
low interpolation weights in mixup operation.

high-quality annotations are laborious and expensive, even not always available
in some domains. To address this issue, an alternative solution is to crawl a
large number of web images with tags or keywords as annotations [8, 19]. These
annotations provide weak supervision, which are noisy but easy to obtain.

In general, noisy labeled examples hurt generalization because DNNs eas-
ily overfit to noisy labels [7, 30, 2]. To address this problem, it is intuitive to
develop noise-cleaning methods which aim to correct the mislabeled samples
either by joint optimization of classification and relabeling [31] or by iterative
self-learning [11]. However, the noise-cleaning methods often suffer from the main
difficulty in distinguishing mislabeled samples from hard samples. Another solu-
tion is to develop noise-robust methods which aims to reduce the contributions
of mislabeled samples for model optimization. Along this solution, some methods
estimate a matrix for label noise modeling and use it to adapt output proba-
bilities and loss values [30, 35, 26]. Some others resort to curriculum learning [4]
by either designing a step-wise easy-to-hard strategy for training [10] or intro-
ducing an extra MentorNet [12] for sample weighting. However, these methods
independently estimate the importance weights for individuals which ignore the
comparisons among different samples while they have been proven to be the key
of humans to perceive and learn novel concepts from noisy input images [29].
Some other solutions follow semi-supervised configuration where they assume a
small manually-verified set can be used [20, 32, 15, 17]. However, this assump-
tion may be not supported in real-world applications. With the Vicinal Risk
Minimization(VRM) principle, mixup [36, 33] exploits a vicinal distribution for
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sampling virtual sample-target vectors, and proves its robustness for synthetic
noisy data. But its effectiveness is limited in real-world noisy data [1].

In this paper, we propose a conceptually simple yet efficient training block,
termed as Attentive Feature Mixup (AFM), to suppress mislabeled data thus
to make training robust to noisy labels. The AFM is a plug-and-play block for
training any networks and is comprised of two crucial parts: 1) a Group-to-
Attend (GA) module that first randomly groups a minibatch images into small
subsets and then estimates sample weights within those subsets by an attention
mechanism, and 2) a mixup module that interpolates new features and soft labels
according to self-attention weights. Particularly, for the GA module, we evaluate
three feature interactions to estimate group-wise attention weights, namely con-
catenation, summary, and element-wise multiplication. The interpolated samples
and original samples are respectively fed into an interpolation classifier and a
normal classifier. Figure 1 illustrates how AFM suppress mislabeled data. Gen-
erally, there exists two main types of mixup: intra-class mixup (Figure 1 (c)) and
inter-class mixup (Figure 1 (b)). For both types, the interpolations between mis-
labeled samples and clean samples may become useful for training with adaptive
attention weights, i.e. low weights for the mislabeled samples and high weights
for the clean samples.In other words, our AFM hallucinates numerous useful
noisy-reduced samples to guide deep networks learn better representations from
noisy labels. Overall, as a noisy-robust training method, our AFM is promising
in the following aspects.

– It does not rely on any assumptions and extra clean subset.
– With AFM, the ratio of harmful noisy interpolations (i.e. between noisy

samples) over all interpolations is largely less than the original noisy ratio.
– It jointly optimizes the mixup interpolation weights and classifier, suppress-

ing the influence of mislabeled data via low attention weights.
– It partially inherits the vicinal risk minimization of mixup to alleviate over-

fitting while improves it by sampling less feature-target vectors around mis-
labeled data from the mixup vicinal distribution.

We validate our AFM on two popular real-world noisy-labeled datasets: Food101N
[15] and Clothing1M [35]. Experiments show that our AFM outperforms recent
state-of-the-art methods significantly with accuracies of 87.23% on Food101N
and 82.09% on Clothing1M.

2 Related Work

2.1 Learning with Noisy Labeled Data

Learning with noisy data has been vastly studied on the literature of machine
learning and computer vision. Methods on learning with label noise can be
roughly grouped into three categories: noise-cleaning methods, semi-supervised
methods and noise-robust methods.

First, noise-cleansing methods aim to identify and remove or relabel noisy
samples with filter approaches [3, 24]. Brodley et al. [5] propose to filter noisy
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samples using ensemble classifiers with majority and consensus voting. Sukhbaatar
et al. [30] introduce an extra noise layer into a standard CNN which adapts the
network outputs to match the noisy label distribution. Daiki et al. [31] propose
a joint optimization framework to train deep CNNs with label noise, which up-
dates the network parameters and labels alternatively. Based on the consistency
of the noisy groundtruth and the current prediction of the model, Reed et al. [27]
present a ‘Soft’ and a ‘Hard’ bootstrapping approach to relabel noisy data. Li et
al. [20] relabel noisy data using the noisy groundtruth and the current prediction
adjusted by a knowledge graph constructed from DBpedia-Wikipedia.

Second, semi-supervised methods aim to improve performance using a small
manually-verified clean set. Lee et al. [15] train an auxiliary CleanNet to detect
label noise and adjust the final sample loss weights. In the training process, the
CleanNet needs to access both the original noisy labels and the manually-verified
labels of the clean set. Veit et al. [32] use the clean set to train a label cleaning
network but with a different architecture. These methods assume there exists
such a label mapping from noisy labels to clean labels. Xiao et al. [35] mix the
clean set and noisy set, and train an extra CNN and a classification CNN to
estimate the posterior distribution of the true label. Li et al. [18] first train a
teacher model on clean and noisy data, and then distill it into a student model
trained on clean data.

Third, the noise-robust learning methods are assumed to be not too sensitive
to the presence of label noise, which directly learn models from the noisy labeled
data [13, 14, 25, 26, 34]. Manwani et al. [23] present a noise-tolerance algorithm
under the assumption that the corrupted probability of an example is a function
of the feature vector of the example. With synthetic noisy labeled data, Rol-
nick et al. [28] demonstrate that deep learning is robust to noise when training
data is sufficiently large with large batch size and proper learning rate. Guo
et al. [10] develop a curriculum training scheme to learn noisy data from easy
to hard. Han et al. [11] propose a Self-Learning with Multi-Prototype (SMP)
method to learn robust features via alternatively training and clustering which
is time-consuming. Wang et al. [34] propose to suppress uncertain samples with
self-attention, ranking loss, and relabeling. Our method is most related to Meta-
Cleaner [37], which hallucinates a clean (precisely noise-reduced) representation
by mixing samples (the ratio of the noisy images need to be small) from the
same category. Our work differs from it in that i) we formulate the insight as
attentive mixup, and ii) hallucinate noisy-reduced samples not only within class
but also between classes which significantly increases the number of interpola-
tions and expands the decision boundaries. Moreover, we introduce more sample
interactions rather than the concatenation in [37], and find a better one.

2.2 Mixup and Variations

Mixup [36] regularizes the neural network to favor simple linear behavior in-
between training examples. Manifold Mixup [33] leverages semantic interpola-
tions in random layers as additional training signal to optimize neural networks.
The interpolation weights of those two methods are drawn from a β distribution.
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Meta-Mixup [22] introduces a meta-learning based online optimization approach
to dynamically learn the interpolation policy from a reference set. AdaMixup [9]
also learns the interpolation policy from dataset with an additional network
to infer the policy and an intrusion discriminator. Our work differs from these
variations in that i) we design a Group-to-Attend mechanism to learn attention
weights for interpolating in a group-wise manner which is the key to reduce the
influence of noises and ii) we address the noisy-robust problem on real-world
noisy data and achieve state-of-the-art performance.

3 Attentive Feature Mixup

As proven in cognitive studies, we human mainly perceive and learn novel con-
cepts from noisy input images by comparing and summary [29]. Based on this
motivation, we propose a simple yet efficient model, called Attentive Feature
Mixup (AFM), which aims to learn better features by making clean and noisy
samples interact with each other in small groups.

3.1 Overview

Our AFM works on traditional CNN backbones and includes two modules: i)
Group-to-Attend (GA) module and ii) mixup module, as shown in Figure 2.

Let B = {(I1, y1), (I2, y2), · · · , (In, yn)} be the mini-batch set of a noisy la-
beled dataset, which contains n samples, and yi ∈ RC is the noisy one-hot
label vector of image Ii. The AFM works as the following procedure. First,
a CNN backbone φ(·; θ) with parameter θ is used to extract image features
{x1, x2, · · · , xn}. Then, the Group-to-Attend (GA) module is used to divide the
mini-batch images into small groups and learn attention weights for each sam-
ples within each group. Subsequently, with the group-wise attention weights, a
mixup module is used to interpolate new samples and soft labels. Finally, these
interpolations along with the original image features are fed into an interpolation
classifier fc1 (i.e. FC layer) and a normal classifier fc2 (i.e. FC layer), respec-
tively. Particularly, the interpolation classifier is supervised by the soft labels
from the mixup module and the normal classifier by the original given labels
which are noisy. Our AFM partially inherits the vicinal risk minimization of
mixup to alleviate over-fitting with massive interpolations. Further, with jointly
optimizing the mixup interpolation weights and classifier, AFM improves mixup
by sampling less feature-target vectors around mislabeled data from the mixup
vicinal distribution.

3.2 Group-to-Attend Module

In order to obtain meaningful attention weights, i.e. high weights for clean sam-
ples and low weights for mislabeled samples, we elaborately design a Group-
to-Attend module, which consists of four crucial steps. First, we randomly and
repeatedly selecting K samples to construct groups as many as possible (the



6 X. Peng, K. Wang, Z. Zeng, Q. Li, J. Yang and Y. Qiao

Fig. 2: The pipeline of Attentive Feature Mixup (AFM). Given a mini-batch of n
images, a backbone CNN is first applied for feature extraction. Then, a Group-
to-Attend (GA) module randomly composites massive groups with the group
size K and linearly projects each element within a group with a separated FC
layer, and then combines each group with an interaction (i.e. concatenation (�),
sum (⊕), and element-wise multiplication (⊗) ), and finally outputs K attention
weights for each group. With the group-wise attention weights, a mixup module
is used to interpolate new samples and soft labels.

number of groups depends on the input batch size and the GPU memory). Sec-
ond, we use K fully-connected (FC) layers to map the ordered samples of each
group into new feature embeddings for sample interactions. As an example of
K = 2 in Figure 2, xi and xj are linearly projected as,

x̃i = fa(xi;wa), x̃j = fb(xj ;wb), (1)

where wa and wb are the parameters of FC layer fa and fb, respectively. Third,
we further make x̃i and x̃j interact for group-wise weight learning. Specifically,
we experimentally explore three kinds of interactions: concatenation (�), sum
(⊕), and element-wise multiplication (⊗). Last, we apply a light-weight self-
attention network to estimate group-wise attention weights. Formally, for K = 2
and the sum interaction, this step can be defined as follows,

[αki , α
k
j ] = ψt(x̃i ⊕ x̃j ; θt)

= ψt(fa(xi;wa)⊕ fb(xj ;wb); θt), (2)

where ψt is the attention network, θt denotes its parameters, and k denotes
the k−th group. For the architecture of ψt, we follow the best one of [37], i.e.
FC-FC-ReLu-Sigmoid. It is worth noting that feature interaction is crucial for
learning meaningful attention weights since the relationship between noisy and
clean samples within a group can be learned efficiently while not the case of
non-interaction (i.e. learning weights for each other separately).
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Proposition 1 The attention weights are meaningful with sum interaction if
and only if fa 6= fb.

Proof. Assume we remove the projection layers fa and fb or share them as the
same function f , then Eq. (2) is rewritten as,

[αki , α
k
j ] = ψt(f(xi)⊕ f(xj); θt)

= ψt(f(xj)⊕ f(xi); θt). (3)

As can be seen, removing or sharing the projection makes the attention network
ψt confirm the commutative law of addition. This corrupts the attention weights
to be random since an attention weight can correspond to both samples for the
following MixUp module.

The effect of GA. An appealing benefit of our GA is that it reduces the
impact of noisy-labeled samples significantly. Let Nnoisy and Ntotal represent
the number of the noisy images and total images in a noisy dataset, respectively.
The noise ratio is

Nnoisy

Ntotal
in the image-wise case. Nevertheless, the number of

pure noisy groups (i.e. all the images are mislabeled in these groups) in the
group-wise case becomes AKNnoisy

. With K = 2, we have,

Nnoisy
Ntotal

>
A2
Nnoisy

A2
Ntotal

=
Nnoisy(Nnoisy − 1)

Ntotal(Ntotal − 1)
≈
N2
noisy

N2
total

. (4)

We argue that GA can reduce the pure noisy ratio dramatically and partial noisy
groups (i.e. some images within these groups are corrected-labeled) may provides
useful supervision by the well-trained attention network. However, though the
ratio is smaller whenK becomes larger, largeK may lead to over-smooth features
for the new interpolations which are harmful for discriminative feature learning.

3.3 Mixup Module

The mixup module interpolates virtual feature-target vectors for training. Specif-
ically, following classic mixup vicinal distribution, we normalize the attention
weights into range [0, 1]. Formally, for K = 2 and group members {xi, xj}, the
mixup can be written as follows,

x′ =
1∑
α

(αixi + αjxj), (5)

y′ =
1∑
α

(αiyi + αjyj), (6)

where x′ and y′ are the interpolated feature and soft label.
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3.4 Training and Inference

Training. Our AFM along with the CNN backbone can be trained in an end-to-
end manner. Specifically, we conduct a multi-task training scheme to separate the
contributions of original training samples and new interpolations. Let fc1 and fc2
respectively denote the classifiers (include the Softmax or Sigmoid operations)
of interpolations and original samples, we can formulate the training loss in a
mini batch as follows,

Ltotal = λLafm + (1− λ)Lorg (7)

=
λ

m

m∑
i=1

L(fc1(x′i), y
′
i) +

(1− λ)

n

n∑
i=1

L(fc2(xi), yi),

where n is the batch size, m is the number of interpolations, and λ is a trade-off
weight. We use the Cross-Entropy loss function for both Lafm and Lorg. In this
way, our AFM can be viewed as a regularizer over the training data by massive
interpolations. As proven in [36, 33], this regularizer can largely improve the
generalization of deep networks. In addition, the parameters of fc1 and fc2 can
be shared since both original features and interpolations are in same dimensions.

Inference. After training, both the GA module and mixup module can be
simply removed since we do not need to compose new samples at test stage. We
keep the classifiers fc1 and fc2 for inference. Particularly, they are identical and
we can conduct inference as traditional CNNs if the parameters are shared.

4 Experiments

In this section, we first introduce datasets and implementation details, and then
compare our AFM with the state-of-the-art methods. Finally, we conduct abla-
tion studies with qualitative and quantitative results.

4.1 Datasets and Implementation Details

In this paper, we conduct experiments on two popular real-world noisy datasets:
Food101N [16] and Clothing1M [35]. Food101N consists of 365k images that are
crawled from Google, Bing, Yelp, and TripAdvisor using the Food-101 taxonomy.
The annotation accuracy is about 80%. The clean dataset Food-101 is collected
from foodspotting.com which contains 101 food categories with 101,000 real-world
food images totally. For each class, 750 images are used for training, the other
250 images for testing. In our experiments, following the common setting, we use
all images of Food-101N as the noisy dataset, and report the overall accuracy on
the Food-101 test set. Clothing1M contains 1 million images of clothes with 14
categories. Since most of the labels are generated by the surrounding text of the
images on the Web, a large amount of annotation noises exist, leading to a low
annotation accuracy of 61.54% [35]. The human-annotated set of Clothing1M
is used as the clean set which is officially divided into training, validation and
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Table 1: Comparison with the state-of-the-art methods on Food101N dataset.
VF(55k) is the noise-verification set used in CleanNet [16].

Method Training Data Training time Acc

Softmax [16] Food101 – 81.67
Softmax [16] Food101N – 81.44
Weakly Supervised [38] Food101N – 83.43
CleanNet(whard) [16] Food101N + VF(55K) – 83.47
CleanNet(wsoft) [16] Food101N + VF(55K) – 83.95
MetaCleaner [37] Food101N – 85.05
SMP [11] Food101N – 85.11
ResNet50 (baseline) Food101N 4h16min40s 84.51

AFM (Ours) Food101N 4h17min4s 87.23

testing sets, containing 50k, 14k and 10k images respectively. We report the
overall accuracy on the clean test set of Clothing1M.

Implementation Details As widely used in existing works, ResNet50 is
used as our CNN backbone and initialized by the official ImageNet pre-trained
model. For each image, we resize the image with a short edge of 256 and random
crop 224× 224 patch for training. We use SGD optimizer with a momentum of
0.9. The weight decay is 5 × 10−3, and the batch size is 128. For Food101N, the
initial learning rate is 0.001 and divided by 10 every 10 epochs. We stop training
after 30 epochs. For Clothing1M, the initial learning rate is 0.001 and divided
by 10 every 5 epochs. We stop training after 15 epochs. All the experiments are
implemented by Pytorch with 4 NVIDIA V100 GPUs. The default λ and K are
0.75 and 2, respectively. By default, the classifiers fc1 and fc2 are shared.

4.2 Comparison on Food101N

We compare AFM to the baseline model and existing state-of-the-art methods in
Table 1. AFM improves our strong baseline from 84.51% to 87.23%, and consis-
tently outperforms recent state-of-the-art methods with large margins. Moreover,
our AFM is almost free since it only increases training time by 24s. Specifically,
AFM outperforms [38] by 3.80%, CleanNet(wsoft) by 3.28%, and SMP [11] by
2.12%. We notice that, CleanNet(whard) and CleanNet(wsoft) use extra 55k
manually-verified images, while we do not use any extra images. In particular,
MetaCleaner [37] uses a similar scheme but limited in intra-class mixup and its
single feature interaction type, which leads to 2.18% worse than our AFM. An
ablation study will further discuss these issues in the following section.

4.3 Comparison on Clothing1M

For the comparison on Clothing1M, we evaluate our AFM in three different
settings following [16, 26, 37, 11]: (1) only the noisy set are used for training,
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Table 2: Comparison with the state-of-the-art methods on Clothing1M. VF(25k)
is the noise-verification set used in CleanNet [16].

Method Training Data Acc. (%)

Softmax [16] 1M noisy 68.94
Weakly Supervised [38] 1M noisy 71.36
JointOptim [37] 1M noisy 72.23
MetaCleaner [37] 1M noisy 72.50
SMP (Final)[11] 1M noisy 74.45
SMP (Initial) [11] 1M noisy 72.09
AFM (Ours) 1M noisy 74.12

CleanNet(whard) [16] 1M noisy + VF(25K) 74.15
CleanNet(wsoft) [16] 1M noisy + VF(25K) 74.69
MetaCleaner [37] 1M noisy + VF(25K) 76.00
SMP [11] 1M noisy + VF(25K) 76.44
AFM (Ours) 1M noisy + VF(25K) 77.21

CleanNet(wsoft) [16] 1M noisy + Clean(50K) 79.90
MetaCleaner [37] 1M noisy + Clean(50K) 80.78
SMP [11] 1M noisy + Clean(50K) 81.16
CurriculumNet [10] 1M noisy + Clean(50K) 81.50
AFM (Ours) 1M noisy + Clean(50K) 82.09

(2) the 25K extra manually-verified images [16] are added into the noisy set for
training, and (3) the 50K clean training images are added into the noisy set.

The comparison results are shown in Table 2. For the first setting, our AFM
improves the baseline method from 68.94% to 74.12%, and consistently outper-
forms MetaCleaner, JointOptim, and SMP (Initial) by about 2%. Although SMP
(Final) performs on par with AFM in this setting, it needs several training-and-
correction loops and careful parameter tuning. Compared to SMP (Final), our
AFM is simpler and almost free in computational cost.

For the second setting, other methods except for MetaCleaner mainly apply
the 25K verified images to train an accessorial network [16, 26] or to select the
class prototypes [11]. Following [37], we train our AFM on 1M noisy training
set, and then fine-tune it on the 25K verified images. As shown in Table 2, AFM
obtains 77.21% which sets new record in this setting. Specifically, our AFM is
better than MetaCleaner and SMP by 1.21% and 0.77%, respectively.

For the third setting, all the methods first train models on the noisy set and
then fine-tune them on the clean set. CurriculumNet [10] uses a deeper CNN
backbone and obtains accuracy 81.5%, which is slightly better than SMP and
other methods. Our AFM outperforms CurriculumNet by 0.59%, and is better
than MetaCleaner by 1.31%. It is worth emphasizing that both CurriculumNet
and SMP need to train repeatedly after model convergence which are compli-
cated and time-consuming, while AFM is much simpler and almost free.
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Table 3: Results of different feature interactions in Group-to-Attend module. ∗It
removes FCa and FCb in GA module.

# Interaction type Training Data Acc. (%)

1 Concatenation Food101N 86.95
2 Concatenation∗ Food101N 86.51
3 Sum Food101N 87.23
4 Sum∗ Food101N 86.12
5 Multiplication Food101N 86.64

Table 4: Evaluation of trade-off λ.

λ 0.00 0.25 0.50 0.75 1.00

Acc. (%) 84.51 86.75 86.97 87.23 86.47

Table 5: Evaluation of group size.

Size 2 3 4 5 6

Acc. (%) 87.23 86.46 86.01 85.92 85.46

4.4 Ablation Study

Evaluation of feature interaction types. Concatenation, sum and element-
wise multiplication are three popular feature fusion or interaction methods.
MetaCleaner [37] simply takes the concatenation, and ignores the impact of
the interaction types. We conduct an ablation study for them along with the
projection in Group-to-Attend module. Specifically, the group size is set to 2 for
this study. Table 3 presents the results on Food101N. Two observations can be
concluded as following. First, with FCa and FCb, the sum interaction consis-
tently performs better than the others. Second, for both concatenation and sum,
it is better to use the projection process. As mentioned in Section 3.2, remov-
ing FCa and FCb leads to random attention weights for sum interaction, which
may degrade our AFM to standard Manifold mixup [36]. Nevertheless, it still
improves the baseline (i.e. 84.51%) slightly.

Evaluation of the trade-off weight λ. In training phase, λ is used to
trade-off the loss ratio between Lafm and Lorg. We evaluate it by increasing λ
from 0 to 1 on Food101N, and present the results in Tabel 4. We achieve the best
accuracy with default λ (i.e. 0.75). Decreasing λ means to use less interpolations
from AFM, which gradually degrades the final performance. Particularly, λ = 0
is our baseline that only uses original noisy training data. In the other extreme
case, using only the interpolations from AFM is better than the baseline but
slight worse than the default one. This may be explained by that the massive
interpolations are more or less smoothed by our AFM since the interpolation
weights cannot be zeros due to the GA module. Hence, adding original features
can be better since these features fill this gap naturally.

Evaluation of the group size. Our previous experiments fix the group
size as 2 which construct pairwise samples for generating virtual feature-target
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Fig. 3: Evaluation of the ratios of
Intra- and Inter-class mixup.
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87.23%

84.51%
83.37%

82.21%
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83.23%

85.85%
86.35%

Fig. 4: Evaluation of AFM on syn-
thetic small datasets.

vectors. Here we explore different group sizes for our attentive feature mixup,
Specifically, we increase the group size from 2 to 6, and present the results in
Table 5. As can be seen, enlarging the group size gradually degrades the final
performance. This may be explained by that large group size interpolates over-
smoothed features which are not discriminative for any classes.

Intra-class mixup vs. Inter-class mixup. To investigate the contributions
of intra-class mixup and inter-class mixup, we conduct an evaluation by explor-
ing different ratios between intra- and inter-class interpolations with group size
2. Specifically, we constrain the number of interpolations for both mixup types in
each minibatch with 8 varied ratios from 10:0 to 2:8 on the Food101N dataset.
The results are shown in Figure 3. Several observations can be concluded as
following. First, removing the inter-class mixup (i.e. 10:0) degrades the perfor-
mance (it is similar with MetaCleaner [37]) while adding a small ratio (e.g. 8:2)
of inter-class mixup significantly improves the final result. This indicates that the
inter-class mixup is more useful for better feature learning. Second, increasing
the ratio of inter-class mixup further boosts performance but the performance
gaps are small. Third, we get the best result by random selecting group-wise
samples. We argue that putting constraints on the ratio of mixup types may re-
sult in different data distribution compared to the original dataset while random
choice avoids this problem.

AFM for learning from small dataset. Since AFM can generate numer-
ous of noisy-reduced interpolations in training stage, we intuitively check the
power of AFM on small datasets. To this end, we construct sub-datasets from
Food101N by randomly decreasing the size of Food101N to 80%, 60%, 40%, and
20%. The results of our default AFM on these synthetic datasets are shown in
Figure 4. Several observations can be concluded as following. First, our AFM
consistently improves the baseline significantly. Second, the improvements from
data size 40% to 100% are larger than that of 20%. This may be because that
small dataset leads to less diverse interpolations. Third, we interestingly find
that our AFM already obtains the state-of-the-art performance with only 60%
data on Food101N.
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Table 6: Comparison of our AFM
with mixup [36] and Manifold mixup
[33]. We also evaluate fc1 and fc2 for
them.
Method fc1 + fc2 fc1 + fc2 (Shared)

mixup [36] 85.36% 85.63%
Manifold mixup [33] 85.85% 86.12%
AFM (Ours) 86.97% 87.23% 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 AFM-Samples
Clean-Samples
Mislabeled-Samples

Fig. 5: AFM sample distribution.

Fig. 6: Visualization of the attention weights in our AFM. The green and red
boxes represent the clean and noisy samples.

AFM vs. classic mixup. Since our AFM is related to the mixup scheme,
we compare it to the Standard mixup [36] and Manifold mixup [33]. The Stan-
dard mixup [36] interpolates samples in image level while Manifold mixup [33]
in feature level. Both of them drawl the interpolation weights randomly from a
β distribution. Our method introduce a Group-to-Attend (GA) module to gen-
erate meaningful weights for noise-robust training. As the new interpolations
and the original samples can contribute differently, we separately apply classi-
fiers for them, i.e. fc1 for interpolations and fc2 for original samples. Table 6
presents the comparison. Several observations are concluded as following. First,
for both classifier setting, our AFM outperforms the others largely, e.g. AFM is
better than standard mixup by 1.6% and the Manifold mixup by 1.11% in the
shared classifier setting. Second, the shared classifiers are slightly better than the
independent classifiers for all methods, which may be explained by that shar-
ing parameters makes the classifier favor linear behavior over all samples thus
reducing over-fitting and encouraging the model to discover useful features.
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4.5 Visualizations

To better investigate the effectiveness of our AFM, we make two visualizations:
i) attentive mixup sample distribution between clean and noisy samples in Fig-
ure 5 and ii) the normalized attention weights in Figure 6. For the former, we
randomly select several noisy samples and clean samples on the VK(25) set of
Food101N and apply our trained AFM model to generate virtual samples (i.e.
AFM samples), and then use t-SNE to visualize all the real samples and atten-
tive mixup samples. Figure 5 evidently shows that our AFM samples are mainly
distributed around the clean samples, demonstrating our AFM suppresses noisy
samples effectively. It is worth noting that classical mixup samples are doomed
to distribute around all the real samples rather than only clean samples.

For the latter visualization, the first row of Figure 6 shows three types of
pairs for the intra-class case, the second row for the inter-class case, and the
third row for the inter-class case without projection in the Group-to-Attend
module. The first column denotes the “noisy+noisy” interpolations, the second
column denotes “clean+clean”, and the third column denotes “clean+noisy”.
Several finds can be observed as following. First, for both intra- and inter-class
cases, the weights of “noisy+noisy” and “clean+clean” interpolations trend to
be equal since these interpolations may lie in the decision boundaries which
make the network hard to identify which is better for training. Second, for the
“clean+noisy” interpolations on the first two rows, our AFM assigns evidently
low weights to these noisy samples which demonstrates the effectiveness of AFM.
Last, without projection in the Group-to-Attend module, our default AFM loses
the ability to identify noisy samples as shown in the last image pair.

5 Conclusion

This paper proposed a conceptually simple yet efficient training block, termed as
Attentive Feature Mixup (AFM), to address the problem of learning with noisy
labeled data. Specifically, AFM is a plug-and-play training block, which mainly
leverages grouping and self-attention to suppress mislabeled data and does not
rely on any assumptions and extra clean subset. We conducted extensive experi-
ments on two challenging real-world noisy datasets: Food101N and Clothing1M.
Quantitative and qualitive results demonstrated that our AFM is superior to
recent state-of-the-art methods. In addition, the grouping and self-attention is
expected to extend in other topics, e.g. semi-supervised learning, where one may
conduct this module for real annotations and pseudo labels to automatically
suppress incorrect pseudo labels.
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