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Abstract. Recent works have made great progress in semantic segmen-
tation by exploiting contextual information in a local or global manner
with dilated convolutions, pyramid pooling or self-attention mechanism.
In order to avoid potential misleading contextual information aggrega-
tion in previous works, we propose a class-wise dynamic graph convo-
lution(CDGC) module to adaptively propagate information. The graph
reasoning is performed among pixels in the same class. Based on the
proposed CDGC module, we further introduce the Class-wise Dynamic
Graph Convolution Network(CDGCNet), which consists of two main
parts including the CDGC module and a basic segmentation network,
forming a coarse-to-fine paradigm. Specifically, the CDGC module takes
the coarse segmentation result as class mask to extract node features
for graph construction and performs dynamic graph convolutions on the
constructed graph to learn the feature aggregation and weight allocation.
Then the refined feature and the original feature are fused to get the final
prediction. We conduct extensive experiments on three popular seman-
tic segmentation benchmarks including Cityscapes, PASCAL VOC 2012
and COCO Stuff, and achieve state-of-the-art performance on all three
benchmarks.

Keywords: Semantic Segmentation, Graph Convolution, Coarse-to-fine
Framework

1 Introduction

Semantic Segmentation is a fundamental and challenging problem in computer
vision, which aims to assign a category label to each pixel in an image. It has
been widely applied to many scenarios, such as autonomous driving, scene un-
derstanding and image editing.

Recent state-of-the-art semantic segmentation methods based on the fully
convolutional network(FCN) [23] have made great progress. To capture the long-
range contextual information, the atrous spatial pyramid pooling(ASPP) module
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in DeepLabv3 [6] aggregates spatial regularly sampled pixels at different dilated
rates and the pyramid pooling module in PSPNet [42] partitions the feature
maps into multiple regions before pooling. More comprehensively, PSANet [43]
was proposed to generate dense and pixel-wise contextual information, which
learns to aggregate information via a predicted attention map. Non-local Net-
work [31] adopts self-attention mechanism, which enables every pixel to receive
information from every other pixels in the image, resulting in a much complete
pixel-wise representation.

Fig. 1. Viusal example from left to right, top to bottom is : original image, groundtruth,
deeplabv3 result, the proposed CDGCNet result. From the two indicated regions, our
method preserves more contextual details and accurate prediction along boundaries.

However, the ways of utilizing the contextual information in existing ap-
proaches are still problematic. From one point of view, larger receptive field
in deeper network is necessary for semantic prediction. Also, dilated based or
the pooling based methods take even larger contextual information into consid-
eration. These two operations are neither adaptive nor friendly to pixel-wised
segmentation prediction problem. Another view of self-attention based meth-
ods (PSANet [43], Non-local Network [31], and etc [12,15,38,18]) is that, pixels
from long-range non-local regions have different feature representations, which
results in major issues on two aspects when optimizing the convolution neural
network. First, contextual information is learned from previous network layers
by considering the local and non-local cues. Considering the large variations and
uncorrelations in contextual representations, weighted convoluting all the regions
together results in difficulties of learning discriminative pixel-level features. For
example, feature of a sky location with neighborhood tree region should be dif-
ferent from the one of a sky location with building region, which should not
be learned together. Second, contextual information is also class-specific. That
means, feature of a tree region is not proper to contribute to the learning of
a sky region. The target is to directly distinguish whether the region is a sky
region or not.

Aiming to address the above issues, we propose the Class-wise Dynamic
Graph Convolution Network (CDGCNet), which can efficiently utilize the long-
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range contextual dependencies and aggregate the useful information for better
pixel label prediction. Since graph convolution is remarkable at leveraging rela-
tions between nodes and can serve as a suitable reasoning method. It is worth
noting that self-attention method is actually to build a fully-connected graph,
so we further improve the structure of plain GCN for better performance. First,
we adopt the class-wise strategy to construct the graph (node and edge) for each
class, so that the useful information for each class can be independently learned.
Second, for the graph of each class, not all the context regions are included during
graph reasoning. Specifically, the hard positive and negative regions are dynam-
ically identified into the graph transform. With these two designs in graph, the
most important contextual information can be exploited for pixel level semantic
prediction.

The overall framework of the proposed CDGCNet method is shown in Fig. 2,
which follows the coarse-to-fine paradigm. The first part is a simple but com-
plete semantic segmentation network, called basic network, which can generate
coarse prediction map and it can be any of state-of-the-art semantic segmenta-
tion architectures. The second part is the CDGC module. Firstly, the CDGC
module takes coarse prediction map and feature map from the basic network
as inputs, and transforms the prediction map into class mask to extract node
features from different classes for graph construction. After that, for each class,
dynamic graph convolution is performed on the constructed graph to learn the
feature aggregation and weight allocation. Finally, the refined feature and the
original feature are fused to get the final prediction.

The main contributions of this paper are summarized as follows:

• The proposed CDGCNet utilizes a class-wise learning strategy so that se-
mantically related features are considered for contextual learning.

• During the graph construction on each class, hard positive and hard negative
information are dynamically sampled from the coarse segmentation result,
which avoids heavy graph connections and benefits the feature learning.

• We conduct extensive experiments on several public datasets, and obtain
state-of-the-art performances on the Cityscapes [9], PASCAL VOC 2012 [11]
and COCO Stuff [2] datasets.

2 Related Work

Semantic Segmentation. Benefiting from the success of deep neural net-
works [17,29,14], semantic segmentation has achieved great progress. FCN [23]
is the first approach to adopt fully convolutional network for semantic segmenta-
tion. Later, many FCN-baed works are proposed, such as UNet [26], SegNet [1],
RefineNet [22], PSPNet [42], DeepLab series [4,5,6,7]. Chen et al. [5] and Yu et
al. [37] removed the last two downsample layers to obtain a dense prediction and
utilized dilated convolutions to enlarge the receptive field. In our model, we also
adopt the above paradigm to get a better feature map and hence, improve the
performance of the model.
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Context. Context plays a critical role in various vision tasks including semantic
segmentation. Many works are proposed to generate better feature representa-
tions by exploiting better contextual information. From the spatial perspective,
DeepLab v3 [6] employs multiple atrous convolutions with different dilation rates
to capture contextual information, while PSPNet [42] employs pyramid pooling
over sub-regions of four pyramid scales to harvest information. These methods,
however, are all focusing on enlarging receptive fields in a local perspective and
hence lose global context information. While from the attention perspective,
Wang et al. [31] extend the idea of self-attention from transformer [30] into the
vision field and proposed the non-local module to generate the attention map by
calculating the correlation matrix between each spatial point in the feature map,
and then the attention map guides the dense contextual information aggregation.
Later, DANet [12] applied both spatial and channel attention to gather infor-
mation around the feature maps . Unlike works mentioned above, our proposed
module separately allocates attention to pixels belonging to the same category,
effectively avoiding wrong contextual information aggregation.
Graph Reasoning. Graph-based methods have been very popular these days
and shown to be an efficient way of relation reasoning. CRF [3] is proposed based
on the graph model for image segmentation and works as an effective postprocess-
ing method in DeepLab [5]. Recently, Graph Convolution Networks(GCN) [16]
are proposed for semi-supervised classification, and Wang et al. [32] use GCN to
capture relations between objects in video recognition tasks. Later, a few works
based on GCN have been proposed onto the semantic segmentation problem,
including [8,20,19], which all similarly model the relations between regions of
the image rather than individual pixels. Concretely, clusters of pixels are defined
as the vertices of the graph, hence graph reasoning is performed in the inter-
mediate space projected from the original feature space to reduce computation
cost. Different from these recent GCN-based methods, we perform graph con-
volution in a class-wise manner, where GCNs are employed only to the nodes
in the same category, leading to a better feature learning. The refined features
thus can provide a better prediction result in semantic segmentation task.

3 Approach

In this section, we will describe the proposed class-wise dynamic graph convo-
lution (CDGC) module in detail. Firstly, we will revisit the basic knowledge of
graph convolutional network. Then we will present a general framework of our
network and introduce class-wise dynamic graph convolution module which sep-
arately performs graph reasoning on the pixels within the same category, hence
producing a refined prediction map for semantic segmentation. Finally, we will
bring out the supervision manner of the proposed model.

3.1 Preliminaries

Graph Convolution. Given an input feature X ∈ RN×D, where N is the
number of nodes in the feature map and D is the feature dimension, we can
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build a feature graph G from this input feature. Specifically, the graph G can
be formulated as G = {V, ε, A} with V as its nodes, ε as its edges and A as its
adjacency matrix. Normally, the adjacency matrix A is a binary matrix, in prac-
tice, we try many ways to construct the graph, including top-k binary matrix or
dynamic learnable matrix, and further design a novel dynamic sampling method
to construct the graph and perform extensive experiments to verify its validity.
Intuitively, unlike standard convolutions which operates on a local regular grid,
the graph enables us to compute the response of a node based on its neighbors
defined in the adjacency matrix, hence receiving a much wider receptive field
than regular convolutions. Formally, the graph convolution is defined as,

Z = σ(AXW ), (1)

where σ(·) denotes the non-linear activation function, A ∈ RN×N is the adja-
cency matrix measuring the relations of nodes in the graph and W ∈ RD×D is
the weight matrix. In our experiments, we use ReLU as activation function and
perform experiments with different graph construction methods.
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Fig. 2. An Overview of the Class-wise Dynamic Graph Convolution Network. Given
an input image, we first feed it into the basic segmentation network to get the high-
level feature map and the corresponding coarse segmentation result. Then the CDGC
module is applied to preform graph reasoning along nodes of the feature map, producing
a refined feature which is subsequently fused with the original feature to get the final
refined segmentation result. Specially, in the class-wise graph reasoning part, different
colors of lines and dots denote different classes of pixels, under the guidance of coarse
prediction map, most positive pixels are sampled while also harvesting few hard pixels
in different colors from the target color.

3.2 Overall Framework

As illustrated in Fig. 2, we present the Class-wise Dynamic Graph Convolution
Network to adaptively capture long-range contextual information. We use the
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Fig. 3. The details of Class-wise Dynamic Graph Convolution Module.

ResNet-101 pretrained on the ImageNet dataset as the backbone, replace the
last two down-sampling operations and employ dilation convolutions in the sub-
sequent convolutional layers, hence enlarging the resolution and receptive field
of the feature map, so the output stride becomes 8 instead of 16.

Our model consists of two parts: basic network and CDGC module. Specifi-
cally, we adopt ResNet-101 together with atrous spatial pyramid pooling(ASPP)
as the basic complete segmentation network. An input image is passed through
the backbone and ASPP module, then produces a feature map X ∈ RC×H×W ,
where C,H,W represent channel number, height and width respectively. Then
we apply a convolution layer to realize the dimension reduction and the feature
X will participate in two different branches. The first branch is the classification
step which produces the coarse segmentation prediction map. After that, the
prediction map is transformed into masks for different classes, the masks and
the feature X are subsequently fed into the CDGC module to perform class-wise
graph reasoning. And the output feature of our CDGC module is concatenated
with the input feature, and refined through a 1× 1 conv to get the final refined
segmentation result.

3.3 Class-wise Dynamic Graph Convolution Module

The detailed structure of CDGC module is shown in Fig. 3. It consists of two
subsequent processes, including graph construction and reasoning. The proposed
module is based on a coarse-to-fine framework, where the input is the feature
map X, coarse prediction map and the output is the refined feature map.

Class-wise Learning Strategy. Different from previous works [8,20,19] where
graph construction is performed on all the nodes of different classes in the feature
map, we adopt a class-wise learning strategy. There are several advantages. First,
contextual information from different classes is considered separately so that the
irrelevant region can be excluded to avoid the difficulty of learning. Second, it
is easy to hard-mine the important information for a binary task (determine
whether it is the target class or not) compared to the multi-class task learning.
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Specifically, in the training process, a coarse-to-fine framework is adopted.
The coarse prediction can be generated from a basic network. Each coarse pre-
dicted category is utilized to filter out the corresponding category and perform
a graph construction based on the filtering operation. Hence, graph reasoning
and information transmission only occur inside the chosen category, protecting
the process of context aggregation from the interference of features in other
categories.
Graph Construction. (1) Similarity Graph. Intuitively, we can build the
graph (which is adjacency matrix in our formulation) based on the similarity
between different nodes, for two node features xi, xj , the pairwise similarity
between two nodes is defined as,

F (xi, xj) = φ(xi)
Tφ′(xj), (2)

where φ, φ′ denote two different transformations of the original features. In prac-
tice, we adopt linear transformations, hence φ(x) = wx and φ′(x) = w′x. The
parameters w and w′ are both D×D dimensions weights which can be learned
via back propagation, forming a dynamically learned graph construction method.
After computing the similarity matrix, we perform normalization on each row
of the matrix so that the sum of all the edge values connected to one node i will
be 1. In practice, we choose softmax as normalization function, so the output
adjacency matrix will be,

Aij =
exp(F (xi, xj))∑N
j=1 exp(F (xi, xj))

(3)

(2) Dynamic Sampling. The original sampling method adopts a fully-connected
fashion for pixels in the same category. However, since the prediction mask is
obtained from a coarse segmentation result, it is possible that the sampled pix-
els are not actually belong to the same category, which makes the sampled set
include ‘easy positive’ part and ‘hard negative’ part. In order to allocate enough
attention to these hard-to-classify pixels, we develop a dynamic sampling method
which focuses on selecting out these hard pixels. As shown in Fig. 4, in the train-
ing process, we take coarse segmentation mask and groundtruth mask as input,
and compute the intersection set between them, which is pure ‘easy positive’
part. Formally, we denote the coarse segmentation mask, groundtruth mask set
as C and G respectively, hence the intersection set can be denoted as C ∩ G.
Then with coarse segmentation mask subtracting the intersection set, the rest
part is pure ‘hard negative’ denoted as C − C ∩G. Similarly, with groundtruth
mask getting rid of the intersection set, the rest part is pure ‘hard positive’,
denoted as G−C ∩G. Besides, some ratio of ‘easy positive’ samples are needed
to guide the learning of these hard pixels, so we randomly choose some ratio of
pixels from the intersection set which consists of pure ‘easy positive’ samples, so
we finally get the sampled set denoted as,

Sampled = C − C ∩G+G− C ∩G+ ratio · C ∩G
= C ∪G− (1− ratio) · C ∩G

(4)
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Therefore, with this dynamic sampling method, our graph construction process
can pay enough attention to these hard pixels.

Specifically, dynamic sampling is only used at the training stage but not the
inference stage. At the training stage, we use both coarse prediction mask and
groundtruth mask to mine hard positive and negative samples in a class-wise
manner. Besides, some easy positive samples are also selected to guide the hard
samples learning. All these samples compose the graph nodes for the training
stage. At the inference stage, pixels in the same category according to the coarse
prediction mask are sampled to construct the graph.

hard	negative

hard	positive

easy	positive
Graph	Reasoning

Fig. 4. Illustration of dynamic sampling method. For one category ’rider’ in this im-
age, green and red points denote easy and hard samples, respectively. Hard positive
samples consist of distant objects and boundaries. And hard negative samples denote
the illegible object (person) in this image, which is likely to be recognized as rider.

Graph Reasoning. Discriminative pixel-level feature representations are es-
sential for semantic segmentation, which could be obtained by the proposed
graph convolution based module in a class-wise manner. By exploiting the re-
lations between pixels sampled by category, the intra-class consistency can be
preserved and moreover, inter-class discrepancy can also be enhanced with our
dynamic sampling method.

The detailed structure of CDGC module is shown in Fig. 3. The module
takes the repeated feature map X ∈ R(M×C)×H×W and coarse prediction map
P ∈ RM×H×W as input, where M , C, H, W denote the number of classes
in the dataset, dimension of the feature map, height and width, respectively.
Inspired by point cloud segmentation [25,33], we treat nodes in the feature map
as the vertexes in the graph. Therefore, we transform the feature map to the
graph representation: X ∈ RM×C×N , where N = H ×W denotes the number of
nodes in the feature map. Similarly, we transform the coarse prediction map into
P ∈ RM×N . Applying the graph construction methods discussed above, we can
obtain the adjacency matrix of the feature map for each category, treating each
graph feature x ∈ RC×N separately (M in total), thus producing M adjacency
matrices integrated as A ∈ RM×N×N .
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Following the paradigm of graph convolution, we multiply the adjacency
matrix and the transposed feature map to get the sampled feature map X ∈
RM×C×N . Subsequently, group graph convolution is performed, resulting in a
feature X ∈ RM×C×N which will be reshaped back to the original grid form:
X ∈ RM×C×H×W . Then a 1 × 1 conv is performed to learn the weights of
adaptively aggregrating feature maps for M classes, producing a refined feature
X ∈ RC×H×W . Once obtaining the refined feature map, we combine this feature
map with the input feature map to get the final output. Specifically, the combine
method is concatenation or summation. Finally ,the output feature is passed
through the conventional 1 × 1 convolution layer to get the final segmentation
prediction map.

3.4 Loss Function

Both coarse and refined output are supervised with the semantic labels. More-
over, following normal practice in previous state-of-the-art works [42,44,39], we
add the auxiliary supervision for improving the performance, as well as making
the network easier to optimize. Specifically, the output of the third stage of our
backbone ResNet-101 is further fed into a auxiliary layer to produce a auxiliary
prediction, which is supervised with the auxiliary loss. As for the main path,
coarse segmentation result and refined segmentation result are produced and
hence require proper supervision. We apply standard cross entropy loss to su-
pervise the auxiliary output and the coarse prediction map, and employ OHEM
loss [27] for the refined prediction map. In a word, the loss can be formulated as
follows,

L = α · lc + β · lf + γ · la (5)

where α, β, γ are used to balance the coarse prediction loss lc, refined prediction
loss lf and auxiliary loss la.

4 Experiments

To evaluate the performance of our proposed CDGC module, we carry out ex-
tensive experiments on benchmark datasets including Cityscapes [9], PASCAL
VOC 2012 [11] and COCO Stuff [2]. Experimental results demonstrate that the
proposed method can effectively boost the performance of the state-of-the-art
methods. In the following section, we will introduce the datasets and implemen-
tation details, and then perform ablation study on Cityscapes dataset. Finally,
we report the results on PASCAL VOC 2012 dataset and COCO Stuff dataset.

4.1 Datasets and Evaluation Metrics

Cityscapes. The Cityscapes dataset [9] is tasked for urban scene understanding,
which contains 30 classes and only 19 classes of them are used for scene pars-
ing evaluation. The dataset contains 5000 finely annotated images and 20000
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coarsely annotated images. The finely annotated 5000 images are divided into
2975/500/1525 images for training, validation and testing.
PASCAL VOC 2012. The PASCAL VOC 2012 dataset [11] is one of the
most competitive semantic segmentation dataset which contains 20 foreground
object classes and 1 background class. The dataset is split into 1464/1449/1556
images for training, validation and testing. [13] has augmented this dataset with
annotations ,resulting in 10582 train-aug images.
COCO Stuff. The COCO Stuff dataset [2] is a challenging scene parsing dataset
containing 59 semantic classes and 1 background class. The training and test set
consist of 9K and 1K images respectively.
In our experiments, the mean of class-wise Intersection over Union (mIoU) is
used as the evaluation metric.

4.2 Implementation Details

We choose the ImageNet pretrained ResNet-101 as our backbone and remove
the last two down-sampling operations, and employ dilated convolutions in the
subsequent convolution layers, making the output stride equal to 8. For training,
we use the stochastic gradient descent(SGD) optimizer with initial learning rate
0.01, weight decay 0.0005 and momentum 0.9 for Cityscapes dataset. Moreover,
we adopt the ‘poly’ learning rate policy, where the initial learning rate is multi-
plied by (1 − iter

max iter )power with power=0.9. For Cityscapes dataset, we adopt
the crop size as 769 × 769, batch size as 8 and training iterations as 30K. For
PASCAL VOC 2012 dataset, we set the initial learning rate as 0.001, weight de-
cay as 0.0001, crop size as 513× 513, batch size as 16 and training iterations as
30K. For COCO Stuff dataset, we set initial learning rate as 0.001, weight decay
as 0.0001, crop size as 520×520, batch size as 16, and training iterations as 60K.
Moreover, the loss weights α, β, γ are set to be 0.6, 0.7 and 0.4 respectively.

4.3 Ablation Study

In this subsection, we conduct extensive ablation experiments on the validation
set of Cityscapes with different settings for our proposed CDGCNet.
The impact of class-wise learning strategy. We use the dilated ResNet-101
as the baseline network, and final segmentation result is obtained by directly
upsampling the output. To evaluate the effectiveness of the proposed class-wise
learning strategy, we carry out the experiments where plain GCN and class-
wise GCN are adopted separately. Concretely, plain GCN is realized by simply
performing graph construction operation on the feature map obtained from the
backbone, while class-wise GCN is realized in a class-wise manner. Their graph
construction methods are similar. As shown in Table 1, the proposed class-wise
GCN reasoning performs better than the plain GCN. Since plain-CGN adopts
fully connected fashion onto the input feature map, it serves similarly as self-
attention based method, which is likely to mislead the contextual information
aggregation with features from pixels of other categories, while our method, on
the other hand, is capable of avoiding this kind of problem.
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Table 1. Performance comparisons
of our proposed class-wise GCN and
plain-GCN on Cityscapes valida-
tion set.

Method mIOU
(%)

ResNet-101 Baseline 76.3
ResNet-101 + plain-GCN 78.2
ResNet-101 + class-GCN 79.4

Table 2. Detailed performance comparisons of
our proposed Class-wise Dynamic Graph Con-
volution module on Cityscapes validation set.

Method mIOU
(%)

ResNet-101 Baseline 76.3
ResNet-101 + ASPP 78.4
ResNet-101 + CDGC(concat) 79.4
ResNet-101 + CDGC(sum) 79.2
ResNet-101 + ASPP + CDGC(sum) 79.9
ResNet-101 + ASPP + CDGC(concat) 80.0

The impact of CDGC module. Based on the dilated ResNet-101 backbone,
we subsequently add ASPP module and the proposed module to evaluate the
performance, as shown in Table 2. The graph is constructed based on dynamic
similarity. The result of solely adding ASPP module is 78.4%, which is about 1%
lower than solely adding CDGC module. Furthermore, we perform experiments
on the feature aggregation manners which include concatenation and summa-
tion. As results shown in Table 2, the CDGC module can significantly improve
the performance over the baseline network by 3% in mIOU and concatenation
method is slightly better than the summation one, so we will use concatena-
tion aggregation method in later comparisons. Finally, we choose ResNet-101
plus ASPP module as our basic segmentation network and use CDGC module
to get the final refined prediction map, achieving 1.6% gain in mIOU, which
demonstrates that CDGC module can be easily plugged into any state-of-the-
art segmentation network to further boost the performance. The effect of CDGC
module can be visualized in Fig. 5. Some details and boundaries are refined com-
pared to the coarse map predicted by the basic network. These results prove that
our proposed CDGC module can significantly capture long-range contextual in-
formation together with local cue and also preserve intra-class consistency, which
can effectively boost the performance of segmentation.

Comparisons of different graph construction methods. In this subsec-
tion, we evaluate the performance of our module using two different graph con-
struction methods mentioned before. Specifically, we use ResNet-101+ASPP as
basic segmentation network and the original feature is concatenated with re-
fined feature to get the final prediction map. Table 3 indicates the performance
on Cityscapes validation set by adopting different graph construction method,
where ‘sim’ denotes the similarity graph method and ‘ds’ denotes the dynamic
sampling method and the easy positive sampling ratio is set as [0.2, 0.4, 0.6,
0.8]. As can be seen in Table 3, as the easy positive sampling ratio grows, the
performance becomes better since the easy positive samples serve as the guiding
criterion for learning the reasonable weights for hard samples. From the re-
sult shown in Table 3, when sampling ratio is above 0.4, the dynamic sampling
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Input Coarse	Map Refined	Map Ground	Truth

Fig. 5. Visualization results on Cityscapes validation set.

Table 3. Performance comparisons of
graph construction method on Cityscapes
validation set.

Method mIOU
(%)

ResNet-101 + ASPP 78.4
ResNet-101 + ASPP + CDGC(sim) 80.0
ResNet-101 + ASPP + CDGC(ds 0.2) 79.8
ResNet-101 + ASPP + CDGC(ds 0.4) 80.3
ResNet-101 + ASPP + CDGC(ds 0.6) 80.8
ResNet-101 + ASPP + CDGC(ds 0.8) 80.9
ResNet-101 + ASPP + CDGC(ds 1.0) 81.1

Table 4. Performance influences
with different evaluation strategies
on Cityscapes validation set.

Method MS Flip mIOU
(%)

CDGCNet 81.1
CDGCNet X 81.6
CDGCNet X 81.4
CDGCNet X X 81.9

method can outperform the similarity graph method since it gives more atten-
tion to hard samples including hard positive ones and hard negative ones while
similarity graph adaptively learn the parameters of the construction weights,
which may not be efficiently learned in similarity graph method.

The impact of hard samples. We further perform experiments to evaluate
the impact of hard samples utilized in dynamic sampling method. At the training
stage, we construct the graph with dynamic sampling method while keeping the
ratio of easy positive samples as 1.0. From the result shown in Table 5, utilizing
hard samples can improve the performance since extra attention can be paid to
hard pixels, hence performing a better feature learning process.

The impact of evaluation strategies. Based on details discussed above,
we propose Class-wise Dynamic Graph Convolution Network (CDGCNet) with
ResNet-101+ASPP as basic network and dynamic sampling method to construct
the graph. Like previous work [42,34,12,15,38], we also adopt the left-right flip-
ping and multi-scale [0.75, 1.0, 1.25, 1.5, 1.75, 2.0] evaluation strategies. From
Table 4, MS/Flip improves the performance by 0.8% on validation set.
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Table 5. Performance comparisons of different samples used in dynamic sampling
method on Cityscapes validation set.

Sample mIOU(%)

Easy Positive 79.9
Easy Positive + Hard Positive 80.5
Easy Positive + Hard Negative 80.0
Easy Positive + Hard Positive + Hard Negative 81.1

Visualizations of class-wise features. Qualitative results are provided in
Figure 6 to compare the difference of class-wise features before and after CDGC
module. We use white squares to mark the challenging regions which compose
of hard samples. As shown in the figure, after class-wise dynamic graph convo-
luton, hard pixels can be effectively resolved. In particular, in the first and third
lines, hard pixels are specified to hard negative pixels and can be successfully
distinguished. While in the second line, hard pixels are specified to hard positive
pixels, as shown in the visualization, ambiguity is well taken care of. Moreover,
with dynamic sampling method mining hard samples, boundary information is
preserved and enhanced, hence producing better results.

Image Coarse	Class	Feature Reasoned	Class	Feature Ground	Truth

Fig. 6. Visualizations of class-wise features before and after graph convolution on
Cityscapes validation set. From left to right: input image, class-wise feature before
CDGC module, class-wise feature after CDGC module, ground truth. From top to
bottom, the visualized category is car, vegetation and person.

4.4 Comparisons with state-of-the-arts

Furthermore, we evaluate our method on the test set of three benchmark datasets:
Cityscapes, PASCAL VOC 2012 and COCO Stuff datasets. Specifically, we use
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Table 6. Comparisons with State-of-the-art methods on three benchmark datatsets.

Cityscapes PASCAL
VOC 2012

COCO
Stuff

Methods Backbone mIOU(%) mIOU(%) mIOU(%)

FCN [23] VGG-16 - 62.2 22.7
DeepLab-CRF [5] VGG-16 - 71.6 -
DAG-RNN [28] VGG-16 - - 31.2
RefineNet [22] ResNet-101 73.6 - 33.6
GCN [24] ResNet-101 76.9 - -
SAC [41] ResNet-101 78.1 - -
CCL [10] ResNet-101 - - 35.7
PSPNet [42] ResNet-101 78.4 82.6 -
BiSeNet [35] ResNet-101 78.9 - -
DFN [36] ResNet-101 79.3 82.7 -
DSSPN [21] ResNet-101 - - 37.3
SGR [20] ResNet-101 - - 39.1
PSANet [43] ResNet-101 80.1 - -
DenseASPP [34] DenseNet-161 80.6 - -
GloRe [8] ResNet-101 80.9 - -
EncNet [40] ResNet-101 - 82.9 -
DANet [12] ResNet-101 81.5 82.6 39.7

CDGCNet(Ours) ResNet-101 82.0 83.9 40.7

ResNet-101 as backbone, dynamic sampling method with ratio 1.0 as graph con-
struction method. Moreover, we train the proposed CDGCNet with both train-
ing and validation set and use the multi-scale and flip strategies while testing.
From Table 6, it can be observed that our CDGCNet achieves state-of-the-art
performance on all three benchmark datasets.

5 Conclusions

In this paper, we have presented the Class-wise Dynamic Graph Convolution
Network (CDGCNet) which can adaptively capture long-range contextual in-
formation, hence performing a reliable graph reasoning along nodes for better
feature aggregation and weight allocation. Specifically, we utilize a class-wise
learning strategy to enhance contextual learning. Moreover, we develop a dy-
namic sampling method for graph construction, which gives extra attention to
hard samples, thus benefiting the feature learning. The ablation experiments
demonstrate the effectiveness of CDGC module. Our CDGCNet achieves out-
standing performance on three benchmark datasets, i.e. Cityscapes, PASCAL
VOC 2012 and COCO Stuff.
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