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Abstract. Story visualization aims at generating a sequence of images
to narrate each sentence in a multi-sentence story. Different from video
generation that focuses on maintaining the continuity of generated im-
ages (frames), story visualization emphasizes preserving the global con-
sistency of characters and scenes across different story pictures, which is
very challenging since story sentences only provide sparse signals for gen-
erating images. Therefore, we propose a new framework named Character-
Preserving Coherent Story Visualization (CP-CSV) to tackle the chal-
lenges. CP-CSV effectively learns to visualize the story by three critical
modules: story and context encoder (story and sentence representation
learning), figure-ground segmentation (auxiliary task to provide informa-
tion for preserving character and story consistency), and figure-ground
aware generation (image sequence generation by incorporating figure-
ground information). Moreover, we propose a metric named Fréchet
Story Distance (FSD) to evaluate the performance of story visualiza-
tion. Extensive experiments demonstrate that CP-CSV maintains the
details of character information and achieves high consistency among
different frames, while FSD better measures the performance of story
visualization.

Keywords: Story visualization, evaluation metric, foreground segmen-
tation

1 Introduction

“Objects in pictures should so be arranged as by their very position to tell their
own story.”

— Johann Wolfgang von Goethe (1749-1832)
Story Visualization task aims to generate meaningful and coherent sequences
of images according to the story text [18], which is challenging since it requires
an understanding of both natural language and images. Specifically, Story Vi-
sualization generates a sequence of images to narrate a given story written in a
multi-sentence paragraph. Figure 1 shows an illustrative example of Story Vi-
sualization. As the saying goes, “A picture is worth a thousand words,” and
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Fig. 1: Story Visualization task prompts to generate image sequences given story
descriptions. Our proposed CP-CSV can generate image sequences closely related
to the synthesized segmentation result.

a good visualization puts the color inside of the story world and assists the
comprehension quickly.

Nevertheless, it remains a challenging task due to the following three
challenges. 1) Sequence Coherence. Building transformation between sentences
and images requires the ability to tackle cross-domain representation learn-
ing, which is highly similar to the text-to-image tasks. However, the major
difference between Story Visualization and Text-to-Image is that Story Visu-
alization generates an image sequence based on the whole story comprehen-
sion whereas Text-to-Image is only based on a single sentence information. In
other words, directly applying Text-to-Image for story visualization may re-
sult in an incoherent image sequences, i.e., images with different contexts. 2)
High Variety by Character Dominance. Since the story characters usually oc-
cupy a large proportion of pictures (dominance), the pictures change dramati-
cally when different characters appear (variety). The high variety between frames
makes the learning of sequence coherence difficult. 3) Implicit Objectives. The
goal of the task is to generate high-quality and coherent image sequences that
can depict the whole story. However, the subjective and obscure concepts are
not standardized into a learning objective function.

Based on the observations, in this paper, we propose a novel framework,
namely, Character-Preserving Coherent Story Visualization (CP-CSV), to visu-
alize a story with distinctive characters and a highly-coherent storyline. Specif-
ically, to address the first challenge, two text encoders are used to process the
sentence-level and story-level input text. The context encoder focuses on a single
sentence and extracts the character information to enhance the character gen-
eration, while a story encoder embraces the whole paragraph and utilizes two
GRU layers to filter the context information at each time step. Moreover, for the
second challenge, we introduce figure-ground information to enable the model
to be aware of the foreground and background. Since the foreground images of-
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ten represent the point of the story, especially the character appearance, while
the background images are usually related to the whole story scenario, CP-CSV
generates not only the image sequences but also their segmentation results. In
detail, the intermediate features of the segmentation generator assist the image
sequence generation layer by layer, and the two generators share the same sen-
tence encoder. Second, following the previous work [18], we adopt an image-level
discriminator to assure the relevance between image and reference sentence and
a story-level discriminator to maintain the whole paragraph consistency.

Finally, we propose a new evaluation metric, namely Fréchet Story Distance
(FSD), to measure the quality of the generated story sequence, which is built
on the principle of Fréchet Inception Distance (FID). The FID is a commonly
used evaluation metric to quantify the generated image quality by the feature
distance between generated images and the reference images. However, the FID
takes one image at a time, therefore, it can not capture the temporal series
features. On the other hand, Fréchet Video Distance (FVD) adopts the pre-
trained Inflated 3D Convnet (I3D, [30]) as a backbone to extract the temporal-
aware data distribution. Despite the FVD can evaluate the quality of generated
videos, it is not suitable for the Visual Story task because of the limitation of the
backbone network. Specifically, the minimum length requirement in I3D is seven,
however, most story visualization datasets, e.g. Pororo-SV and VIST, take five
sentence-image pairs to form a story. Consequently, we replace the I3D network
with a different backbone model R(2+1)D [29] to form a novel story-consistency
evaluation metric FSD. The spatial-temporal feature extractions in R(2+1)D
are decomposed, therefore, eliminate the input length limitation naturally. We
study the FSD behaviors under different consistency perturbations.

For model performance comparison, in addition to objective evaluations, we
conduct a user study for comparing the proposed CP-CSV with state-of-the-art
methods. Moreover, we illustrate the connection between segmentation results
and the generated images. The experimental results manifest that our model can
improve the image quality as well as the image sequence coherence.

The contributions are summarized as follows.

– We introduce the segmentation images during training to enhance the model
being aware of the figure-ground components and propose a feasible archi-
tecture to incorporate the information. The illustration of the synthesized
visual story indicates the effectiveness of the segmentation images.

– We build a consistency-evaluation metric FSD for Story Visualization task
and study the metric behavior under different perturbations.

– Both quantitative and qualitative experimental results manifest that CP-
CSV achieves the state-of-the-art for image quality and story consistency.

2 Related Work

2.1 GAN-based Text-to-Image Synthesis

Automatically synthesizing realistic images from text by Generative Adversarial
Networks (GANs) [9] has been widely-studied recently. To improve the quality
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of text-to-image generation, a variety of models have been proposed and can be
categorized into three types: 1) semantic relevance enhancement, 2) resolution
enhancement and 3) image diversification. Specifically, semantic relevance en-
hancement focuses on improving the correlation between ground truth text and
generated images. For example, given the base image and text attributes on a
desired location, multi-conditional GAN (MC-GAN) [22] is proposed to control
both the object and background information jointly for generating a realistic
object with the given background. Moreover, since diverse linguistic expressions
pose difficulties in extracting consistent semantics, SD-GAN [31] is proposed
to implicitly disentangle semantics to attain both high- and low-level seman-
tic knowledge for refined synthesis. Because texts usually contain unimportant
words, SEGAN [27] suppresses the word-level attention weights of unimportant
words to improve the semantic consistency between the synthesized image and
its corresponding ground truth image. MirrorGAN [23] employs a mirror struc-
ture, which reversely learns from generated images to output texts for validating
whether generated images are consistent with the input texts.

On the other hand, to enhancing the image resolution, different mechanisms
are incorporated into GAN. For example, a two-stage stackGAN [34] is pro-
posed to generate low-resolution images and refine the resolution by reading
the text description again. To further improve the quality of generated images,
StackGAN++ [33] is proposed to use multi-stage GANs to generate multi-scale
images. AttnGAN [28] uses attention mechanism to integrate the word-level and
sentence-level information into GANs, while DM-GAN [35] uses dynamic mem-
ory to refine blurry image contents generated from the GAN network. The third
type of methods aims at improving the diversity of generated images and avoid-
ing mode collapse. For example, the discriminator in AC-GAN [21] predicts not
only the authenticity of the images but also the label of the images, promot-
ing the diversity of the generated images. Building on the AC-GAN, TAC-GAN
[7] synthesizes the image conditioned on corresponding text descriptions instead
of on a class label, which helps disentangle the content of images from their
styles and makes model generate diverse images based on different content. Text-
SeGAN [2] follows the similar idea and revises the discriminator in TAC-GAN
by measuring the semantic relevance between the image and text instead of class
label prediction to diversify generated results.

To enhance both semantic relevance and resolution, several works take the
layout or segmentation as intermediate structures and show the improvement
on image quality of text-to-image generation. For example, Hong et al. [14] pro-
pose to construct a semantic layout based on the text, and generate image con-
sequently. Obj-GAN [17] applies the same two-stage structure as above while
using an object-driven attention mechanism for extracting fine-grained informa-
tion. However, although the above approaches improve the quality of text-to-
image generation, story visualization imposes different challenges that are not
well-addressed as mentioned in the introduction. Specifically, the challenge of
story visualization is to ensure the consistency across the generated sequence.
For example, StoryGAN [18] preserves global consistency by using a story-level
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discriminator. Several topics are also related to the consistency maintenance,
e.g., text-to-video generation [19, 10], dialogue-to-image [4, 25], instruction-to-
image generation [8], storyboard creation [3]. CP-CSV is different from previous
works since 1) the consistency of video generation emphasizes the continuity
between consecutive frames, and 2) CP-CSV further utilizes the figure-ground
auxiliary information to preserve the characters and disentangle the background
for a better consistency.

2.2 Evaluation Metrics of Image Generation

Evaluation methods of generated images are vital for assessing model perfor-
mance. Traditional evaluation metrics of image generation, including IS (Incep-
tion Score) [24] and FID (Fréchet Inception Distance) [11], focus on scoring the
image quality and diversity by comparing the generated images to real images
in the distribution. Due to the rise of the text-to-image generation, the semantic
relationship between text and generated images should be considered. Therefore,
R-precision [28] is proposed to measure the correlation between a generated im-
age and its corresponding text. SOA (Semantic Object Accuracy) [13] measures
semantic connection by checking if a generated image contains objects that are
specifically mentioned in the image caption. FVD (Fréchet Video Distance) [30]
extends FID to calculate the distance between videos. However, it is limited
to a long image sequence that contains over seven images. Our proposed FSD
(Fréchet Story Distance) eliminates the length limitation and thus is better for
evaluating the quality of short story.

3 Character-Preserving Coherent Story Visualization

3.1 Overview

Story Visualization aims at generating a sequence of images from an input story
S = [s1, · · · , st, · · · , sT ], where st denotes the t-th sentence in S and T is the
number of sentences in the story. The ground truth image sequence is denoted
as X = [x1, · · · , xt, · · · , xT ], while the generated image sequence is denoted as
X̂ = [x̂1, · · · , x̂t, · · · , x̂T ]. To address the challenges mentioned in the introduc-
tion, we propose Character-Preserving Coherent Story Visualization (CP-CSV),
of which the model architecture is shown in Figure 2. In our model, the in-
put story S is first encoded into a vector hs with a story encoder proposed by
[18]. Afterward, to make the generated images consistent with each other, the
context encoder takes hs as the initial state and sequentially encodes each sen-
tence in S into the sentence representations O = [o1, · · · , ot, · · · , oT ]. Different
from the video generation task, of which two consecutive frames are similar, two
consecutive pictures may change significantly in Story Visualization. Therefore,
CP-CSV is designed to construct a sequence of distinct but coherent images.
Since similar background pictures are usually shared in the same story, whereas
foregrounds might change dramatically due to the different character appear-
ances from frames to frames as shown in Figure 1. Therefore, in the training
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Fig. 2: System framework of CP-SCV. Story/context encoder extracts
story/sentence level information. Figure-ground/story/image discrimina-
tor learns to distinguish whether the figure-ground/image sequence-story
pair/image-sentence pair is true. Our proposed partial connection network is
applied to the first and the second level features.

stage, we introduce an auxiliary task, i.e., figure-ground segmentation, to assist
CP-CSV for recognizing the figure-ground positions. When the model is capable
of locating the foreground and background-position, it is easier to preserve the
character formation while maintaining the scene coherence of the backgrounds.

Meanwhile, to automatically evaluate the performance of story visualization,
the evaluation metric should take both the image quality and the sequence co-
herency into consideration. One possible way is to exploit the metrics for video
generation. For example, the Fréchet Video Distance (FVD) [30] tackles the
video quality evaluation problem by calculating the 2-Wasserstein distance be-
tween the synthesized video data distribution and the reference video data dis-
tribution. However, the feature extraction model of FVD, I3D [1], requires a long
image sequence to calculate the distance. Therefore, FVD may not be suitable
for evaluating the quality of story visualization. The sequence length of a story
is usually short and does not reach the minimum frame length requirement in
I3D. Therefore, we build a novel evaluation metric called Fréchet Story Distance
(FSD), which can extract the features of image sequences with arbitrary length.
Moreover, the proposed FSD is consistent, even with the noise intensity.

3.2 Story and Context Encoder

For the story encoder and the context encoder, we follow the design of Story-
GAN [18]. Specifically, the story encoder aims at learning a mapping function
for encoding the whole story S to an embedding hs representing the whole story.
The embedding hs is assumed to be a normal distribution, and the correspond-
ing mean and variance are defined by two neural networks with story content
as input, µ(S) and σ(S). After that, the story embedding hs serves as the ini-
tial state of the Context Encoder and is gradually updated with sentence input
at each time step. The Context Encoder is based on a deep RNN to capture
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contextual information. To ensure the sentence embedding consistent with the
story line, the story embedding should be considered when generating each sen-
tence embedding. Rather than traditional RNNs, StoryGAN [18] introduces the
Text2Gist which combines all the global and local context information. In con-
trast to standard GRU cells, the output is the convolution between the local
hidden vectors and a filter with global information. As such, the convolution
operation strikes to filter the crucial part from the whole story at each time step
and forms a story-aware sentence embedding ot. For the whole paragraph, the
embedding is denoted as O = [o1, · · · , ot · · · , oT ].

3.3 Figure-Ground Aware Generation

In story visualization, foreground items usually narrate the characters’ actions
and foreground visual scenes, while the clarity and spatial location of foreground
items play an important role on the visualization quality. Equipped with figure-
ground information, it is easier to preserve the characters and maintain the
background consistency. Therefore, in order to learn such information, we intro-
duce a foreground segmentation generation module to improve the quality of the
generated images. Since the ground truth of the foreground segmentation is un-
available in story visualization datasets, we exploit a pre-trained salient object
detection model [26] and manually label the foreground segmentation on 1,600
images from the Pororo-SV dataset for finetuning the model.1

To simultaneously incorporate the foreground segmentation into the image
generation process and exploit the foreground segmentation as the auxiliary
task, we design two generators: an image generator visualizing the story and
a foreground map generator predicting the foreground regions. By sharing the
representations between these two related tasks, we can enable CP-CSV to gen-
eralize the original generator better. Specifically, base on the previous StoryGAN
generator, we add another generator parallel to the existing image generator to
synthesize foreground segmentation maps conditioned on the same foreground
area sentences latent vectors O as the image generator. The purpose of this seg-
ment generator is to generate the low-level foreground latent feature, which can
enhance the quality of generated images. In other words, the image generator
could follow the location information of the foreground area (e.g., characters)
and synthesize the corresponding characters with much better quality, especially
at the boundary of characters.

One possible approach to incorporate foreground features into image features
is to exploit the Gated network, which has been proven to aggregate different
information effectively. However, the Gated network is usually applied to the
deep layers to fuse the high-level information, which may not be suitable for
incorporating the figure-ground information. Therefore, we propose to exploit
the Partial Connection Network for integrating the features of foreground seg-
mentation, which can be viewed as an affine transformation based on segment

1 The details of the foreground segmentation model will be presented in the implemen-
tation details in Section 4.1. The results are shown in Figure 3. The segmentation im-
ages we used are released at https://github.com/yunzhusong/ECCV2020 CPCSV.
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features. Specifically, the segment features from the k-th layer denoted as lfk are
first projected to the latent space of image features lxk through a convolution
layer Ff , then multiplying the image features to highlight the scene.

pfk = Ff (lfk) (1)

lxk = pfk ∗ l
x
k + lxk (2)

For learning segment features, a figure-ground discriminator Dfg is needed
to ensure the learning of foreground segment generation. Similar to the im-
age discriminator, the figure-ground discriminator learns whether the generated
segmentation f̂t matches the given sentence and story latent feature by discrim-
inating between ground truth segmentation ft.

3.4 Loss function

Let Wg, Wi, Ws and Wf be the parameters representing generator, image, story
and figure ground discriminator, respectively. The final objective function for
CP-CSV is similar to loss function proposed in GANs:

min
Wg

max
Wi,Ws,Wf

λ1Limage + λ2Lfg + λ3Lstory, (3)

where λ1, λ2, λ3 are weighting terms to balance the model learning. The condi-
tional loss function for foreground learning Lfg is defined as

Lfg,D =
∑T

t=1−E[log(Dfg(ft, st, hs))]− Ef̂t∼pg
[log(1−Dfg(f̂t, st, hs)],

Lfg,G = Ez∼pz [log(1−Dfg(Gfg(st, z, hs), st, hs)] + λ4LKL,
(4)

where LKL is a regularization term for smoothing the semantic latent space and
increasing the input variety for the sake of relieving the issue of mode collapse.
Specifically, the KL regularization term is obtained as follows:

LKL = KL(N(µ(S), diag(σ2(S)))||N(0, I)), (5)

where diag(·) is used to restrict σ2(S) as a diagonal matrix for computational
tractability, µ(.) and σ(.) are two neural networks and take story S as input to
predict a mean and variance for a normal distribution respectively.

The loss functions for image Limage and story Lstory remain unchanged from
the original StoryGAN.

Limage,D =
∑T

t=1−E[log(Dimage(xt, st, hs))]− Ex̂t∼pg
[log(1−Dimage(x̂t, st, hs))],

Limage,G = Ez∼pz
log(1−Dimage(G(st, z, hs), st, hs) + λ4LKL

(6)

Lstory,D = −E[log(Dstory(X,S))]− EX̂∼pg
[log(1−Dstory(X̂, S))],

Lstory,G = Ez∼pz
log(1−Dstory([Gimage(st, z, hs)]

T
t=1), S) + λ4LKL

(7)
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Our objective function is updated using Adam with a learning rate of 0.0001 and
0.0004 for generators and discriminators. We find out that reducing the learning
rate by half at epoch 20, 40, 80 helps stabilize the learning process. The values
for λ1, λ2, λ3, λ4 are 5, 1, 1, 1 respectively.

3.5 Fréchet Story Distance

Previous work usually exploits the metric of image quality evaluation for story
visualization. In this case, FID is the commonly-used metric to measure the
image quality by calculating the 2-Wasserstein distance between the generated
images and the reference images. However, for story visualization, the evalu-
ation metric should take not only the image quality but also the consistency
between frames into consideration,not included in the FID. In the field of Video
Generation, FVD [30] is commonly used to evaluate a sequence of generated im-
ages [6, 5], which adopts Inflated 3D ConvNet (I3D) to extract the video latent
representation.

However, the inherent limitation of the I3D prevents FVD from operating
directly to our task, since the minimum required frame number is seven. Simul-
taneously, the length of the image sequence in Story Visualization Task is usually
smaller than the requirement. Indeed, we could modify the task description to
achieve the frame length requirement, e.g., by considering more sentences as a
story or generating multi-images from a sentence. One obvious shortcoming of
expending story length is losing the comparability since the image generation is
based on the whole story, differnet sentence length may alter the story line. On
the other hand, generating multi-images from a sentence may confuse the model
and even weaken the relevance between text and image.

To tackle the third challenge of Story Visualization Task, i.e., the lack of
standard evaluation metric, we propose Fréchet Story Distance (FSD) as a new
evaluation metric for Story Visualization Task, which is built on the principle of
FID and FVD but with different backbone model, R(2+1)D [29]. The R(2+1)D
network factorizes the 3D convolution filters into 2D spatial convolution and 1D
temporal convolution, and the details are omitted here. The considerations of
adopting R(2+1)D are the flexibility of sequence length and the strong ability
to capture temporal consistency.

Given image sequence with arbitrary length, the last average pooling layer’s
output is taken as the sequence representation. With the representations of gen-
erated data PG and reference data PR, the distance between the two data rep-
resentations is defined by 2-Wasserstein distance and calculated by:

d(PR, PG) = |µR − µG|2 + Tr(ΣR +ΣG − 2(ΣRΣG)1/2),

where µR and µG are the means, and ΣR and ΣG are the covariance matrices.
Finally, we observe the behaviors of FSD under different noise attacks. The detail
experimental setting and results are discussed in Sec 4.7.
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Fig. 3: Illustrate the images and segmentation images. The upper rows indicate
the ground truth (GT), while the lower rows are from our model. Results show
a high correlation between generated images and generated segmentations.

4 Experimental Results

4.1 Implementation Details

For CP-CSV implementation, two techniques are applied to stabilize the train-
ing of GAN. First, Spectral Normalization [20] is performed to discriminators.
Second, Two Time-scale Update Rule (TTUR) is applied for selecting different
learning rates for the generator and discriminators [12]. Using these techniques,
CP-CSV can produce better images and lower variance scores between different
training sessions.

We conduct extensive experiments on the Pororo-SV dataset. Since the
Pororo-SV dataset does not include the figure-ground information, we train a
model in a semi-supervised manner. Specifically, we utilize a pre-trained state-
of-the-art salient object detection model [26] to obtain the segmentation images.
The detection model is fine-tuned on the Pororo-SV dataset by 1,600 manually-
labeled samples. The second row of Figure 3 demonstrates the examples of the
segmentation results generated from the pre-trained model. We also release the
segmentation images for the Pororo-SV dataset and Clever dataset.

4.2 Dataset

The following datasets are for training CP-CSV or for analyzing the FSD.
Pororo-SV: The Pororo-SV dataset [18] introduced by StoryGAN is modi-

fied from the Pororo dataset [16] to fit the story visualization task. It contains
13,000 training pairs and 2,334 testing pairs. Following the task formulated in
StoryGAN, we also consider every five consecutive images as a story. There
are several descriptions for one image, and one description is randomly selected
during the training and testing phases.

VIST: The VIST dataset [15] originally used for sequential vision-to-
language tasks contains 50,136 stories. Each story consists of five images and
five matched captions. Different from the visual storytelling task, we take cap-
tions as input and generate the corresponding images to form a story. In this
paper, the VIST dataset is only applied to analyze FSD behavior.
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Fig. 4: Illustrate the synthesized image sequences. GT refers to Ground Truth.

Fig. 5: FID and FSD average results using five different random seeds. CP-CSV
drops faster in terms of FID and FSD scores compared to StoryGAN and Sto-
ryGAN with Spectral Normalization and TTUR.

4.3 Baselines

To the best of our knowledge, in story visualization task, there is only one state-
of-the-art, i.e., StoryGAN [18]. To better know our model performance, we also
compare CP-CSV with two other text-to-image models.

SAGAN: Based on the self-attention generative network proposed by Zhang
et al. [32], we reimplement the SAGAN by taking the encoded sentence in the
story S, character labels, and a noise term as input. Each image within the same
story is generated independently.

StoryGAN: StoryGAN follows the Li et al. [18].

4.4 Qualitative Comparison

To get a more evident concept about the performance, Figure 4 shows the com-
parison between synthesized image sequences of baseline models and CP-CSV.
In contrast to SAGAN, which does not take the whole story as input, StoryGAN
and CP-CSV exhibit better ability to maintain scene consistency. Besides, with
the figure-ground information, CP-CSV can preserve the character details and
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Table 1: Quantitative evaluation results. ↓ denotes the lower is better.

FID↓ FVD↓ FSD↓

SAGAN [32] 84.70 324.86 101.11
StoryGAN [18] 77.67 274.59 111.09
CP-CSV 67.76 190.59 71.51

Table 2: Human evaluation results of visual image quality, sequence consistency
and text-image relevance. “Ours/SAGAN” represents the A/B test of CP-CSV
and SAGAN. “Ours/StoryGAN” represents the A/B test of CP-CSV and Sto-
ryGAN. The values are shown in percentage.

Quality Consistency Relevance
our baseline our baseline our baseline

Ours/SAGAN 0.72 0.28 0.82 0.18 0.63 0.37
Ours/StoryGAN 0.71 0.29 0.54 0.46 0.53 0.47

shapes better, since it is easier to locate the position of characters. From the
lower rows of Figure 3, they show the two output results of our model. We can
find that the connection between segmentation images and generated images is
evident and apparent, suggesting that our architecture can effectively utilize the
figure-ground information. More examples are shown in Supplementary.

4.5 Quantitative Comparison

Table 1 shows the story evaluation results, measured by FID, FVD, and the
proposed FSD. The FID takes one image at a time to perform the evaluation. In
contrast, FVD takes the whole story, noting that the input images are self dupli-
cated before feeding to FVD due to the limitation describing in Sec 3.5. Besides,
we conduct a human survey for the synthesized visual story, and there are three
modalities. Given three sequences of images and the corresponding paragraphs,
users rank the sequences according to 1) the visual image quality, 2) consistency
between images, and 3) the relevance between image and sentence. The pair-
wise comparison results in Table 2 are extracted from the ranking results. Our
model is ranked higher than all baselines on three modalities. The performance
on image quality is especially disparity, demonstrating the effectiveness of the
proposed figure-ground aware generation.

4.6 Architecture Search

To better understand the effectiveness of the proposed model and its variants,
we conducted several comparative experiments by calculating FID, FVD, and
FSD values. The generation flow is firstly discussed, i.e., the cascade gener-
ation and the parallel generation. In our experimental settings, the cascade
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Table 3: The evaluation results of different architectures for combining the figure-
ground information.

FID↓ FVD↓ FSD↓

baseline 74.60 189.46 98.61
baseline + SEG (Cascade) 73.46 182.52 86.80
baseline + SEG (Parallel, k=1,2,3,4) 84.41 194.9 81.46
baseline + SEG (Parallel, k=3,4) 80.54 179.42 99.66
Ours (baseline + SEG (Parallel, k=1,2)) 69.55 177.27 72.60

Fig. 6: FVD and FSD analysis of two kinds of perturbations.

generates the segmentation before the image. Once obtaining the segmentation,
it takes the down-sample to extract the figure-ground features. The features are
then combine into the image generator to form the final result. On the other
hand, the parallel generates the segmentation and image simultaneously, and
takes the latent features to combine into the image generator. The variants of
parallel are introducing the figure-ground information at different layers. Our
experimental results shown in Table 3 suggest that the figure-ground information
should be incorporated at early stage, the possible reason is that the informa-
tion of segmentation is close to high-level concept, i.e., the character position,
however, the last few layers tackle more detail formation. As for the inferior of
cascade may from the process of down-sampling the generated segmentation,
which highly relies on the segmentation quality.

4.7 FSD Analysis

The FSD is proposed to evaluate the sequence coherency of the visual story.
To identify whether FSD is sensitive to the sequence consistency, we apply two
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Table 4: Pearson correlation coefficient of metric measurements and perturbation
intensity.

Pororo-SV VIST
Inter-S Cross-S Inter-S Cross-S

FVD 0.9671 0.9583 0.9697 0.9685
FSD 0.9984 0.9957 0.9876 0.9724

different types of perturbations to the real image sequences: 1) Inter-Story Shuf-
fle: Swapping the sequence order within a story, and the intensity is increasing
with the needed steps to reorder the sequence. 2) Cross-Story Shuffle: Exchange
the images with the images from other stories, and the intensity is increasing
with the number of outside images. We test these noises under two datasets, i.e.,
Pororo-SV and VIST. To compare with the behavior of FVD, we also analyze the
deviation of the FVD under these settings. Note that to maintain consistency
with the FVD evaluation for the models, the input sequence length would be du-
plicated to reach the minimum length requirement of the I3D network instead of
considering more sentences as a story. The line charts in Figure 6 show how the
metrics react to the inter-story shuffle and the cross-story shuffle perturbations.
The generated images with different FSD scores are shown in Supplementary.

5 Conclusions

In this paper, we introduce the figure-ground segmentation images to address
the Story Visualization task, based on the observation of different changing
rate between foreground and background, and propose a novel framework called
Character-Preserving Coherent Story Visualization (CP-CSV) to incorporate
the segmentation information layer by layer. Qualitative and quantitative ex-
periments suggest CP-CSV outperforms the state-of-the-art story visualization
model. Moreover, to give an automatic evaluation metric of Story Visualization
for consistency, Fréchet Story Distance (FSD) is built on the principle of FID
and FVD. The perturbation studies show that FSD is highly sensitive to the
story consistency. We provide more examples in the supplementary.
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