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Abstract. Context information plays an indispensable role in the success
of semantic segmentation. Recently, non-local self-attention based meth-
ods are proved to be effective for context information collection. Since the
desired context consists of spatial-wise and channel-wise attentions, 3D
representation is an appropriate formulation. However, these non-local
methods describe 3D context information based on a 2D similarity matrix,
where space compression may lead to channel-wise attention missing. An
alternative is to model the contextual information directly without com-
pression. However, this effort confronts a fundamental difficulty, namely
the high-rank property of context information. In this paper, we propose
a new approach to model the 3D context representations, which not only
avoids the space compression but also tackles the high-rank difficulty.
Here, inspired by tensor canonical-polyadic decomposition theory (i.e, a
high-rank tensor can be expressed as a combination of rank-1 tensors.),
we design a low-rank-to-high-rank context reconstruction framework (i.e,
RecoNet). Specifically, we first introduce the tensor generation module
(TGM), which generates a number of rank-1 tensors to capture frag-
ments of context feature. Then we use these rank-1 tensors to recover the
high-rank context features through our proposed tensor reconstruction
module (TRM). Extensive experiments show that our method achieves
state-of-the-art on various public datasets. Additionally, our proposed
method has more than 100 times less computational cost compared with
conventional non-local-based methods.

Keywords: Semantic Segmentation, Low-Rank Reconstruction, Tensor
Decomposition

1 Introduction

Semantic segmentation aims to assign the pixel-wise predictions for the given
image, which is a challenging task requiring fine-grained shape, texture and cate-



2 W. Chen et al.

reshape Softmax

2D Similarity Matrix
X

<latexit sha1_base64="UfWg9/VZNDpXzhNmFqUKWFy/9u4=">AAAB+XicbVC7TsMwFL0pr1JeAUaWiBaJqUoqEAwMlVgYi0QfUhtVjuO0Vh07sp1KVdQ/YWEAIVb+hI2/wWkzQMuRLB+dc698fIKEUaVd99sqbWxube+Udyt7+weHR/bxSUeJVGLSxoIJ2QuQIoxy0tZUM9JLJEFxwEg3mNznfndKpKKCP+lZQvwYjTiNKEbaSEPbrg0CwUI1i82V9ea1oV116+4CzjrxClKFAq2h/TUIBU5jwjVmSKm+5ybaz5DUFDMyrwxSRRKEJ2hE+oZyFBPlZ4vkc+fCKKETCWkO185C/b2RoVjl2cxkjPRYrXq5+J/XT3V062eUJ6kmHC8filLmaOHkNTghlQRrNjMEYUlNVgePkURYm7IqpgRv9cvrpNOoe1f168dGtXlX1FGGMziHS/DgBprwAC1oA4YpPMMrvFmZ9WK9Wx/L0ZJV7JzCH1ifP1nWk3Y=</latexit>

A

<latexit sha1_base64="epKIaEZkBJr3Mq7YkFA0SyOhips=">AAAB+XicbVC9TsMwGPxS/kr5CzCyWLRITFVSgWBgKGJhLBKlldqochynterEke1UqqK+CQsDCLHyJmy8DU6bAVpOsny6+z75fH7CmdKO822V1tY3NrfK25Wd3b39A/vw6EmJVBLaJoIL2fWxopzFtK2Z5rSbSIojn9OOP77L/c6ESsVE/KinCfUiPIxZyAjWRhrYdq3vCx6oaWSu7HZWG9hVp+7MgVaJW5AqFGgN7K9+IEga0VgTjpXquU6ivQxLzQins0o/VTTBZIyHtGdojCOqvGyefIbOjBKgUEhzYo3m6u+NDEcqz2YmI6xHatnLxf+8XqrDay9jcZJqGpPFQ2HKkRYorwEFTFKi+dQQTCQzWREZYYmJNmVVTAnu8pdXyVOj7l7ULx8a1eZNUUcZTuAUzsGFK2jCPbSgDQQm8Ayv8GZl1ov1bn0sRktWsXMMf2B9/gA2zJNf</latexit>

✓

<latexit sha1_base64="AyNXggrdWt5vi0vjjZRrmjFYqRg=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBFvBVZkpii5cFNy4rGAf0BlKJpO2oZnMkNwRylDwV9y4UMSt3+HOvzHTzkJbD4QczrmXnJwgEVyD43xbK6tr6xubpa3y9s7u3r59cNjWcaooa9FYxKobEM0El6wFHATrJoqRKBCsE4xvc7/zyJTmsXyAScL8iAwlH3BKwEh9+7jqBbEI9SQyV+bBiAGZVvt2xak5M+Bl4hakggo0+/aXF8Y0jZgEKojWPddJwM+IAk4Fm5a9VLOE0DEZsp6hkkRM+9ks/hSfGSXEg1iZIwHP1N8bGYl0HtBMRgRGetHLxf+8XgqDaz/jMkmBSTp/aJAKDDHOu8AhV4yCmBhCqOImK6YjoggF01jZlOAufnmZtOs196J2eV+vNG6KOkroBJ2ic+SiK9RAd6iJWoiiDD2jV/RmPVkv1rv1MR9dsYqdI/QH1ucPZ3OVwg==</latexit>

�

<latexit sha1_base64="OEhIYXcD/Vjxh/0XHQfRJ+vL+xM=">AAAB/HicbVBPS8MwHE3nvzn/VXf0EtwET6Mdih48DLx4nODmYC0jTdMtLE1KkgqlzK/ixYMiXv0g3vw2plsPuvkg5PHe70deXpAwqrTjfFuVtfWNza3qdm1nd2//wD486iuRSkx6WDAhBwFShFFOeppqRgaJJCgOGHkIpjeF//BIpKKC3+ssIX6MxpxGFCNtpJFdb3qBYKHKYnPlXjKhs+bIbjgtZw64StySNECJ7sj+8kKB05hwjRlSaug6ifZzJDXFjMxqXqpIgvAUjcnQUI5iovx8Hn4GT40SwkhIc7iGc/X3Ro5iVcQzkzHSE7XsFeJ/3jDV0ZWfU56kmnC8eChKGdQCFk3AkEqCNcsMQVhSkxXiCZIIa9NXzZTgLn95lfTbLfe8dXHXbnSuyzqq4BicgDPggkvQAbegC3oAgww8g1fwZj1ZL9a79bEYrVjlTh38gfX5A8ptlNk=</latexit>

�

<latexit sha1_base64="vnRTWg0P/qShcLxTMhDuSC7ndgM=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BFvBU9ktih48FLx4rGAf0F1KNpu2oXksSVYoS8G/4sWDIl79Hd78N2bbPWjrQMgw831kMlHCqDae9+2srK6tb2yWtsrbO7t7++7BYVvLVGHSwpJJ1Y2QJowK0jLUMNJNFEE8YqQTjW9zv/NIlKZSPJhJQkKOhoIOKEbGSn33uBpEksV6wu2VBUPEOZpW+27Fq3kzwGXiF6QCCjT77lcQS5xyIgxmSOue7yUmzJAyFDMyLQepJgnCYzQkPUsF4kSH2Sz+FJ5ZJYYDqewRBs7U3xsZ4joPaCc5MiO96OXif14vNYPrMKMiSQ0ReP7QIGXQSJh3AWOqCDZsYgnCitqsEI+QQtjYxsq2BH/xy8ukXa/5F7XL+3qlcVPUUQIn4BScAx9cgQa4A03QAhhk4Bm8gjfnyXlx3p2P+eiKU+wcgT9wPn8ASkGVrw==</latexit>

(a)

=+ + …
X

<latexit sha1_base64="ht3BoAIs4MA6dI2rfjqciv5fbuU=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GWwFV2WmKIqrghuXFewD2qFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5D73u1MiFRX8Sc8S4sdoxGlEMdJGGtp2bRAIFqpZbK6sN68N7apbdxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSrPZiZjpMdq1cvF/7x+qqNbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnUbdu6pfPzaqzbuijjKcwTlcggc30IQHaEEbMEzhGV7hzcqsF+vd+liOlqxi5xT+wPr8AVk8k3Q=</latexit>

A1

<latexit sha1_base64="4za15Mz456Zfa+WlCcKl9571/Ic=">AAAB+3icbVDNS8MwHE3n15xfcx69BDfB02iHoniaePE4wX3AVkqapltYmpQkFUfpv+LFgyJe/Ue8+d+Ybj3o5oOQx3u/H3l5fsyo0rb9bZXW1jc2t8rblZ3dvf2D6mGtp0QiMeliwYQc+EgRRjnpaqoZGcSSoMhnpO9Pb3O//0ikooI/6FlM3AiNOQ0pRtpIXrXWGPmCBWoWmSu9yTyn4VXrdtOeA64SpyB1UKDjVb9GgcBJRLjGDCk1dOxYuymSmmJGssooUSRGeIrGZGgoRxFRbjrPnsFTowQwFNIcruFc/b2Rokjl6cxkhPRELXu5+J83THR45aaUx4kmHC8eChMGtYB5ETCgkmDNZoYgLKnJCvEESYS1qatiSnCWv7xKeq2mc968uG/V29dFHWVwDE7AGXDAJWiDO9ABXYDBE3gGr+DNyqwX6936WIyWrGLnCPyB9fkDZ5SUAQ==</latexit>

A2

<latexit sha1_base64="8JN/GeidEqObCOYF45j9FW3WZtU=">AAAB+3icbVDNS8MwHE3n15xfdR69BDfB02iHoniaePE4wX3AVkqaZltYmpQkFUfpv+LFgyJe/Ue8+d+Ybj3o5oOQx3u/H3l5Qcyo0o7zbZXW1jc2t8rblZ3dvf0D+7DaVSKRmHSwYEL2A6QIo5x0NNWM9GNJUBQw0gumt7nfeyRSUcEf9CwmXoTGnI4oRtpIvl2tDwPBQjWLzJXeZH6z7ts1p+HMAVeJW5AaKND27a9hKHASEa4xQ0oNXCfWXoqkppiRrDJMFIkRnqIxGRjKUUSUl86zZ/DUKCEcCWkO13Cu/t5IUaTydGYyQnqilr1c/M8bJHp05aWUx4kmHC8eGiUMagHzImBIJcGazQxBWFKTFeIJkghrU1fFlOAuf3mVdJsN97xxcd+sta6LOsrgGJyAM+CCS9ACd6ANOgCDJ/AMXsGblVkv1rv1sRgtWcXOEfgD6/MHaRmUAg==</latexit>

Ar

<latexit sha1_base64="WtTLJ4qYMyoeM1te2Hawd9zm8f4=">AAAB+3icbVDNS8MwHE3n15xfcx69BDfB02iHoniaePE4wX3AVkqapltYmpQkFUfpv+LFgyJe/Ue8+d+Ybj3o5oOQx3u/H3l5fsyo0rb9bZXW1jc2t8rblZ3dvf2D6mGtp0QiMeliwYQc+EgRRjnpaqoZGcSSoMhnpO9Pb3O//0ikooI/6FlM3AiNOQ0pRtpIXrXWGPmCBWoWmSu9yTzZ8Kp1u2nPAVeJU5A6KNDxql+jQOAkIlxjhpQaOnas3RRJTTEjWWWUKBIjPEVjMjSUo4goN51nz+CpUQIYCmkO13Cu/t5IUaTydGYyQnqilr1c/M8bJjq8clPK40QTjhcPhQmDWsC8CBhQSbBmM0MQltRkhXiCJMLa1FUxJTjLX14lvVbTOW9e3Lfq7euijjI4BifgDDjgErTBHeiALsDgCTyDV/BmZdaL9W59LEZLVrFzBP7A+vwBylmUQg==</latexit>

A

<latexit sha1_base64="czXgkxXDXb/WQtEsU8UDDkazjMU=">AAAB+XicbVBPS8MwHP11/pvzX9Wjl+AmeBrtUBRPEy8eJzg32MpI03QLS5uSpINR9k28eFDEq9/Em9/GdOtBNx+EPN77/cjL8xPOlHacb6u0tr6xuVXeruzs7u0f2IdHT0qkktA2EVzIro8V5Symbc00p91EUhz5nHb88V3udyZUKibiRz1NqBfhYcxCRrA20sC2a31f8EBNI3Nlt7PawK46dWcOtErcglShQGtgf/UDQdKIxppwrFTPdRLtZVhqRjidVfqpogkmYzykPUNjHFHlZfPkM3RmlACFQpoTazRXf29kOFJ5NjMZYT1Sy14u/uf1Uh1eexmLk1TTmCweClOOtEB5DShgkhLNp4ZgIpnJisgIS0y0KatiSnCXv7xKnhp196J++dCoNm+KOspwAqdwDi5cQRPuoQVtIDCBZ3iFNyuzXqx362MxWrKKnWP4A+vzBzYyk10=</latexit>

(b)

Fig. 1: (a) Non-local vs. (b) our proposed RecoNet, which is based on tensor
low-rank reconstruction. Note that 2D similarity matrix exists in non-local based
methods and our RecoNet is formed with all 3D tensors.

gory recognition. The pioneering work, fully convolutional networks (FCN) [30],
explores the effectiveness of deep convolutional networks in segmentation task.
Recently, more work achieves great progress from exploring the contextual in-
formation [1, 4, 5, 24, 32, 48], in which non-local based methods are the recent
mainstream [15, 46, 49]. These methods model the context representation by
rating the element-wise importance for contextual tensors. However, the context
features obtained from this line lack of channel-wise attention, which is a key
component of context. Specifically, for a typical non-local block, the 2D similarity
map A ∈ RHW×HW is generated by the matrix multiplication of two inputs
with dimension of H ×W ×C and C ×H ×W , respectively. It is noted that the
channel dimension C is eliminated during the multiplication, which implies that
only the spatial-wise attention is represented while the channel-wise attention is
compressed. Therefore, these non-local based methods could collect fine-grained
spatial context features but may sacrifice channel-wise context attention.

An intuitive idea tackling this issue is to construct the context directly
instead of using the 2D similarity map. Unfortunately, this approach confronts a
fundamental difficulty because of the high-rank property of context features [46].
That is, the context tensor should be high-rank to have enough capacity since
contexts vary from image to image and this large diversity cannot be well-
represented by very limited parameters.

Inspired by tensor canonical-polyadic decomposition theory [19], i.e., a high-
rank tensor can be expressed as a combination of rank-1 tensors, we propose
a new approach of modeling high-rank contextual information in a progressive
manner without channel-wise space compression. We show the workflow of non-
local networks and RecoNet in Fig. 1. The basic idea is to first use a series of
low-rank tensors to collect fragments of context features and then build them up
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to reconstruct fine-grained context features. Specifically, our proposed framework
consists of two key components, rank-1 tensor generation module (TGM) and
high-rank tensor reconstruction module (TRM). Here, TGM aims to generate
the rank-1 tensors in channel, height and width directions, which explore the
context features in different views with low-rank constraints. TRM adopts tensor
canonical-polyadic (CP) reconstruction to reconstruct the high-rank attention
map, in which the co-occurrence contextual information is mined based on the
rank-1 tensors from different views. The cooperation of these two components
leads to the effective and efficient high-rank context modeling.

We tested our method on five public datasets. On these experiments, the pro-
posed method consistently achieves the state-of-the-art, especially for PASCAL-
VOC12 [12], RecoNet reaches the top-1 performance. Furthermore, by incorporat-
ing the simple and clean low-rank features, our whole model has less computation
consumption (more than 100 times lower than non-local) compared to other
non-local based context modeling methods.

The contributions of this work mainly lie in three aspects:

– Our studies reveal a new path to the context modeling, namely, context
reconstruction from low-rank to high-rank in a progressive way.

– We develop a new semantic segmentation framework RecoNet, which explores
the contextual information through tensor CP reconstruction. It not only
keeps both spatial-wise and channel-wise attentions, but also deals with
high-rank difficulty.

– We conduct extensive experiments to compare the proposed methods with
others on various public datasets, where it yields notable performance gains.
Furthermore, RecoNet also has less computation cost, i.e, more than 100
times smaller than non-local based methods.

2 Related Work

Tensor Low-rank Representation. According to tensor decomposition
theory [19], a tensor can be represented by the linear combination of series of
low-rank tensors. The reconstruction results of these low-rank tensors are the
principal components of original tensor. Therefore, tensor low-rank representation
is widely used in computer vision task such as convolution speed-up [20] and
model compression [44]. There are two tensor decomposition methods: Tuker
decomposition and CP decompostion [19]. For the Tuker decomposition, the
tensor is decomposed into a set of matrices and one core tensor. If the core tensor
is diagonal, then Tuker decomposition degrades to CP decomposition. For the
CP decomposition, the tensor is represented by a set of rank-1 tensors (vectors).
In this paper, we apply this theory for reconstruction, namely reconstructing
high-rank contextual tensor from a set of rank-1 context fragments.
Self-Attention in Computer Vision. Self attention is firstly proposed in
natural language processing (NLP) [8, 9, 36, 42]. It serves as a global encoding
method that can merge long distance features. This property is also important
to computer vision tasks. Hu et al. propose SE-Net [17], exploiting channel
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information for better image classification through channel wise attention. Woo
et al. propose CBAM [38] that combines channel-wise attention and spatial-wise
attention to capture rich feature in CNN. Wang et al. propose non-local neural
network [37]. It catches long-range dependencies of a featuremap, which breaks
the receptive field limitation of convolution kernel.
Context Aggregation in Semantic Segmentation. Context information is
so important for semantic segmentation and many researchers pay their attention
to explore the context aggregation. The initial context harvesting method is to
increase receptive fields such as FCN [30], which merges feature of different scales.
Then feature pyramid methods [4,5,48] are proposed for better context collection.
Although feature pyramid collects rich context information, the contexts are not
gathered adaptively. In other words, the importance of each element in contextual
tensor is not discriminated. Self-attention-based methods are thus proposed to
overcome this problem, such as EncNet [45], PSANet [49], APCNet [15], and
CFNet [46]. Researchers also propose some efficient self-attention methods such as
EMANet [21], CCNet [18], A2Net [6], which have lower computation consumption
and GPU memory occupation. However, most of these methods suffer from
channel-wise space compression due to the 2D similarity map. Compared to
these works, our method differs essentially in that it uses the 3D low-rank tensor
reconstruction to catch long-range dependencies without sacrificing channel-wise
attention.

3 Methodology

3.1 Overview

The semantic information prediction from an image is closely related to the
context information. Due to the large varieties of context, a high-rank tensor is
required for the context feature representation. However, under this constraint,
modeling the context features directly means a huge cost. Inspired by the CP
decomposition theory, although the context prediction is a high-rank problem, we
can separate it into a series of low-rank problems and these low-rank problems
are easier to deal with. Specifically, we do not predict context feature directly,
instead, we generate its fragments. Then we build up a complete context feature
using these fragments. The low-rank to high-rank reconstruction strategy not
only maintains 3D representation (for both channel-wise and spatial-wise), but
also tackles with the high-rank difficulty.

The pipeline of our model is shown in Fig. 2, which consists of low-rank tensor
generation module (TGM), high-rank tensor reconstruction module (TRM), and
global pooling module (GPM) to harvest global context in both spatial and
channel dimensions. We upsample the model output using bilinear interpolation
before semantic label prediction.

In our implementation, multiple low-rank perceptrons are used to deal with
the high-rank problem, by which we learn parts of context information (i.e,
context fragments). We then build the high-rank tensor via tensor reconstruction
theory [19].
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Fig. 2: The pipeline of our framework. Two major components are involved, i.e,
Tensor Generation Module (TGM) and Tensor Reconstruction Module (TRM).
TGM peroforms the low-rank tensor generation while TRM achieves the high-rank
tensor reconstruction via CP construction theory.

Formulation: Assuming we have 3r vectors in C/H/W directions vci ∈
RC×1×1, vhi ∈ R1×H×1 and vwi ∈ R1×1×W , where i ∈ r and r is the tensor rank.
These vectors are the CP decomposed fragments of A ∈ RC×H×W , then tensor
CP rank-r reconstruction is defined as:

A =

r∑
i=1

λivci ⊗ vhi ⊗ vwi, (1)

where λi is a scaling factor.

3.2 Tensor Generation Module

In this section, we first provide some basic definitions and then show how to
derive the low-rank tensors from the proposed module.
Context Fragments. We define context fragments as the outputs of the
tensor generation module, which indicates some rank-1 vectors vci, vhi and vwi

(as defined in previous part) in the channel, the height and the width directions.
Every context fragment contains a part of context information.
Feature Generator. We define three feature generators: Channel Generator,
Height Generator and Width Generator. Each generator is composed of Pool-
Conv-Sigmoid sequence. Global pooling is widely used in previous works [28, 48]
as the global context harvesting method. Similarly, here we use global average
pooling in feature generators, obtaining the global context representation in
C/H/W directions.
Context Fragments Generation. In order to learn fragments of context
information across the three directions, we apply channel, height and width
generator on the top of input feature. We repeat this process r times obtaining
3r learnable vectors vci ∈ RC×1×1, vhi ∈ R1×H×1 and vwi ∈ R1×1×W , where
i ∈ r. All vectors are generated using independent convolution kernels. Each of
them learns a part of context information and outputs as context fragment. The
TGM is shown in Fig. 3.
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Fig. 3: Tensor Generation Module. Channel Pool, Height Pool and Width Pool
are all global average pooling.

Non-linearity in TGM. Recalling that TGM generates 3r rank-1 tensors
and these tensors are activated by Sigmoid function, which re-scales the values in
context fragments to [0, 1]. We add the non-linearity for two reasons. Firstly, each
re-scaled element can be regarded as the weight of a certain kind of context feature,
which satisfy the definition of attention. Secondly, all the context fragments shall
not be linear dependent so that each of them can represent different information.

3.3 Tensor Reconstruction Module

In this part, we introduce the context feature reconstruction and aggregation
procedure. The entire reconstruction process is clean and simple, which is based
on Equation (1). For a better interpretation, we first introduce the context
aggregation process.
Context Aggregation. Different from previous works that only collect spatial
or channel attention [45,49], we collect attention distribution in both directions
simultaneously. The goal of TRM is to obtain the 3D attention map A ∈ RC×H×W

which keeps response in both spatial and channel attention. After that, context
feature is obtained by element-wise product. Specifically, given an input feature
X = {x1, x2, . . . , xCHW } and a context attention map A = {a1, a2, . . . , aCHW },
the fine-grained context feature Y = {y1, y2, . . . , yCHW } is then given by:

Y = A ·X ⇐⇒ yi = ai · xi, i ∈ CHW. (2)

In this process, every ai ∈ A represents the extent that xi ∈X be activated.
Low-rank Reconstruction. The tensor reconstruction module (TRM) tackles
the high-rank property of context feature. The full workflow of TRM is shown
in Fig. 4, which consists of two steps, i.e, sub-attention map aggregation and global
context feature reconstruction. Firstly, three context fragments vc1 ∈ RC×1×1,
vh1 ∈ R1×H×1 and vw1 ∈ R1×1×W are synthesized into a rank-1 sub-attention
map A1. This sub-attention map represents a part of 3D context feature, and we
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Fig. 4: Tensor Reconstruction Module (TRM). The pipeline of TRM consists of two
main steps, i.e, sub-attention map generation and global context reconstruction.
The processing from top to bottom (see ↓) indicates the sub-attention map
generation from three dimensions (channel / height / width). The processing
from left to right (see A1 + A2 + · · · + Ar = A ) denotes the global context
reconstruction from low-rank to high-rank.

will show the visualization of some Ai, i ∈ [1, r] in experimental result part. Then,
other context fragments are reconstructed following the same process. After that
we aggregate these sub-attention maps using weighted mean:

A =

r∑
i=1

λiAi. (3)

Here λi ∈ (0, 1) is a learnable normalize factor. Although each sub-attention map
represents low-rank context information, the combination of them becomes a
high-rank tensor. The fine-grained context features in both spatial and channel
dimensions are obtained after Equation (3) and Equation (2).

3.4 Global Pooling Module

Global pooling module (GPM) is commonly used in previous work [46,48]. It is
composed of a global average pooling operation followed with a 1 × 1 convolution.
It harvests global context in both spatial and channel dimensions. In our proposed
model, we apply GPM for the further boost of network performance.

3.5 Network Details

We use ResNet [16] as our backbone and apply dilation strategy to the output of
Res-4 and Res-5 of it. Then, the output stride of our proposed network is 8. The
output feature of Res-5 block is marked as X. TGM+TRM and GPM are then
added on the top of X. Following previous works [45,48], we also use auxiliary
loss after Res-4 block. We set the weight α to 0.2. The total loss L is formulated
as follows:

L = Lmain + αLaux. (4)
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Finally, we concatenate X with the context featuremap generated by TGM+TRM
and the global context generated by GPM to make the final prediction.

3.6 Relation to Previous Approaches

Compared with non-local and its variants that explore the pairwise relation-
ship between pixels, the proposed method is essentially unary attention. Unary
attention has been widely used in image classification such as SENet [17] and
CBAM [38]. It is also broadly adopted in semantic segmentation such as DFN [43]
and EncNet [45]. Apparently, SENet is the simplest formation of RecoNet. The
3D attention map of SENet ASE ∈ RC×H×W is as Formula (5):

ASE = vc ⊗ vh ⊗ vw,

vh = e,

vw = e>,

e = {1, 1, 1, . . . 1}.

(5)

RecoNet degenerates to SENet by setting tensor rank r = 1. Meanwhile, vh = e
and vw = e>. From Formula (5), it is observed that the weights in H and W
directions are the same, which implies that SENet only harvests channel attention
while sets the same weights in spatial domain. EncNet [45] is the updated version
of SENet, which also uses the same spatial weights. Different spatial weights are
introduced in CBAM, which extends Formula (5) to Equation (6).

ACBAM = vc ⊗ vh,w, vh,w ∈ R1×H×W . (6)

Here ACBAM ∈ RC×H×W is the 3D attention map of CBAM. The spatial
attention is considered in CBAM. However, single rank-1 tensor ACBAM can
not represent complicated context information. Considering an extreme case,
the spatial attention is CP-decomposed into 2 rank-1 tensors vh ∈ R1×H×1 and
vw ∈ R1×1×W . Then, ACBAM becomes a sub-attention map of RecoNet.

Simple but effective is the advantage of unary attentions, but they are also
criticized for not being able to represent complicated features or for being able
to represent features only in one direction (spatial/channel). RecoNet not only
takes the advantage of simplicity and effectiveness from unary attention, but also
delivers comprehensive feature representations from multi-view (i.e, spatial and
channel dimension).

4 Experiments

Many experiments are carried out in this section. We use five datasets: PASCAL-
VOC12, PASCAL-Context, COCO-Stuff, ADE20K and SIFT-FLOW to test the
performance of RecoNet.
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4.1 Implementation Details

RecoNet is implemented using Pytorch [31]. Following previous works [13, 45],
synchronized batch normalization is applied. The learning rate scheduler is

lr = base lr × (1 −
iter

total iters
)power. We set base lr to 0.001 for PASCAL-

VOC12, PASCAL-Context and COCO-Stuff datasets. The base lr for ADE20K
and SIFT-FLOW is 0.01 and 0.0025. Here we set power to 0.9. SGD optimizer is
applied with weight decay 0.0001 and momentum 0.9. We train ADE20K and
COCO-Stuff for 120 epochs and 180 epochs respectively. For other datasets,
we train 80 epochs. The batch size we set for all datasets is 16 and all input
images are randomly cropped into 512× 512 before putting into neural network.
The data augmentation method we use is the same with previous works [45, 48].
Specifically, we randomly flip and scale the input images (0.5 to 2).

We use multi-scale and flip evaluation with input scales [0.75, 1, 1.25, 1.5, 1.75,
2.0] times of original scale. The evaluation metrics we use is mean Intersection-
over-Union (mIoU).

4.2 Results on Different Datasets

PASCAL-VOC12. We first test RecoNet using PASCAL-VOC12 [12] dataset,
a golden benchmark of semantic segmentation, which includes 20 object categories
and one background class. The dataset contains 10582, 1449, 1456 images for
training, validation and testing. Our training set contains images from PASCAL
augmentation dataset. The results are shown in Table 1. RecoNet reaches 85.6%
mIoU, surpassing current best algorithm using ResNet-101 by 1.2%, which is a
large margin.

Following previous work [13–15,45,46], we use COCO-pertained model during
training. We first train our model on MS-COCO [26] dataset for 30 epochs,
where the initial learning rate is set to 0.004. Then the model is fine-tuned on
PASCAL augmentation training set for another 80 epochs. Finally, we fine-tune
our model on original VOC12 train+val set for extra 50 epochs and the initial lr
is set to 1e-5. The results in Table 2 show that RecoNet-101 outperforms current
state-of-the-art algorithms with the same backbone. Moreover, RecoNet also
exceeds state-of-the-art methods that use better backbone such as Xception [7].
By applying ResNet-152 backbone, RecoNet reaches 89.0% mIoU without adding
extra data. The result is now in the 1st place of the PASCAL-VOC12 challenge5.

PASCAL-Context. [41] is a densely labeled scene parsing dataset includes 59
object and stuff classes plus one background class. It contains 4998 images for
training and 5105 images for testing. Following previous works [15, 45, 46], we
evaluate the dataset with background class (60 classes in total). The results are
shown in Table 3. RecoNet performs better than all previous approaches that
use non-local block such as CFNet and DANet, which implies that our proposed
context modeling method is better than non-local block.

5 http://host.robots.ox.ac.uk:8080/anonymous/PXWAVA.html

http://host.robots.ox.ac.uk:8080/anonymous/PXWAVA.html
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Table 1: Results on PASCAL-VOC12 w/o COCO-pretrained model

FCN [30] PSPNet [48] EncNet [45] APCNet [15] CFNet [46] DMNet [14] RecoNet

aero 76.8 91.8 94.1 95.8 95.7 96.1 93.7
bike 34.2 71.9 69.2 75.8 71.9 77.3 66.3
bird 68.9 94.7 96.3 84.5 95.0 94.1 95.6
boat 49.4 71.2 76.7 76.0 76.3 72.8 72.8

bottle 60.3 75.8 86.2 80.6 82.8 78.1 87.4
bus 75.3 95.2 96.3 96.9 94.8 97.1 94.5
car 74.7 89.9 90.7 90.0 90.0 92.7 92.6
cat 77.6 95.9 94.2 96.0 95.9 96.4 96.5

chair 21.4 39.3 38.8 42.0 37.1 39.8 48.4
cow 62.5 90.7 90.7 93.7 92.6 91.4 94.5
table 46.8 71.7 73.3 75.4 73.0 75.5 76.6
dog 71.8 90.5 90.0 91.6 93.4 92.7 94.4

horse 63.9 94.5 92.5 95.0 94.6 95.8 95.9
mbike 76.5 88.8 88.8 90.5 89.6 91.0 93.8
person 73.9 89.6 87.9 89.3 88.4 90.3 90.4
plant 45.2 72.8 68.7 75.8 74.9 76.6 78.1
sheep 72.4 89.6 92.6 92.8 95.2 94.1 93.6
sofa 37.4 64 59.0 61.9 63.2 62.1 63.4
train 70.9 85.1 86.4 88.9 89.7 85.5 88.6

tv 55.1 76.3 73.4 79.6 78.2 77.6 83.1

mIoU 62.2 82.6 82.9 84.2 84.2 84.4 85.6

COCO-Stuff. [2] is a challenging dataset which includes 171 object and stuff
categories. The dataset provides 9000 images for training and 1000 images for
testing. The outstanding performance of RecoNet (as shown in Table 4) illustrates
that the context tensor we modeled has enough capacity to represent complicated
context features.

SIFT-Flow. [27] is a dataset that focuses on urban scene, which consists of 2488
images in training set and 500 images for testing. The resolution of images is
256×256 and 33 semantic classes are annotated with pixel-level labels. The result
in Table 5 shows that the proposed RecoNet outperforms previous state-of-the-art
methods.

ADE20K. [51] is a large scale scene parsing dataset which contains 25K images
annotated with 150 semantic categories. There are 20K training images, 2K
validation images and 3K test images. The experimental results are shown in
Table 6. RecoNet shows better performance than non-local based methods such
as CCNet [18]. The superiority on result means RecoNet can collect richer context
information.

4.3 Ablation Study

In this section, we perform the thorough ablation experiments to investigate
the effect of different components in our method and the effect of different rank
number. These experiments provide more insights of our proposed method. The
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Table 2: Results on PASCAL-VOC
w. COCO-pretrained model

Method Backbone mIoU

CRF-RNN [50] 74.7
DPN [29] 77.5
Piecewise [25] 78.0
ResNet38 [40] 84.9
PSPNet [48] ResNet-101 85.4
DeepLabv3 [4] ResNet-101 85.7
EncNet [45] ResNet-101 85.9
DFN [43] ResNet-101 86.2
CFNet [46] ResNet-101 87.2
EMANet [21] ResNet-101 87.7
DeeplabV3+ [5] Xception 87.8
DeeplabV3+ [5] Xception+JFT 89.0

RecoNet ResNet-101 88.5
RecoNet ResNet-152 89.0

Table 3: Results on PASCAL-Context
test set with background (60 classes)

Method Backbone mIoU

FCN-8s [30] 37.8
ParseNet [28] 40.4
Piecewise [25] 43.3
VeryDeep [39] 44.5
DeepLab-v2 [3] ResNet-101 45.7
RefineNet [24] ResNet-152 47.3
PSPNet [48] ResNet-101 47.8
MSCI [23] ResNet-152 50.3
Ding et al. [11] ResNet-101 51.6
EncNet [45] ResNet-101 51.7
DANet [13] ResNet-101 52.6
SVCNet [10] ResNet-101 53.2
CFNet [46] ResNet-101 54.0
DMNet [14] ResNet-101 54.4

RecoNet ResNet-101 54.8

Table 4: Results on COCO-Stuff test
set (171 classes)

Method Backbone mIoU

FCN-8s [30] 22.7
DeepLab-v2 [3] ResNet-101 26.9
RefineNet [24] ResNet-101 33.6
Ding et al. [11] ResNet-101 35.7
SVCNet [10] ResNet-101 39.6
DANet [13] ResNet-101 39.7
EMANet [21] ResNet-101 39.9

RecoNet ResNet-101 41.5

Table 5: Results on SIFT-Flow test set

Method pixel acc. mIoU

Sharma et al. [34] 79.6 -
Yang et al. [41] 79.8 -
FCN-8s [30] 85.9 41.2
DAG-RNN+CRF [35] 87.8 44.8
Piecewise [25] 88.1 44.9
SVCNet [10] 89.1 46.3

RecoNet 89.6 46.8

Table 6: Results on ADE20K val set

Method Backbone mIoU

RefineNet [24] ResNet-152 40.70
PSPNet [48] ResNet-101 43.29
DSSPN [22] ResNet-101 43.68
SAC [33] ResNet-101 44.30
EncNet [45] ResNet-101 44.65
CFNet [46] ResNet-50 42.87
CFNet [46] ResNet-101 44.89
CCNet [18] ResNet-101 45.22

RecoNet ResNet-50 43.40
RecoNet ResNet-101 45.54

experiments are conducted on PASCAL-VOC12 validation set and more ablation
studies can be found in supplementary material.

Different Components. In this part, we design several variants of our
model to validate the contributions of different components. The experimental
settings are the same with previous part. Here we have three main components,
including global pooling module (GPM) and tensor low-rank reconstruction
module inducing TGM and TRM. For fairness, we fix the tensor rank r = 64.
The influence of each module is shown in Table 7. According to our experiment
results, tensor low-rank reconstruction module contributes 9.9% mIoU gain in
network performance and the pooling module also improves mIoU by 0.6%. Then
we use the auxiliary loss after Res-4 block. We finally get 81.4% mIoU by using
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Table 7: Ablation study on different components. The experiments are imple-
mented using PASCAL-VOC12 validation dataset. FT represents fine-tune on
PASCAL-VOC12 original training set

Method TGM+TRM GPM Aux-loss MS/Flip FT mIoU %

ResNet-50 68.7
ResNet-50

√
78.6

ResNet-50
√ √

79.2
ResNet-50

√ √ √
79.8

ResNet-101
√ √ √

81.4
ResNet-101

√ √ √ √
82.1

ResNet-101
√ √ √ √ √

82.9

Table 8: Ablation study on ten-
sor rank. The results are obtained
by using ResNet101 backbone and
multi-scale evaluation

Method Tensor Rank mIoU %

RecoNet 16 81.2
RecoNet 32 81.8
RecoNet 48 81.4
RecoNet 64 82.1
RecoNet 80 81.6
RecoNet 96 81.0
RecoNet 128 80.7

Table 9: Results on PASCAL-VOC12 val set.
RecoNet achieves the best performance with
relatively small cost

Method SS MS/Flip FLOPs

ResNet-101 - - 190.6G
DeepLabV3+ [5] 79.45 80.59 +84.1G
PSPNet [48] 79.20 80.36 +77.5G
DANet [13] 79.64 80.78 +117.3G
PSANet [49] 78.71 79.92 +56.3G
CCNet [18] 79.51 80.77 +65.3G
EMANet [21] 80.09 81.38 +43.1G

RecoNet 81.40 82.13 +41.9G

GPM and TGM+TRM together. The result shows that the tensor low-rank
reconstruction module dominants the entire performance.

Tensor Rank. Tensor rank r determines the information capacity of our
reconstructed attention map. In this experiment, we use ResNet101 as the
backbone. We sample r from 16 to 128 to investigate the effect of tensor rank.
An intuitive thought is that the performance would be better with the increase
of r. However, our experiment results on Table 8 illustrates that the larger r
does not always lead to a better performance. Because we apply TGM+TRM
on the input feature X ∈ R512×64×64, which has maximum tensor rank 64. An
enormous r may increase redundancy and lead to over-fitting, which harms the
network performance. Therefore, we choose r = 64 in our experiments.

Comparison with Previous Approaches. In this paper, we use deep-base
ResNet as our backbone. Specifically, we replace the first 7× 7 convolution in
ResNet with three consequent 3× 3 convolutions. This design is widely adopted
in semantic segmentation and serves as the backbone network of many prior
works [18, 21, 45, 46, 48]. Since the implementation details and backbones vary in
different algorithms. In order to compare our method with previous approaches
in absolutely fair manner, we implemented several state-of-the-art algorithms
(listed in Table 9) based on our ResNet101 backbone and training setting. The
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Table 10: Computational cost and GPU occupation of TGM+TRM. FLOPs
(FLoating point Operations). We use tensor rank r = 64 for evaluation

Method Channel FLOPs GPU Memory

Non-Local [37] 512 19.33G 88.00MB
APCNet [15] 512 8.98G 193.10MB
RCCA [18] 512 5.37G 41.33MB
A2Net [6] 512 4.30G 25.00MB
AFNB [52] 512 2.62G 25.93MB
LatentGNN [47] 512 2.58G 44.69MB
EMAUnit [21] 512 2.42G 24.12MB

TGM+TRM 512 0.0215G 8.31MB

results are shown in Table 9. We compare our method with feature pyramid
approaches such as PSPNet [48] and DeepLabV3+ [5]. The evaluation results
show that our algorithm not only surpass these method in mIoU but also in
FLOPs. Also, we compare our method with non-local attention based algorithms
such as DANet [13] and PSANet [49]. It is noticed that our single-scale result
outperforms their multi-scale results, which implies the superiority of our method.
Additionally, we compare RecoNet with other low-cost non-local methods such
as CCNet [18] and EMANet [21], where RecoNet achieves the best performance
with relatively small cost.

4.4 Further Discussion

We further design several experiments to show computational complexity of the
proposed method, and visualize some sub-attention maps from the reconstructed
context features.

Computational Complexity Analysis. Our proposed method is based on
the low-rank tensors, thus having large advantage on computational consumption.
Recalling that non-local block has computational complexity of O(CH2W 2). On
the TGM stage, we generates a series of learnable vectors using 1×1 convolutions.
The computational complexity is O(C2 +H2 +W 2) while on the TRM stage,
we reconstruct the high-rank tensor from these vectors and the complexity is
O(CHW ) for each rank-1 tensor. Since CHW >> C2 > H2 = W 2, the total
complexity is O(rCHW ), which is much smaller than non-local block. Here r is
the tensor rank. Table 10 shows the FLOPs and GPU occupation of TGM+TRM.
From the table we can see that the cost of TGM+TRM is neglegible compared
with other non-local based methods. Our proposed method has about 900 times
less FLOPs and more than 100 times less FLOPs compared with non-local
block and other non-local-based methods, such as A2Net [6] and LatentGNN [47].
Besides of these methods, we calculate the FLOPs and GPU occupation of RCCA,
AFNB and EMAUnit, which is core component of CCNet [18], AsymmetricNL [52]
and EMANet [21]. It can be found that TGM+TRM has the lowest computational
overhead.
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Fig. 5: Visualization of sub-attention map. From left to right are Image, Ground
Truth, Ai ·X, Aj ·X, Ak ·X, and Al ·X. It can be found that sub-attention
maps mainly focus on the different parts of image.

Visualization. In our proposed method, context features are constructed by
the linear combination of sub-attention maps, i.e, Ai ·X. Therefore, we visualize
their heat maps to check the part of features they activate. We randomly select
four sub-attention maps Ai ·X, Aj ·X, Ak ·X, Al ·X, as shown in Fig. 5. We
can see that different sub-attention maps activate different parts of the image.
For instance, for the last case, the four attention maps focus on the foreground,
the horse, the person, and the background, respectively, which implies that
the low-rank attention captures the context fragments and RecoNet can catch
long-range dependencies.

5 Conclusion

In this paper, we propose a tensor low-rank reconstruction for context features
prediction, which overcomes the feature compression problem that occurred in
previous works. We collect high-rank context information by using low-rank
context fragments that generated by our proposed tensor generation module.
Then we use CP reconstruction to build up high-rank context features. We embed
the fine-grained context features into our proposed RecoNet. The state-of-the-
arts performance on different datasets and the superiority on computational
consumption show the success of our context collection method.
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