
TRADI: Tracking deep neural network weight
distributions (Supplementary material)

Gianni Franchi1,2, Andrei Bursuc3, Emanuel Aldea2, Séverine Dubuisson4, and
Isabelle Bloch5

1 ENSTA Paris, Institut polytechnique de Paris
2 SATIE, Université Paris-Sud, Université Paris-Saclay

3 valeo.ai
4 CNRS, LIS, Aix Marseille University

5 LTCI, Télécom Paris, Institut polytechnique de Paris

1 TRAcking of the DIstribution (TRADI) of weights of a neural
network

This section details the tracking of the covariance matrix of a shallow neural network
(see Section 3.2.1 of the main paper), gives the whole TRADI algorithm and explains
how its parameters are chosen.

1.1 Kalman Filtering

Bayesian recursive filtering [3] aims to estimate the state of a hidden Markov process,
observed through a state space equations system. Let {µk(0), ..., µk(t)} be this process,
where µk(t) is the state, and ωk(t) the observation. At time t the filtering equations in
the absence of a control model are:{

µk(t) = ft(µk(t− 1))
ωk(t) = gt(µk(t))

(1)

The first equation is the state equation, with ft the transition function between times
t−1 and t and the second is the observation equation, with gt the measurement function.
Under the Markov assumptions, the probability of the current state given the immedi-
ately previous one is conditionally independent of the other earlier states, in addition,
the measurement at the kth timestep is only dependent on the current state. Moreover,
the Kalman model considers that these two equations are perturbed by white Gaussian
noises which are independent from each other. Finally, if ft and gt are linear operators,
than the Kalman filter is an optimal estimator.

1.2 Tracking the mean and variance of the weights and the covariance

We consider a neural network (NN) for which each layer has few neurons, less than
100. Our goal here is to estimate, for all weights ωk(t) of the NN and at each time step
t of the training process, µk(t) and σ2

k(t) the parameters of their normal distribution.
Furthermore, we want to estimate Σk,k′(t) which is the covariance matrix between

2 Franchi et al.

the ωk(t) and ωk′(t). Note that, since we assume that weights on different layers are
independent, we evaluate the covariance for k, k′ belonging to the same layer, otherwise
their covariance is null. To this end, we leverage mini-batch SGD to optimize the loss
between two weight realizations.

The derivative of the loss with respect to a given weight ωk(t−1) over a mini-batch
B(t) is given by:

∇Lωk(t) =
1

|B(t)|
∑

(xi,yi)∈B(t)

∂L(ω(t− 1), yi)

∂ωk(t− 1)
(2)

Weights ωk(t) are then updated as follows:

ωk(t) = ωk(t− 1)− η∇Lωk(t) (3)

The weights of NNs are randomly initialized at t = 0 by sampling Wk(0) ∼
N (µk(0), σ

2
k(0)), where the parameters of the distribution are set empirically on a per-

layer basis as in [2]. In addition, for all couples of weights (k, k′), the corresponding
element of the covariance matrix is given by Σk,k′(0) = 0 since all the weights are
considered independent at time t = 0.

Similarly with the main article, we use the following state and measurement equa-
tions for the mean µk(t):{

µk(t) = µk(t− 1)− η∇Lωk(t) + nµ
ωk(t) = µk(t) + ñµ

(4)

where nµ is the state noise, and ñµ the observation noise, realizations of N (0, σ2
µ) and

N (0, σ̃2
µ) respectively. The state and measurement equations for the variance σk are

given by: σ2
k(t) = σ2

k(t− 1) +
(
η∇Lωk(t)

)2
+ nσ

zk(t) = σ2
k(t)− µk(t)2 + ñσ

with zk(t) = ωk(t)
2

(5)

where nσ is the state noise, and ñσ is the observation noise, realizations of N (0, σ2
σ)

and N (0, σ̃2
σ) respectively. As proposed in the main article, and similarly with [1, 6],

we assume that weights during back-propagation and forward pass are independent. We
then get:

Σ(t)k,k′ = Σ(t− 1)k,k′+

η2E
[
∇Lωk(t)∇Lωk′ (t)

]
− η2E

[
∇Lωk(t)

]
E
[
∇Lωk′ (t)

]
(6)

This leads to the following state and measurement equations for the covariance
Σ(t)k,k′ : Σ(t)k,k′ = Σ(t− 1)k,k′ +

(
η2∇Lωk(t)∇Lωk′ (t)

)
) + nΣ

lk,k′(t) = Σ(t)k,k′ − µk(t)µk′(t) + ñΣ
lk,k′(t) = Σ(t)k,k′ − µk(t)µk′(t) + ñΣ

(7)

where nΣ is the state noise and ñΣ is the observation noise, realizations of N (0, σ2
Σ)

and N (0, σ̃2
Σ) respectively.

Abbreviated paper title 3

1.3 TRADI training algorithm overview

We detail the TRADI steps during training in Algorithm 1.
For tracking purposes we must store µk(t) and σk(t) for all the weights of the

network. Hence, we are computationally lighter than Deep Ensembles, which has a
training complexity scaling with the number of considered models. In addition, TRADI
can be applied to any DNN without any modification of the architecture, contrarily to
MC dropout that requires adding dropout layers to the underlying DNN. For clarity we
define L(ω(t), B(t)) = 1

|B(t)|
∑

(xi,yi)∈B(t) L(ω(t), yi). Here Pµ, Pσ are the noise
covariance matrices of the mean and variance respectively and Qµ, Qσ are the optimal
gain matrices of the mean and variance respectively. These matrices are used during
Kalman filtering [4].

1.4 TRADI parameters

We have set the number of random projections[5] N = 10 in all experiments in order
to get a fast approximation of the covariance matrix. We validated this choice experi-
mentally and noticed that the performance is similar for larger values of N . N = 10
ensures a relatively low computational cost. We used σrbf = 1 for the RBF parameter
of the random projection. We have tested different values, without substantial changes
in the results. As it can be seen in the algorithm section we have performed a weighted
average between the estimated variance/mean with the tracked variance/mean, where
the weight depends on Kalman gain.

2 Complementary results

In this section, we detail some of the results reported in the main article for the OOD
experiments. The major interest of OOD experiments is that they allow one to see how
much we can rely on a DNN. This question is also crucial for industrial research. In
this scenario, a particular DNN is trained for a specific application/context which takes
into account a certain number of classes. However, in the testing phase new unfore-
seen objects may appear, potentially leading to wrong/dangerous decisions if the DNN
confidence is badly calibrated.

2.1 Results on MNIST

Figure 1 shows the calibration plots for the OOD experiments with MNIST and NotM-
NIST datasets. As one can see, our strategy (blue curve) has better performances on
predicting OOD classes. Calibration plots can easily show whether a DNN is overcon-
fident or not and give an idea on how reliable are the predictions of the DNN. From
these plots we see that Deep Ensembles and MC dropout are overconfident, hence they
classify non-digits with wrong classes and with high confidence. Our strategy is there-
fore more suitable for this problem, although still improvable in the lower confidence
ranges.

4 Franchi et al.

Algorithm 1 TRADI algorithm during training
1: ω(t): weights, η learning rate, σµ, σ̃µ, σσ , σ̃σ
2: Pµ(0) = 0, Pσ(0) = 0, ω(0), t = 1
3: for B(t) ∈ data to do
4: begin
5: (Forward pass)
6: ∀xi ∈ B(t) calculate gω(t)(xi)
7: evaluate the loss L(ω(t), B(t))
8: (Backward)
9: for k = 1 to K do

10: begin
11: ωk(t)← ωk(t− 1)− η∇Lωk(t)

12: end
13: (Tracking with Kalman filter)
14: for k = 1 to K do
15: begin
16: # Update predicted (a priori) estimate covariances
17: Pµ(t

−)← Pµ(t− 1) + σµ
18: Pσ(t

−)← Pσ(t− 1) + σσ
19: # Update Kalman Gains
20: Qµ ← Pµ(t

−)/(Pµ(t
−) + σ̃µ)

21: Qσ ← Pσ(t
−)/(Pσ(t

−) + σ̃σ)
22: # Update mean
23: µk(t

−)← µk(t− 1)− η∇Lωk(t)

24: µk(t)← (1−Qµ)µk(t
−) +Qµωk(t)

25: # Update variance
26: σ2

k(t
−)← σ2

k(t− 1) + η2
(
∇Lωk(t) − µk(t)

)2
27: σ2

k(t)← (1−Qσ)σ
2
k(t

−) +Qσ(ωk(t)
2 − µk(t)2)

28: # Update (a posteriori) estimate covariances
29: Pµ(t)← (1−Qµ)Pµ(t

−)
30: Pσ(t)← (1−Qσ)Pσ(t

−)
31: end
32: (Time update)
33: t← t+ 1
34: end

Abbreviated paper title 5

Fig. 1. Calibration plot for MNIST \NotMNIST.

MC dropout Deep Ensembles TRADI
mean IoU 0.4857 0.5719 0.5298
Accuracy 0.8034 0.8806 0.8488

Table 1. CamVid semantic segmentation results (mIoU, accuracy).

2.2 Results on CamVid

We provide additional scores for CamVid experiments. In Figure 2b we illustrate the
average precision calibration curve. This curve is similar to the calibration plot, with
the difference that for each confidence bin, we do not plot the accuracy but the average
precision. The usefulness of the precision is that it highlights more the false-positive
effects than the accuracy. We observe in in Figure 2 that TRADI is better on both mea-
sures at identifying OOD classes.

In Table 1 we report the mIoU and the global accuracy scores. On these metrics,
TRADI is between Deep Ensembles and MC Dropout. In contrast to Deep Ensembles
we do not need to train multiple DNNs. In order to achieve good performances on
semantic segmentation for complex urban scenes, high capacity DNNs are necessary.
Training multiple instances of such networks as in Deep Ensembles brings a significant
computational cost. Furthermore, these models are usually updated when new data is
recorded and each time the full ensemble needs updating. TRADI requires training a
single network each time.

In Figures ??, ??, 6, and 7 we report additional qualitative results. Figures 6 and 7
show zoom-in over areas of interest in Figures 4 and 7 respectively. We provide the color
code for the semantic segmentation map in Figure 3. We remind that in this experiments
the classes human, bicyclist, and car are used as OOD and removed from the train set.
We can see that TRADI outputs less confident predictions for human pixels, comparing
to Deep Ensebles and MC Dropout.

6 Franchi et al.

0 0.2 0.4 0.6 0.8 1
Confidence

0

0.2

0.4

0.6

0.8

1
CamVid OOD Accuracy

Deep Ensembles
MC dropout
TRADI

(a)

0 0.2 0.4 0.6 0.8 1
Confidence

0

0.2

0.4

0.6

0.8

1
CamVid OOD Precision

Deep Ensembles
MC dropout
TRADI

(b)

Fig. 2. (a) Calibration plot for the CamVid experiment. (b) Calibration plot, where on the Y axis
we replace the Accuracy by the average precision of each class for the CamVid experiment.

Comparing with Deep Ensembles. Deep Ensembles is among the most powerful and
effective techniques for epistemic uncertainty. However few works on uncertainty es-
timation with DNNs on computer vision tasks have considered it for evaluation. We
argue that this work is one of the first to truly challenge Deep Ensembles. While we do
not achieve higher accuracy than Deep Ensembles, our approach strikes a good com-
promise between computational cost for training and prediction performance. The com-
putational budget for Deep Ensembles is proportional to the number of models in the
ensemble, while for TRADI we always train a single model regardless of the number of
network samples we have at test time. Our results on the OOD experiments challenge
and sometimes outperform the Deep Ensembles ones.

sky road fence car
building pavement sign_symbol pedestrian
pole tree unlabeled bicyclist

Fig. 3. Color map for the CamVid experiment.

Abbreviated paper title 7

Fig. 4. Qualitative results on CamVid experiments. Column (1): top - input image (the image
contrast has been enhanced for clarity with respect to the original dataset image), bottom - ground
truth; Columns (2-4): top - confidence scores from MC dropout, Deep Ensembles and TRADI
respectively, bottom - corresponding segmentation predictions.

Fig. 5. Qualitative results on CamVid experiments. Column (1): top - input image (the image
contrast has been enhanced for clarity with respect to the original dataset image), bottom - ground
truth; Columns (2-4): top - confidence scores from MC dropout, Deep Ensembles and TRADI
respectively, bottom - corresponding segmentation predictions.

8 Franchi et al.

Fig. 6. Detailed qualitative analysis of the confidence on CamVid predictions. Column (1): top -
input image, bottom - ground truth; Columns (2-4): top - confidence scores from MC dropout,
Deep Ensembles and TRADI respectively, bottom - corresponding segmentation predictions.

Fig. 7. Detailed qualitative analysis of the confidence on CamVid predictions. Column (1): top -
input image, bottom - ground truth; Columns (2-4): top - confidence scores from MC dropout,
Deep Ensembles and TRADI respectively, bottom - corresponding segmentation predictions.

Bibliography

[1] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Advances in neural information processing systems. pp. 3981–3989
(2016)

[2] He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

[3] Jazwinski, A.H.: Stochastic processes and filtering theory. Courier Corporation
(2007)

[4] Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal
of basic Engineering 82(1), 35–45 (1960)

[5] Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Ad-
vances in neural information processing systems. pp. 1177–1184 (2007)

[6] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian
process behavior, gradient independence, and neural tangent kernel derivation.
arXiv preprint arXiv:1902.04760 (2019)

