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Abstract. We consider universal adversarial patches for faces — small
visual elements whose addition to a face image reliably destroys the per-
formance of face detectors. Unlike previous work that mostly focused
on the algorithmic design of adversarial examples in terms of improving
the success rate as an attacker, in this work we show an interpreta-
tion of such patches that can prevent the state-of-the-art face detectors
from detecting the real faces. We investigate a phenomenon: patches de-
signed to suppress real face detection appear face-like. This phenomenon
holds generally across different initialization, locations, scales of patches,
backbones and face detection frameworks. We propose new optimization-
based approaches to automatic design of universal adversarial patches for
varying goals of the attack, including scenarios in which true positives are
suppressed without introducing false positives. Our proposed algorithms
perform well on real-world datasets, deceiving state-of-the-art face de-
tectors in terms of multiple precision/recall metrics and transferability.

1 Introduction

Adversarial examples still remain knotty in computer vision [4, 36, 8], machine
learning [43, 25], security [28], and other domains [16] despite the huge success of
deep neural networks [40, 41, 35]. In computer vision and machine learning, study
of adversarial examples serves as evidences of substantial discrepancy between
the human vision system and machine perception mechanism [32, 27, 2, 12]. In
security, adversarial examples have raised major concerns on the vulnerability
of machine learning systems to malicious attacks. The problem can be stated
as modifying an image, subject to some constraints, so that learning system’s
response is drastically altered, e.g., changing the classifier or detector output
from correct to incorrect. The constraints either come in the human-imperceptible
form such as bounded `p perturbations [43, 39, 3], or in the human-perceptible
form such as small patches [33, 10]. The focus of this work is the latter setting.

While image classification has been repeatedly shown to be broadly vulner-
able to adversarial attacks [32], it is less clear whether object detection is simi-
larly vulnerable [29, 23, 21, 22, 13]. State-of-the-art detectors propose thousands

? Equal contribution. ‡ corresponding author.



2 X.Yang et al.

Ground-Truth Normal Patch Adversarial Patch

Fig. 1. Properties and effect of different patches. In each image we show true positive
(solid blue lines), false positive (red) and missed detection (dashed blue lines). Left
(green) box: the clean input images. Middle (orange) box: pasting an un-optimized
noise patch or a downsized face patch on the image does not affect the detectors.
Right (purple) box: universal adversarial patches produced by different methods
successfully suppress true positives, From the fourth to sixth column: The Baseline
method Patch-IoU appears person-like and induces false positives; our Patch-Score-
Focal and Patch-Combination avoid the false positives. The patches are not necessarily
pasted at forehead as demonstrated in Section 3.

of candidate bounding boxes and the adversarial examples are required to fool
all of them simultaneously. Nonetheless, for selected object categories the at-
tacks and defenses have been studied extensively. They include objects like stop
signs or pedestrians [24, 33, 10], but few attempts have been made on generating
adversarial examples for faces. This is in spite of face detection as a task enjoy-
ing significant attention in recent years, due to its practical significance on its
own and as a building block for applications such as face alignment, recognition,
attribute analysis, and tracking. Publicly available face detectors [45, 26, 19, 44]
can achieve performance on par with humans, e.g., on FDDB [15] and WIDER
FACE dataset [38], and are insensitive to the variability in occlusions, scales,
poses and lighting. However, much remains unknown concerning the behaviors
of face detectors on adversarial patches. Our work sheds new light on this ques-
tion and shows that a simple approach of pasting a single universal patch onto a
face image can dramatically harm the accuracy of state-of-the-art face detectors.
We propose multiple approaches for building adversarial patches, that address
different desired precision/recall characteristics of the resulting performance. In
addition to empirical performance, we are interested in understanding the nature
of adversarial patch on face detection.

Significance. The study of adversarial patch in face detection is important
in multiple aspects: a) In security, adversarial patch serves as one of the most
common forms of physical attacks in the detection problems, among which face
detection has received significant attention in recent years. b) The study of
adversarial patch may help understand the discrepancy between state-of-the-art
face detectors and human visual system, towards algorithmic designs of detection
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mechanism as robust as humans. c) Adversarial patch to face detectors is human-
perceptible and demonstrates significant interpretation as shown in this paper.
Challenges. In commonly studied classification problems, adversarial pertur-
bations are inscrutable and appear to be unstructured, random noise-like. Even
when structure is perceptible, it tends to bear no resemblance to the categories
involved. Many observations and techniques for classification break down when
we consider more sophisticated face detection tasks. Compared with other de-
tection tasks, generating adversarial examples for face detection is more chal-
lenging, because the state-of-the-art face detectors are able to detect very small
faces (e.g., 6 × 6 pixels [26]) by applying the multi-scale training and testing
data augmentation. While there is a large literature on the algorithmic designs
of adversarial examples in terms of improving the success rate as an attacker, in
this work we focus on the interpretation of learning a small, universal adversarial
patch which, once being attached to human faces, can prevent the state-of-the-
art face detectors from detecting the real faces.
Our results. The gist of our findings is summarized in Figure 1. We consider
state-of-the-art face detectors, that perform very accurately on natural face im-
ages. We optimize a universal adversarial patch, to be pasted on input face
images, with the goal of suppressing scores of true positive detection on training
data. This is in sharp contrast to most of existing works on adversarial exam-
ples for faces in the form of sample-specific, imperceptible perturbations, but
a universal (independent of the input image) and interpretable (semantically
meaningful) patch that reliably destroys the performance of face detectors is
rarely studied in the literature. Our patch yields the following observations.

– It succeeds in drastically suppressing true positives in test data. The at-
tack also transfers between different face detection frameworks, that is, a
patch which is trained on one detection framework deceives another detec-
tion framework with a high success rate.

– It looks face-like to humans, as well as to the detectors. Thus, in addition to
reducing recall, it reduces precision by inducing false positives.

– Despite superficial face-likeness of the learned adversarial patch, it cannot be
simply replaced by a real face patch, nor by a random noise pattern; affixing
these to real faces does not fool the detectors.

– Surprisingly, these observations hold generally across different detection frame-
works, patch initialization, locations and scales of pasted patch, etc. For ex-
ample, even while initializing the patch with an image of a non-face object
or a complex scene, after 100 epochs the resulting adversarial patch comes
to resemble a face (see Figure 2).

In some scenarios the attacker may want to suppress correct detection with-
out creating false positives (e.g., to hide the presence of any face). We propose
modified approaches that produce patches with this property. Intuitively, the
approaches minimize the confidence scores of bounding boxes as long as they
are larger than a threshold. Experiments verify the effectiveness of the proposed
approaches (see the last two columns in Figure 1).
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Fig. 2. Adversarial patches from different initialization by Patch-IoU. The first row is
the initial patches, and the second and the third row represent the intermediate and
final patches. All of the final patches here are detected as faces by face detectors.

Summary of contributions. Our work explores the choices in design of uni-
versal adversarial patches for face detection.

– We show how such patches can be optimized to harm performance of existing
face detectors. We also show that when the objective is purely to suppress
true detection, the resulting patches are interpretable as face-like and can
be detected by baseline detectors, with this property holding true across
different experimental settings.

– In response to some security-focused scenarios where the adversary may want
to suppress correct detection without creating false positives, we describe
methods to produce equally successful universal adversarial patches that do
not look like faces to either humans nor the face detectors, thus reducing
detection rate without increasing false positives. Our proposed algorithms
deceive the state-of-the-art face detectors [26] on real-world datasets in terms
of multiple precision/recall metrics and transferability.

2 Related Work

Adversarial examples on object detection. Adversarial examples on gen-
eral object detection have been extensively studied in the recent years [42, 18].
A commonly explored domain for adversarial examples in detection is stop sign
detection [9–11, 6]. Inspired by an observation that both segmentation and de-
tection are based on classifying multiple targets on an image, [36] extended the
methodology of generating adversarial examples to the general object detection
tasks. Recently, [33] proposed a method to generate a universal adversarial patch
to fool YOLO detectors on pedestrian data set. Another line of research related
to our work is the perturbation-based adversarial examples for face detectors [20].
This line of works adds sample-specific, human-imperceptible perturbations to
the images globally. In contrast, our adversarial patches are universal to all
samples, and our patches are visible to humans and show strong interpretation.
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While optimizing a patch to fool detectors has previously been used as a simu-
lation of physical-world attacks, to our knowledge no properties of such patches
to human visual system have been shown.
Adversarial examples in face recognition. To fool a face recognition sys-
tem in the physical world, prior work has relied on active explorations via vari-
ous forms of physical attacks [17, 5, 1]. For example, [31, 30, 37] designed a pair
of eyeglass frames which allows a face to evade being recognized or to imper-
sonate another individual. However, these adversarial examples did not afford
any semantic interpretation. Though scaled adversarial perturbations of robustly
trained classifiers might have semantic meaning to humans [43], those adversar-
ially trained classifiers are not widely used due to an intrinsic trade-off between
robustness and accuracy [34, 43].
Face detection. Face detection is typically less sensitive to the variation of
face scales, angles, and other external factors such as occlusions and image qual-
ities. Modern face detection algorithms [45, 26, 19, 44] take advantage of anchor1

based object detection methods, such as SSD [23] and RetinaNet [22], Faster
R-CNN [29] and Mask R-CNN [13], and can achieve performance on par with
humans on many public face detection benchmarks, such as FDDB and WIDER
FACE dataset. They can detect faces as small as 6 pixels by applying multi-scale
training and testing data augmentation, which serves as one of the primary dif-
ferences with general object detection.

3 Interpretation of Adversarial Patch as Face

In this section, we present our main experimental results on the interpretation of
adversarial patch. We show that, on one hand, the adversarial patch optimized
by the proposed Patch-IoU method looks like a face. The patch can be detected
by the baseline face detection model, even in the absence of extra constraints to
encourage the patch to be face-like. On the other hand, attaching a face picture
to a real face does not fool the detector (see Figure 1). The phenomenon holds
generally across different setups.

3.1 Preliminaries on face detection

Dataset. We use WIDER FACE [38] training dataset to learn both the face
detector and the adversarial patch. The WIDER FACE dataset contains 32,203
images and 393,703 annotated face bounding boxes with high degree of variability
in scales, poses, occlusions, expression, makeup, and illumination. According to
the detection rate of EdgeBox [46], WIDER FACE dataset is split into 3 subsets:
Easy, Medium and Hard. The face detector and adversarial patch are evaluated
on the validation set. The set of ground-truth bounding boxes for an image is

1 Anchors are a set of predefined and well-designed initial rectangles with different
scales and ratios. They are densely tiled on feature maps for object classification
and bounding box regression.
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Fig. 3. SLN framework in our face detection baseline model, where ×2 represents
the bilinear upsampling, + represents the element-wise summation, and 1 × 1/256
represents the 1× 1 convolution with 256 output channels. The feature map P2 is used
as the only detection layer where all anchors are tiled with stride 4 pixels. The positive
classification loss is our main attacking target.

defined as {Bi}, where Bi = (xi, yi, wi, hi), (xi, yi) is the center of the box, and
wi and hi are the width and height of the bounding box, respectively.

Face detection framework. We use the state-of-the-art face detection frame-
work [26] as the baseline model, and we name it as Single Level Network (SLN).
Figure 3 illustrates the network structure. We use ResNet [14] as backbone, with
a bottom-up feature refusion procedure in Feature Pyramid Network (FPN) [21].
We obtain a high-resolution and informative feature map P2 (stride equals to 4
pixels). Anchors with scales {16, 32, 64, 128} and aspect ratio 1 are tiled on P2

uniformly. We denote by {Ai} the set of all anchors. We apply IoU regression
loss, anchor matching criterion, and group sampling strategy in [26] to train our
baseline model. Formally, let IoU(Ai, Bj) denote the IoU between the i-th an-
chor and the j-th ground-truth bounding box. Anchors with IoU(Ai, Bj) > 0.6
and IoU(Ai, Bj) < 0.4 will be set as positive and negative samples. Finally, we
define a multi-task loss L = Lpcls + Lncls + Lreg, where Lpcls and Lncls denote
the standard cross entropy loss for positive and negative samples, respectively,
and Lreg = 1

Nreg

∑
(Ai,Bj)

‖1− IoU(Ai, Bj)‖22 represents the IoU least square

regression loss. If not specified, we use ResNet-18 as our defaulted backbone.

Training details of face detector. We use random horizontal flip and scale
jittering as data augmentation during training. For scale jittering, each image is
resized by a factor of 0.25 × n, where n is randomly chosen from [1, 8]. We set
the initial learning rate as 0.01 and decay the learning rate by a factor of 0.1 on
the 60-th and the 80-th epochs. We use Non-Maximum Suppression (NMS) as
post-processing. The first line in Table 1 shows the precision and recall of the
baseline model. Easy, Medium, Hard, and All2 represent the results from easy
subset, medium subset, hard subset and the whole validation set, respectively.

2 Official WIDER FACE testing script (http://shuoyang1213.me/WIDERFACE/)
only gives results of Easy, Medium and Hard subsets. We reimplement the test
script to support testing on the whole validation set.
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Table 1. Precision and recall of SLN baseline model and pasting various patches with
(without) Patch-IoU algorithm on WIDER FACE validation set under δ = 0.99 (see
Figure 2 for visualized results).

Precision/ Recall Easy Medium Hard All

Baseline-SLN 99.0/ 73.4 99.4/ 62.4 99.4/ 27.9 99.4/ 22.5
Noise w/o Patch-IoU 99.1/ 54.9 99.4/ 41.5 99.4/ 17.6 99.4/ 14.2
Parachute w/o Patch-IoU 99.1/ 51.8 99.3/ 37.2 99.3/ 15.8 99.3/ 12.8
Lemon w/o Patch-IoU 98.9/ 53.4 99.2/ 39.4 99.2/ 16.7 99.2/ 13.4
Bottle w/o Patch-IoU 99.1/ 53.5 99.4/ 41.1 99.4/ 17.3 99.4/ 13.9
Banana w/o Patch-IoU 99.1/ 55.2 99.4/ 41.4 99.4/ 17.5 99.4/ 14.1
FaceA w/o Patch-IoU 51.8/ 30.2 61.4/ 24.2 61.8/ 10.3 61.8/ 8.3
FaceB w/o Patch-IoU 77.8/ 39.5 83.5/ 30.1 83.6/ 12.9 83.6/ 10.4
FaceC w/o Patch-IoU 98.4/ 38.3 98.9/ 29.8 98.9/ 12.7 98.9/ 10.2
Noise w/ Patch-IoU 2.7/2.7 6.5/3.7 7.3/1.8 7.3/1.4
Parachute w/ Patch-IoU 2.1/0.5 4.8/ 0.7 5.9/ 0.4 5.9/ 0.3
Lemon w/ Patch-IoU 0.2/0.1 0.9/0.3 1.0/0.2 1.0/0.1
Bottle w/ Patch-IoU 1.1/1.1 2.2/1.2 2.5/ 0.6 2.6/0.5
Banana w/ Patch-IoU 10.2/5.0 19.0/5.6 20.3/2.5 20.3/2.0
FaceA w/ Patch-IoU 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
FaceB w/ Patch-IoU 0.1/0.0 2.3/0.2 2.6/0.1 2.6/0.1
FaceC w/ Patch-IoU 0.1/0.1 0.2/0.1 0.3/0.0 0.3/0.0

3.2 Design of adversarial patch

Details of adversarial patch. In our work we need craft a universal adver-
sarial patch that can be pasted at input faces, with the objective of fooling face
detectors. For detection, as opposed to balanced classification problems, there
are two types of errors: the false-positive error and the false-negative error. In
response to an intrinsic trade-off between precision and recall in the face detec-
tion tasks, existing works set a score threshold δ to keep high precision: output
proposals with confidence scores higher than δ are treated as faces. The goal of
adversary is to decrease the confidence scores to be lower than δ by pasting a
carefully-calculated, universal patch to human faces. We show that the adver-
sarial patch can make the real faces invisible to various detectors. Formally, we
define the patch P as a rectangle which is denoted by (xP , yP , wP , hP ), where
(xP , yP ) is the center of the patch relative to the ground-truth bounding box
Bi, and wP and hP represent its width and height, respectively. In our exper-
iments, we set both wP and hP as 128 since the largest anchor size is 128 in
the SLN face detection framework. For each of the ground-truth bounding box
Bi = (xi, yi, wi, hi) in the given training image, the patch P is resized to α

√
wihi

(0 < α < 1) and then placed on Bi with its center position (xP , yP ). We ran-

domly initialize the patch, and set α = 0.5 and (xP , yP ) = (wi/2, α
√
wihi/2),

unless otherwise specified. All of the training settings, including the training
dataset and the hyper-parameter tuning, are the same as the SLN (or other face
detection framework) baseline model.

Optimization. Previous adversarial attacks on object detectors [24] have shown
some progress through inverse optimization for the loss function of the detec-
tors, and the-state-of-art method in [33] also generates adversarial patches by
minimizing the object score of the detector. Inspired by this, we focus on adver-
sarial face patches to design a baseline method named Patch-IoU. Specifically,
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Fig. 4. Different optimization methods for generating adversarial patches. The core
difference is to involve different samples in the optimization of adversarial patch. From
top to bottom: Patch-IoU, Patch-Score-Focal and Patch-Combination, respectively.

we firstly define Adversarial Sample Set {ASi} as the set of selected samples
which are involved in the training optimization of the adversarial patch. Each
Adversarial Sample ASi = (Ai, Bi, Si, P ) contains four elements: the anchor Ai,
the ground-truth bounding box Bi, the face confidence score Si which represents
the output of the classification layer with the softmax operation, and the ad-
versarial patch P 3, respectively. We freeze all weights of the face detector; the
patch P is the only variable to be optimized by gradient ascent algorithm. Our
goal is to maximize the following loss function:

LAdv(P ) =− 1

N

N∑
i=1

log(Si), (1)

where N is the size of {ASi}. We use the IoU to select {ASi}, that is, each
sample in {ASi} should satisfy IoU(Ai, Bi) > 0.6, which is exactly the same as
the selection of positive samples in the baseline model. Our baseline algorithm
Patch-IoU can be seen from the first row of Figure 4.
Evaluation details. We follow the same testing settings as that of the SLN (or
other face detection framework) baseline model. Similar to the existing works,
we set a threshold δ = 0.99 to keep high precision: decreasing the scores of the
ground-truth faces to be smaller than δ represents a successful attack.

We show our visualized results in Figure 1 and the first column of Figure 2,
i.e., the evolution of the adversarial patch with random initialization. Table 1 (see
Baseline, Noise w/o Patch-IoU and Noise w/ Patch-IoU three lines) presents the
corresponding numerical results on precision and recall with (without) Patch-
IoU optimization. We have three main observations:

– The drop of recall implies that the detector fails to detect the real faces in
the presence of the adversarial patch, i.e., Score(RealFace) < δ.

3 All ASi’s share an identical adversarial patch P .
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Fig. 5. Optimization results by Patch-IoU across different scales, locations, backbones
and detection frameworks. Patch-IoU generates face-like adversarial patch which is
falsely detected by various detectors.

– The patch with 100-epoch training appears face-like. The drop of precision
implies that the detector falsely recognizes the adversarial patch as a human
face, i.e., Score(AdversarialPatch) > δ.

– Attaching an additional face photo to the real faces with the same size and
location as the adversarial patch indeed affects precision more than other
setups, but we do not obverse significant drop of recall.

3.3 Generality

The interpretation of adversarial patch is not a unique property of the setup
in Section 3.2. Instead, we show that it is a general phenomenon which holds
across different initialization, patch locations and scales, backbones, and detec-
tion frameworks.
Initialization. We randomly select seven images from ImageNet [7], three faces
from WIDER FACE validation set, and one random image as our initialization.
Figure 2 shows the evolution of patches across different training epochs. We
observe that the patches come to resemble human faces, even while initializing
the patches with non-face objects or a complex scene.
Patch locations and scales. To examine whether the interpretation holds
across different locations and scales, we run the algorithm with different patch
scales: α ∈ {0.3, 0.35, 0.4} and locations: top (xP , yP ) = (wi/2, α

√
wihi/2),

center (xP , yP ) = (wi/2, hi/2), and bottom (xP , yP ) = (wi/2, hi − α
√
wihi/2).

We observe a similar phenomenon for all these setups, as shown in Figure 5.
Backbones. We see in Figure 5 that the adversarial patches look like human
faces for different backbones, including ResNet-50, ResNet-101 and ResNext-101.
Detection frameworks. Besides the face detection framework SLN, we also
test three popular detection frameworks: SSD [23], RetinaNet [22] and Faster R-
CNN [29]. For Faster R-CNN, we use the SLN as our region proposal network,
and the RoIAlign [13] is applied on each proposal to refine face classification
and bounding box regression. Except for the detection architecture, all of the
experimental setups for the baseline model and the adversarial patch training are
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Table 2. Precision and recall of different frameworks and transferability of adversarial
patch attack from SSD, RetinaNet and Faster R-CNN to SLN under δ = 0.99. A → B
denotes that the adversarial patch is optimized by detector A and tested on B.

Precision/ Recall Easy Medium Hard All

Baseline-SLN 99.0/ 73.4 99.4/ 62.4 99.4/ 27.9 99.4/ 22.5
Patch-IoU -SLN 2.7/2.7 6.5/3.7 7.3/1.8 7.3/1.4
SSD → SLN 42.5/ 29.9 53.4/ 25.1 54.1/ 10.7 54.1/ 8.6
RetinaNet → SLN 37.4/ 28.7 48.5/ 24.5 49.2/ 10.5 49.2/ 8.5
Faster R-CNN → SLN 32.9/ 3.8 44.9/ 3.4 46.3/ 1.5 46.3/ 1.2

the same. Similarly, we observe that the adversarial patches come to resemble
human faces (see Figure 5).
Numerical results. We also report the numerical results of the algorithm. We
set δ = 0.99 and show the precision and recall of using various patches to attack
the SLN face detector on the WIDER FACE validation set. Table 1 illustrates
the effect of eight representative kinds of initialization with (without) Patch-
IoU optimization. We do not report the numerical results about different patch
locations and scales, backbones and detection frameworks, since the results and
phenomenon are identical as the initialization. It can be seen that pasting a
patch (even initialized as face) without any optimization will cause the recall
to drop, but not so drastically. In contrast, the Patch-IoU can cause the recall
to decrease dramatically across different initialization, leading to a successful
attack. However, the adversarial patches also reduce the precision because the
face-like patches are falsely detected and the scores of the patches are even higher
than those of the true faces. We defer more discussions about evaluation metrics
and the issue of precision drop in Patch-IoU method to Section 4.
Transferability between different frameworks. We also study the transfer-
ability of adversarial patch between different frameworks. Formally, we attach
patches optimized from SSD, RetinaNet and Faster R-CNN, respectively, on
each ground-truth bounding box in WIDER FACE validation set, and test their
attacking performance on SLN baseline detector. Table 2 shows the numerical
results. The patch trained on the Faster R-CNN framework enjoys higher success
rate as an attacker on the SLN than the SSD and RetinaNet.

Besides, we examine generality across training datasets. The final patches are
face-like and can be falsely detected by baseline face detector. To examine the
attacking performance of only part of the adversarial patch that is optimized by
Patch-IoU, we remove a half and one third area of the whole patch and test the
performance of the remaining part of the patch on the WIDER FACE validation
dataset. Due to limited space, we show these results in Appendix A.

3.4 Interpretation of Adversarial Patch.

Anchor mechanism with different scales based face detectors provides plenty of
facial candidate proposals. This essentially belongs to an ensemble defense strat-
egy compared to classification tasks when adversarial patches strive to lower the
classification score of each proposal. Therefore, the adversarial patch will be
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optimized towards reducing the scores of more proposals. The previous method
Patch-IoU only optimizes proposals over a certain range of IoU, not including its
own adversarial patch. Unconstrained optimization for patches can reduce classi-
fication scores of most proposals, yet appearing face-like phenomenon in the face
detection task. That makes us rethink what is an effective patch optimization
method for deceiving face detectors.

4 Improved Optimization of Adversarial Patch

Current baseline optimization method Patch-IoU appear face-like phenomenon
on the adversarial patch. In this section, we first introduce an evaluation criterion
of what kind of patch belongs to a better optimization. Then we propose two im-
proved optimization methods, Patch-Score-Focal and Patch-Combination, based
on above analysis. We demonstrate the effectiveness of the proposed approaches
by visualized and numerical results.

4.1 Evaluation metric

Attacking criteria. We set a confidence score threshold δ to keep high precision
(> 0.99) in order to reduce the possibility of raising false positives. Note that the
adversarial patch by Patch-IoU can be detected as faces (see Section 3.2). To
successfully attack a face detector under the policy that none of the bounding
boxes in the images should be detected as faces, we define our criteria as follows:

– Criterion 1 : Reducing the confidence scores of true faces to be lower than
δ;

– Criterion 2 : Preventing the confidence score of adversarial patch from
being higher than δ.

Shortcomings of Average Precision (AP) as an evaluation metric.

– Reducing the confidence scores of true faces does not change the relative
rankings among positive (faces) and negative (backgrounds) proposals. As a
result, AP remains unchanged even when the attack is successful.

– The fake faces appearing on the adversarial patch are treated as false pos-
itives. Thus the AP becomes small due to large amounts of false positives.
However, this should be considered an unsuccessful attack when the goal is
to prevent false positives while suppressing true predictions.

We introduce some examples to illustrate the above arguments in Appendix D.
We see that a successful attacking algorithm should reduce the recall of the

test images while keeping the precision above the given threshold δ. The obser-
vation motivates us to use the recall conditioning on the high precision and the
Fβ score to evaluate the algorithms. Fβ score is defined as:

Fβ =
1 + β2

β2Precision−1 + Recall−1
,
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Fig. 6. From top to bottom, the four rows represent the adversarial patches of Patch-
IoU, Patch-Score, Patch-Score-Focal and Patch-Combination, respectively.
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Fig. 7. Threshold-Fβ curve and AFβ under β = [0.001, 0.01, 0.1, 0.5]. Patch-
Combination benefits from the confidence scores and location information of ground-
truth and the patch and outperforms other methods.

where β is a hyper-parameter that trades precision off against recall; setting
β < 1 sets more weights to recall and vice versa. We use Average Fβ (AFβ),
the area under the Threshold-Fβ curve, to evaluate the attacking algorithms. A
lower AFβ implies a better attacking algorithm.

4.2 Improved optimization

As described in Section 3.2, Patch-IoU method may violate Criterion 2. We
expect the optimized patch to meet two criterions. Therefore, we first introduce
a score-based optimization method named Patch-Score. Specifically, we set the
adversarial sample set {ASi = (Ai, Bi, Si, P )} as those samples with Si > δ−m,
where m is a hyper-parameter on the relaxation of the constraint. This procedure
for adversarial sample set selection forces the scores of both adversarial patch
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Table 3. Precision and recall comparisons of Baseline-SLN, Patch-Score, Patch-Score-
Focal and Patch-Combination with δ = 0.99.

Precision/ Recall Easy Medium Hard All

Baseline-SLN 99.0 / 73.4 99.4 / 62.4 99.4 / 27.9 99.4 / 22.5
Patch-Score 98.5 / 25.5 98.9 / 19.7 99.0 / 8.3 99.0 / 6.7
Patch-Score-Focal 98.4 / 23.1 98.9 / 17.9 98.9 / 7.6 98.9 / 6.1
Patch-Combination 98.2 / 20.6 98.7 / 15.6 98.7 / 6.6 98.7 / 5.4

and true faces to be lower than predefined threshold δ. We set δ −m = 0.5 as
default.

Although Patch-Score satisfies Criterion 1 and Criterion 2 simultaneously,
we show that some high-score negative samples may also be selected as ad-
versarial samples ASi, which may degrade the performance as an attacker. In
response to this issue, we propose two solutions, namely, Patch-Score-Focal and
Patch-Combination.

Patch-Score-Focal optimization. Focal loss [22] aims at solving the extreme
imbalance issue between foreground and background proposals in the object
detection. The core idea is to assign small weights to the vast majority of easily-
classified negatives and prevent them from dominating the classification loss.
Our method is inspired from the Focal loss and adapts to the adversarial patch
training. Formally, we replace the loss in Patch-Score by

LAdv(P ) = − 1

N

N∑
i=1

Sγi log(Si), (2)

where γ is a hyper-parameter and Sγi represents the modulating factor which
sets different weights for different samples. In contrast to the Focal loss which
assigns smaller weights to the easily-classified samples, our goal is to filter out
negative proposals whose score are higher than δ −m and set bigger weights to
those negative samples with higher scores. We name this optimization method
as Patch-Score-Focal (see the second row in Figure 4). We set δ −m = 0.5 and
γ = 2 as suggested in [22].

Patch-Combination optimization. On one hand, Patch-IoU aims to select
adversarial samples according to the higher IoUs of the ground-truth faces, with-
out any score-related constraints in the adversarial patch optimization. On the
other hand, Patch-Score is to select those samples with confidence scores higher
than δ−m, and thus the selected samples may include many negative proposals
in the absence of information from the ground-truth faces. We combine the ad-
vantages of both methods and propose a new optimization method named Patch-
Combination. Formally, we restrict each adversarial sample ASi = (Ai, Bi, Si, P )
to satisfy the following conditions: 1) Si > δ − m; 2) IoU(Ai, Bi) > λ1 or
IoU(Ai, P ) > λ2. The third row of Figure 4 illustrates the methodology. We
set δ −m = 0.5, λ1 = 0.3 and λ2 = 0.3 as default.
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4.3 Experimental results

We use WIDER FACE training set and SLN baseline model for adversarial
patch training; except for the adversarial sample set selection procedure, the
same optimization setups for Patch-IoU training are applied to the Patch-Score,
Patch-Score-Focal and Patch-Combination methods. Visualized results are illus-
trated in the second to the fourth rows of Figure 6. In contrast to Patch-IoU
method, no faces can be detected by our improved optimization algorithms since
they all satisfy Criterion 1 and Criterion 2.

Besides the visualized results, we also show numerical results. Figure 7 shows
four Threshold-Fβ

4 curves and AFβ (lower AFβ means a better attack) under
different β = [0.001, 0.01, 0.1, 0.5]. Table 3 also shows the comparisons of preci-
sion and recall with δ = 0.99. Moreover, we also reduce the adversarial patch to
different proportions and paste the patch on different positions for comparisons
in Appendix B. In Appendix C, we examine the transferability of the adversar-
ial patch between different models. Patch-Combination and Patch-Score-Focal
achieve better performance than Patch-Score on extensive experiments, with
better optimization design of adversarial sample set. This is because Patch-
Combination benefits from the interpretation that attacking an ensemble defense
(e.g. plenty of proposals in face detection) should fully consider the full use of
global information in the optimization.

5 Conclusions

In this paper, we perform a comprehensive interpretation of adversarial patches
to state-of-the-art anchor based face detectors. Firstly we show a face-like phe-
nomenon of the generated adversarial patches by previous method Patch-IoU,
which makes the detectors falsely recognize the patches as human faces across
different settings. That is very instructive for the understanding of universal ad-
versarial samples from an optimization perspective. Besides, we propose Patch-
Score-Focal and Patch-Combination methods to obtain more effective adversarial
patches. Extensive experiments verify the effectiveness and transferability of the
proposed methods. We also believe that these promising insights and methods
will inspire further studies for the community.
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