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Abstract. Visible-infrared person re-identification (VI-ReID) is a chal-
lenging cross-modality pedestrian retrieval problem. Due to the large
intra-class variations and cross-modality discrepancy with large amoun-
t of sample noise, it is difficult to learn discriminative part features.
Existing VI-ReID methods instead tend to learn global representations,
which have limited discriminability and weak robustness to noisy im-
ages. In this paper, we propose a novel dynamic dual-attentive aggrega-
tion (DDAG) learning method by mining both intra-modality part-level
and cross-modality graph-level contextual cues for VI-ReID. We propose
an intra-modality weighted-part attention module to extract discrimina-
tive part-aggregated features, by imposing the domain knowledge on the
part relationship mining. To enhance robustness against noisy samples,
we introduce cross-modality graph structured attention to reinforce the
representation with the contextual relations across the two modalities.
We also develop a parameter-free dynamic dual aggregation learning s-
trategy to adaptively integrate the two components in a progressive joint
training manner. Extensive experiments demonstrate that DDAG out-
performs the state-of-the-art methods under various settings.
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1 Introduction

Person re-identification (Re-ID) techniques [59,68] have achieved human-level
performance with part-level deep feature learning [4,40,67]. However, most of
these techniques consider images of people collected by visible-spectrum cameras
in the daytime, and thus are not applicable to night-time applications. Infrared
cameras can be used to collect imagery in low light conditions [50], but matching
this imagery to visible-spectrum images is a significant challenge.

Cross-modality visible-infrared person re-identification (VI-ReID) [50,58] aim-
s to solve this problem by matching images of people captured by visible and
infrared (including near- [50] and far-infrared (thermal) [29]) cameras. VI-ReID is
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Fig. 1. Idea Illustration: (a) Example images from SYSU-MM01 dataset [50] with high
sample noise due to data annotation/collection difficulty. Main components: (b) intra-
modality weighted-part aggregation (IWPA), it learns discriminative part-aggregated
features by mining the contextual part information within each modality. (c) cross-
modality graph structured attention (CGSA), it enhances the representation by incor-
porating the neighborhood information from the two modalities.

challenging due to large visual differences between the two modalities and chang-
ing camera environments, leading to large intra- and cross-modality variations.
Moreover, due to difficulties in data collection and annotation, VI-ReID usually
suffers from high sample noise caused by inaccurate person detection results,
eg extreme background clutter, as shown in Fig. 1 (a). Related cross-modality
matching studies have been extensively conducted in visible near-infrared (VIS-
NIR) face recognition [28,52]. However, the visual differences between images of
people are much greater than those between face images, so those methods are
not applicable for VI-ReID [50].

These challenges make it difficult to reliably learn discriminative part-level
features using state-of-the-art single-modality Re-ID systems [40,45,55,67]. As a
compromise, existing VI-ReID methods mainly focus on learning multi-modal
sharable global features, either via one- [7,49,50] or two-stream networks [9,58].
Some work also integrates modality discriminant supervision [7,9] or GAN gen-
erated images [44,49] to handle the modality discrepancy. However, global fea-
ture learning methods are sensitive to background clutter and can not explicitly
handle the modality discrepancy. In addition, part-based feature-learning meth-
ods [40,45,66,67] for single-modality Re-ID are typically incapable of capturing
reliable part features under a large cross-domain gap [50]. Moreover, the learning
is easily contaminated by noisy samples and destabilized when the appearance
discrepancy is large across the two modalities. All of these challenges result in
less discriminative cross-modality features and unstable training.

To address the above limitations, we propose a novel dynamic dual-attentive
aggregation (DDAG) learning method with a two-stream network. DDAG in-
cludes two main components, as shown in Fig. 1: an intra-modality weighted-part
aggregation (IWPA) and a cross-modality graph structured attention (CGSA).
Our main idea is to mine contextual cues at both an intra-modality part-level
and cross-modality graph-level, to enhance feature representation learning. I-
WPA aims to learn discriminative part-aggregated features by simultaneously
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mining the contextual relations among the body parts within each modality and
imposing the domain knowledge to handle the modality discrepancy. Our design
is computationally efficient because we learn the modality-specific part-level at-
tention rather than pixel-level attention [47,65], and it also results in stronger
robustness against background clutter. We further develop a residual BatchNor-
m connection with weighted-part aggregation to reduce the impact of noisy body
parts, and adpatively handle the part discrepancy in the aggregated features.

CGSA focuses on learning an enhanced node feature representation by incor-
porating the relationship between the person images across the two modalities.
We eliminate the negative impact of samples with large variations by exploit-
ing the contextual information in the cross-modality graph, assigning adaptive
weights to both intra- and cross-modality neighbors with a mutli-head attentive
graph scheme [42]. This strategy also reduces the modality discrepancy and s-
mooths the training process. In addition, we introduce a parameter-free dynamic
dual aggregation learning strategy to dynamically aggregate the two attentive
modules in a mutli-task end-to-end learning manner, which enables complex
dual-attentive network to converge stably, while simultaneously reinforcing each
attentive component. Our main contributions are as follows:

– We propose a novel dynamic dual-attentive aggregation learning method to
mine contextual information at both intra-modality part and cross-modality
graph levels to facilitate feature learning for VI-ReID.

– We design an intra-modality weighted-part attention module to learn dis-
criminative part-aggregated representation, adaptively assigning the weights
of different body parts.

– We introduce a cross-modality graph structured attention scheme to enhance
feature representations by mining the graphical relations between the person
images across the two modalities, which smooths the training process and
reduces the modality gap.

– We establish a new baseline on two VI-ReID datasets, outperforming the
state-of-the-art by a large margin.

2 Related Work

Single-Modality Person Re-ID aims to match person images from visible
cameras [18]. Existing works have achieved human-level performance on the
widely-used datasets with end-to-end deep learning [1,14,15,17,39,54], either by
global [17,64] or part-level feature learning [40,39,67]. However, these approaches
are usually unable to handle the ambiguous modality discrepancy in VI-ReID
[50], which limits their applicability in night-time surveillance scenarios.
Cross-Modality Person Re-ID addresses person re-identification across dif-
ferent types of images, such as between visible-spectrum and infrared [49,50,57],
varying illuminations [62] or even between images and non-visual data like text
descriptions [5,21]. For visible-Infrared-ReID (VI-ReID), Wu et al. [50] intro-
duced a zero-padding strategy with a one-stream network for cross-modality fea-
ture representation learning. A two-stream network with dual-constrained top-
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ranking loss was proposed in [58] to handle both the intra- and cross-modality
variations. In addition, Dai et al. [7] proposed an adversarial training framework
with the triplet loss to jointly discriminate the identity and modality. Recently,
Wang et al. [49] presented a dual-level discrepancy method with GAN to handle
the modality difference at various levels. Similar technique was also adopted in
[44]. Two modality-specific [9] and modality-aware learning [56] methods were
proposed to handle the modality discrepancy at the classifier level. Meanwhile,
other papers have investigated a better loss function [2,23] to handle the modality
gap. However, these methods usually focus on learning global feature represen-
tations, which ignore the underlying relationship between different body parts
and neighborhoods across two modalities.

Contemporaneously, some recent methods investigate the modality-aware col-
laborative ensemble learning [56] or grayscale augmented tri-modal learning [60].
An intermediate X-modality is designed in [19] to address the modality discrep-
ancy. A powerful baseline with non-local attention is presented in [59].
Visible Near-Infrared Face Recognition addresses the cross-modality face
recognition problem, which is also closely related to VI-ReID [13,28,32,46,52,30].
Early research mainly focused on learning modality-aware metrics [31] or dic-
tionaries [16]. With the emergence of deep neural networks, most methods now
focus on learning multi-modal sharable features [52], cross-modality matching
models [34] or disentangled representations [51]. However, the modality differ-
ence of VI-ReID is much greater than that of face recognition due to the different
camera environments and large visual appearances change, which limits the ap-
plicability of their methods to the VI-ReID [57,48].
Attention Mechanisms have been widely used in various applications to en-
hance the feature representation [37,42,53,3]. For person Re-ID, attention is
used to combine the spatial-temporal information from different video frames
[8,10,20,24]. Some work [22,26,41] has also investigated using multi-scale or dif-
ferent convolutional channels to capture the pixel-level/small-region-level atten-
tions [35,36]. However, they are usually unstable for optimization in VI-ReID
due to the large cross-modality discrepancy and noise.

Our part-attention module is also closely related to non-local networks [47,65].
However, the pixel-level design of these models is sensitive and inefficient for
handling the noise encountered in VI-ReID task. In comparison, we design a
learnable weighted part-level attention with a BatchNorm residual connection.

3 Proposed Method

Fig. 2 provides an overview of our proposed dynamic dual-attentive aggrega-
tion learning (DDAG) method. DDAG is developed on top of a two-stream
network (§3.1), and contains an intra-modality weighted-part attention for dis-
criminative part-aggregated features learning (§3.2) and a cross-modality graph
structured attention for shared global feature learning (§3.3). Finally, we pro-
pose a parameter-free dynamic dual aggregation learning strategy to adaptively
aggregate the two components for end-to-end joint training (§3.4).
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Fig. 2. The proposed DDAG learning framework for VI-ReID. IWPA: Intra-modality
Weighted-Part Aggregation for discriminative part-aggregated features learning by
mining the contextual part relations within each modality. CGSA: Cross-modality
Graph Structured Attention for global feature learning by utilizing the neighborhood
structural relations across two modalities. We further introduce a parameter-free dy-
namic dual aggregation learning strategy to adaptively aggregate two components.

3.1 Baseline Cross-Modality Re-ID

We first present our baseline cross-modality Re-ID model with a two-stream
network for incorporating two different modalities. To handle the different prop-
erties of the two modalities, the network parameters of the first convolutional
block3 in each stream are different in order to capture modality-specific low-
level feature patterns. Meanwhile, the network parameters of the deep convolu-
tional blocks are shared for two modalities in order to learn modality-sharable
middle-level feature representations. After the convolutional layers with adap-
tive pooling, a shared batch normalization layer is added to learn the shared
feature embedding. Compared with the two-stream structures in [11,25,58,56],
our design captures more discriminative features by mining sharable information
in middle-level convolutional blocks rather than high-level embedding layers.

To learn discriminative features, we combine the identity loss Lid and online
hard-mining triplet loss Ltri [61] as our baseline learning objective Lb,

Lb = Lid + Ltri. (1)

The identity loss Lid encourages an identity-invariant feature representation. The
triplet loss Ltri optimizes the triplet-wise relationships among different person
images across the two modalities.

3.2 Intra-modality Weighted-Part Aggregation

As an alternative to the global feature learning in existing VI-ReID method-
s [7,49,50], this subsection presents a novel part-agggregated feature learning

3 We adopt ResNet50 as the backbone network, following [44,49,58].
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Fig. 3. Illustration of the proposed IWPA module, which mines the part-level relation-
ships to learn the weighted-part aggregation with a residual BatchNorm connection.

method for VI-ReID, namely intra-modality weighted-part aggregation (IWPA,
as shown in Fig. 3). IWPA mines the contextual information in local parts to
formulate an enhanced part-aggregated representation to address the complex
challenges. It first learns the within-modality part attention with a modified
non-local module, and then uses a learnable weighted-part aggregation strategy
with residual BatchNorm (RBN) to stabilize and reinforce the training process.
Part Attention. The input of our IWPA module is the extracted feature maps
from the last residual block of the network, from which we extract the attention-
enhanced part features. We denote the output feature maps of the last convo-
lutional block as {X = xk ∈ RC×H×W }Kk=1, where C represents the channel
dimension (C = 2048 in our experiments), H and W represent the feature
map size, and K represents the batch size. To obtain the part features, the
feature maps are directly divided into p non-overlapping parts with a region
pooling strategy. The part features of each input image are then represented
by Xp = {xp

i ∈ RC×1}pi=1. Similar to [47], we feed each part into three 1 × 1
convolutional layers u(·), v(·) and z(·). The intra-modality part-based non-local
attention αp

i,j ∈ [0, 1]p×p is then

αp
i,j =

f(xp
i ,x

p
j )∑

∀j f(xp
i ,x

p
j )
, (2)

where f(xp
i ,x

p
j ) represents the pairwise similarity between two part features. To

enhance the discriminability, an exponential function is added to magnify the
relationship, which enlarges the part attention discrepancy [63]. It is formulated
by

f(xp
i ,x

p
j ) = exp(u(xp

i )T v(xp
j )), (3)

where u(xp
i ) = Wuxp

i and v(xp
j ) = Wvx

p
j are two embeddings with convolutional

operations u(·) and v(·). Wu and Wv are the corresponding weight parameters in
u and v. With the exponential function, our attention calculation can be treated
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as a normalization with a softmax function. Note that our attention map is p×p
to capture the part relationships, which is much smaller than that of pixel-level
attention HW ×HW in [47,65], making it more efficient. Meanwhile, the part
relation is robust against noisy regions and local clutters in the person images.

With the learned part attention, attention-enhanced part features are then
represented by the inner product of the embedded part features z(xp

i ) and the
calculated attention Ap, which is formulated by

x̄p
i = ap

i ∗ z(x
p
i ), (4)

where ap
i ∈ Ap = {αp

i,j}p×p is the calculated part attention map. Therefore,
the refined part features consider the relationship between different body parts.
However, the simple average pooling or concatenation of part features is not
powerful enough for fine-grained person Re-ID task, and may cause noisy parts
accumulation. Meanwhile, it is inefficient to train multiple part-level classifiers,
as in [40,56]. To address these issues, we design a residual BatchNorm (RBN)
weighted-part aggregation strategy.
Residual BatchNorm Weighted-part Aggregation. This idea consists of
two main parts: First, we use a residual BatchNorm connection of the original
input feature map xo after average pooling, and the residual learning strate-
gy enables very deep neural networks to be trained and stabilizes the training
process. Second, we use a learnable weighted combination of attention-enhanced
part features to formulate a discriminative part-aggregated feature representa-
tion. In summary, it is formulated by

x∗ = BN(xo) +
∑p

i=1
wp

i x̄p
i , (5)

where xo ∈ RC×1 represents the global adaptive pooling output of the input
feature map Xp. BN indicates the batch normalization operation, and wp =
{wp

i }
p
i=1 represents a learnable weight vector of different parts to handle the

modality discrepancy. Our design has three primary advantages: (1) it avoids
multiple part-level classifier learning [40], making it computationally efficient for
both training and testing, and it is more robust to background clutter compared
to the pixel-level attention techniques [22,47]; (2) it enhances the discrimination
power by adaptively aggregating attentive part features in the final feature rep-
resentation; and (3) the residual BatchNorm (RBN) connection performs much
better than the widely-used general residual connection with identity mapping
[12,65] (as verified in §4.2), stabilizing the training process and enhancing the
representational power for the cross-modality Re-ID under abundant noise. We
use x∗ as the representation of an input sample in the testing phase.

3.3 Cross-modality Graph Structured Attention

Another major challenge is that VI-ReID datasets often contain many incorrectly
annotated images or image pairs with large visual differences across the two
modalities (as shown in Fig. 1), making it difficult to mine the discriminative
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local part features and damaging the optimization process. In this subsection, we
present our cross-modality graph structured attention, which incorporates the
structural relations across two modalities to reinforce the feature representations.
The main idea is that the feature representations of person images belonging to
the same identity across the two modalities are mutually beneficial.
Graph Construction. At each training step, we adopt an identity-balanced
sampling strategy for training [58]. Specifically, for each of n different randomly-
selected identities, m visible and m infrared images are randomly sampled, re-
sulting in K = 2mn images in each training batch. We formulate an undirected
graph G with a normalized adjacency matrix,

Ag = Ag
0 + IK , (6)

where Ag
0(i, j) = li ∗ lj (li and lj are the corresponding one-hot labels of two

graph nodes). IK is an identity matrix, indicating that each node is connected
to itself. The graph construction is efficiently computed by matrix multiplication
between the one-hot labels in each training batch.
Graph Attention. This measures the importance of a node i to another node
j within the graph, across two modalities. We denote the input node features

by Xo = {xo
k ∈ RC×1}Kk=1, which are outputs of the pooling layer. The graph

attention coefficients αg
i,j ∈ [0, 1]K×K are then computed by

αg
i,j =

exp(Γ (dh(xo
i ), h(xo

j)c ·wg))∑
∀Ag(i,k)>0 exp(Γ (dh(xo

i ), h(xo
k)c ·wg))

, (7)

where Γ (·) represents the LeakyRelu operation. d, c is the concatenation opera-
tion. h(·) is a transformation matrix to reduce the input node feature dimension
C to d, and d is set to 256 in our experiments. wg ∈ R2d×1 represents a learnable
weighting vector that measures the importance of different feature dimensions in
the concatenated features, similar to [43]. Note that our design fully utilizes rela-
tions between all the images across two modalities, reinforcing the representation
using context information of the same identity.

To enhance the discriminability and stabilize the graph attention learning,
we employ a multi-head attention technique [38] by learning multiple hl(·) and
wl,g (l = 1, 2 · · · , L, L is the total number of heads) with the same structure and
optimizing them separately. After concatenating the outputs of multiple heads,
the graph structured attention-enhanced feature is then represented by

xg
i = φd

∑
∀Ag(i,k)>0

αg,l
i,j · h

l(xo
j)c

L

l=1
, (8)

and xg
i is then robust to outlier samples, where φ is the ELU activation function.

To guide the cross-modality graph structured attention learning, we introduce
another graph attention layer with a one-head structure, where the final output

node features are represented by Xg′
= {xg′

i }
K

k=1. We adopt the negative log-
likelihood (NLL) loss function for the graph attention learning, formulated by

Lg = −
∑K

i
log(softmax(xg′

i )). (9)
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Fig. 4. Illustration of parameter-free dynamic dual aggregation learning. We decom-
pose the overall training framework into two parts: instance-level part-aggregated fea-
ture learning LP and graph-level global feature learning Lg. We treat LP as the dom-
inant loss and progressively add Lg in the overall training process.

3.4 Dynamic Dual Aggregation Learning

Incorporating the above proposed intra-modality weighted-part attention and
cross-modality graph-structured attention into an end-to-end joint learning frame-
work is highly challenging. This is primarily because the two components focus
on different learning objectives with very deep network structures, and direct-
ly combining them easily will result in gradient explosion problem after several
steps. Moreover, the features from the same identity across two modalities are
quite different in VI-ReID due to the large cross-modality variations, as demon-
strated in Fig. 1. Therefore, the graph-structured attention would be unstable
due to the large feature difference across the two modalities at the early stage.

To address the above issues, we introduce a dynamic dual aggregation learn-
ing strategy to adaptively integrate the above introduced two components. Specif-
ically, we decompose the overall framework into two different tasks, instance-level
part-aggregated feature learning LP and graph-level global feature learning Lg.
The instance-level part-aggregated feature learning LP is a combination of the
baseline learning objective Lb and the intra-modality weighted-part attention
loss Lwp, represented by

LP = Lb−
1

K

∑K

i=1
yi log(p(yi|x∗i ))︸ ︷︷ ︸

part attention loss Lwp

, (10)

where p(yi|x∗i ) represents the probability of x∗i being correctly classified into
the groundtruth label yi. The second term represents the instance-level part-
aggregated feature learning with weighted-part attention within each modality.
It is formulated by the identity loss on top of the aggregated part feature x∗.
Dynamic Dual Aggregation Learning. Motivated by multi-task learning
[6], our basic idea is that the instance-level part-aggregated feature learning LP

acts as the dominant loss, and then we progressively add the graph-level global
feature learning loss Lg for optimization. The main reason for doing this is that
it is easier to learn an instance-level feature representation with LP at an early
stage. With a better learned network, the graph-level global feature learning
optimizes the features using the relationship between the person images across
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the two modalities, denoted by

Lt = Lt
P +

1

1 + E(Lt−1
P )
Lt
g, (11)

where t is the epoch number, and E(Lt−1
P ) represents the average loss value in the

previous epoch. In this dynamic updating framework (as shown in Fig. 4), the
graph-level global loss Lg is progressively added into the overall learning process.
This strategy shares a similar spirit to the gradient normalization in multi-task
learning [6], but it does not introduce any additional hyper-parameter tuning.

When we optimize LP , the parameters of the identity classifier in the weighted-
part attention loss Lwp are the same as those for the identity classifier in Lb.
Our motivation here is that this setting can guarantee that instance-level part-
aggregated feature learning is directly performed on the part-aggregated features
rather than additional classifiers, ensuring the discriminability of the learned fea-
tures. Meanwhile, it avoids additional network parameters training.

4 Experimental Results

4.1 Experimental Settings

We use two publicly available VI-ReID datasets (SYSU-MM01 [50] and RegDB
[29]) for the experiments. The rank-k matching accuracy and mean Average
Precision (mAP) are used as evaluation metrics, following [50].

SYSU-MM01 [50] is a large-scale dataset collected by four RGB and two
near-infrared cameras. The major challenge is that person images are captured
in both indoor and outdoor environments. In total, the training set contains
22,258 visible and 11,909 near-infrared images of 395 identities. It contains t-
wo different testing settings, all-search and indoor-search mode. The query set
contains 3,803 images of 96 identities captured from near-infrared cameras. The
gallery set contains the images captured by all four RGB cameras in the all-
search mode, while the indoor-search mode contains images of two indoor RGB
cameras. Details on the experimental settings can be found in [50].

RegDB [29] is collected by a dual-camera system, including one visible and
one far-infrared camera. In total, this dataset contains 412 person identities, each
of which has 10 visible and 10 far-infrared images. Following [57], we randomly
select 206 identities for training and the remaining 206 identities for testing. Thus
the testing set contains 2,060 visible and 2,060 far-infrared images. We evaluate
both visible-to-infrared and infrared-to-visible query settings. The performance
is averaged over ten trials on random training/testing splits [49,57].
Implementation details. Our proposed method is implemented in PyTorch.
Following existing VI-ReID works, ResNet50 [12] is adopted as our backbone
network for fair comparison, following [59]. The first residual block is specific
for each modality while the other four blocks are shared. The stride of the last
convolutional block is set to 1, in order to obtain a fine-grained feature map. We
initialize the convolutional blocks with the pre-trained ImageNet parameters, as
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Table 1. Evaluation of each component on the large-scale SYSU-MM01 dataset. “B”
represents the baseline results with a two-stream network trained by Lb. “P” denotes
the intra-modality weighted-part attention. “G” indicates the cross-modality graph
structured attention. Dynamic dual-learning is adopted when aggregating two compo-
nents. Rank at r accuracy(%) and mAP (%) are reported.

Datasets All Search Indoor Search
Methods r = 1 r = 5 r = 10 r = 20 mAP r = 1 r = 5 r = 10 r = 20 mAP
B 48.18 75.81 85.73 93.52 47.64 49.52 78.86 88.70 95.27 58.12
B + P 53.69 81.16 88.38 94.56 51.37 58.08 84.91 92.37 97.26 65.07
B + G 50.75 78.43 86.71 93.62 49.73 52.90 83.50 92.65 97.75 62.26
B +P +G 54.75 82.31 90.39 95.81 53.02 61.02 87.13 94.06 98.41 67.98

done in [58]. All the input images are firstly resized to 288× 144. We adopt ran-
dom cropping with zero-padding and horizontal flipping for data augmentation.
SGD optimizer is adopted for optimization, and the momentum parameter is set
to 0.9. We set the initial learning rate to 0.1 with a warm-up strategy [27]. The
learning rate decays by 0.1 at the 30th epoch and 0.01 at the 50th epoch, with a
total of 80 training epochs. By default, we randomly select 8 identities, and then
randomly select 4 visible and 4 infrared images to formulate a training batch.
We set p = 3 in Eq. 5, L = 4 in Eq. 8.

4.2 Ablation Study

Evaluation of Each Component. This subsection evaluates the effectiveness
of each component on the SYSU-MM01 dataset under both all-search and indoor
search modes. Specifically, “B” represents the baseline results with a two-stream
network trained by Lb. “P” denotes the intra-modality weighted-part aggrega-
tion. “G” indicates the cross-modality graph structured attention.

We make several observations through the results shown in Table 1. 1) Effec-
tiveness of baseline: Using shared convolutional blocks, we achieve better per-
formance than the two-stream network in [9,25,56,58]. Meanwhile, some training
tricks taken from single-modality Re-ID [67] also contributes to this super base-
line. 2) Effectiveness of P : the intra-modality weighted-part aggregation signif-
icantly improves the performance. This experiment demonstrates that learning
part-level weighted-attention features is beneficial for cross-modality Re-ID. 3)
Effectiveness of G: When we include the cross-modality graph structured atten-
tion (B + G), performance is improved by using the relationship between the
person images across two modalities to reduce the modality discrepancy. 4) Ef-
fectiveness of dual-aggregation: When aggregating two attention modules with
the dynamic dual aggregation strategy, the performance is further improved,
demonstrating that these two attentions are mutually beneficial to each other.
Why Weighted Part Attention with RBN? We next compare different
part attention designs on the SYSU-MM01 dataset under the all-search mode.
The results are shown in Table 2 and we make several observations. (1) Effec-
tiveness of weighted scheme. We compare the weighted part features with aver-
age/concatenation schemes (termed as weighted, avg and concat in Table 2). We
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Table 2. Evaluation of re-weighted part attention with different designs on the SYSU-
MM01 dataset (all-search mode). Rank at r accuracy (%) and mAP (%) are reported.
(Setting: Baseline + Part attention.)

Method Res. r = 1 r = 10 r = 20 mAP
B N/A 48.18 85.73 93.52 47.64
avg Res 48.34 86.03 93.72 48.43
concat Res 50.34 86.43 94.19 49.77
weight Res 51.06 86.78 94.39 49.92
weight RBN 53.69 88.38 94.56 51.37

Table 3. Evaluation of graph attention on the SYSU-MM01 dataset (all-search mode).
Ng represents the number of images selected for graph construction. Rank at r accuracy
(%) and mAP (%) are reported. (Setting: Baseline + Graph attention.)

Ng 0 1 2 4 8
Rank-1 48.18 49.26 49.85 50.45 50.75
mAP 47.64 48.42 49.12 49.46 49.73

observe that the proposed learnable weighted-part scheme performs consistently
better than its two counterparts. Another benefit of the weighted aggregation
is that the feature dimension of final representation is much smaller than the
concatenation strategy in [40], which is more suitable for real applications with
resource-demanding scenarios. (2) Effectiveness of residual BN (RBN) scheme.
We compare the general residual connection with the residual BN connection.
Results demonstrate that RBN performs significantly better than the general
residual connection. This suggests that the BN operation enhances the predic-
tive and stable behavior of the training process [33], which is more suitable for
VI-ReID with abundant noise. Note that the performance significantly drops
without the residual connection.

Why Graph Structured Attention? We now evaluate the effect of different
numbers (Ng) of selected images for graph attention calculation. The results are
shown in Table 3. A larger Ng means that more neighbor images from the same
identity are considered and the relationship is more reliable. Thus the accura-
cy is consistently improved with increasing Ng, demonstrating that the graph
structured attention can largely reduce the modality discrepancy. Moreover, the
infrared images capture less information than the visible images, but with much
more noise. Mining the relation across two modalities, especially from the visi-
ble images, is thus beneficial for the cross-modality feature learning. The graph
attention might also be applied in single-modality person re-identification.

Parameter Analysis We evaluate the effect of different body parts p and differ-
ent numbers of graph attention heads L on the large-scale SYSU-MM01 dataset,
under the challenging all-search mode. The results are shown in Fig. 5.

(1) As shown in the left figure, a larger p captures more fine-grained part
features and improves the performance. However, when p is too large, the per-
formance drops since small body parts cannot contain sufficient information
for part attention learning. (2) As demonstrated in the right figure, a large L
provides more reliable relationship mining, and thus consistently improves the
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Fig. 5. Evaluation of different body parts p in Eq. 4 (left) and different numbers of
graph attention heads L in Eq. 8 (right) on SYSU-MM01 dataset, under the challenging
all-search mode. Rank-1 matching accuracy (%) and mAP (%) are reported.

Table 4. Comparison with the state-of-the-arts on SYSU-MM01 dataset on two dif-
ferent settings. Rank at r accuracy (%) and mAP (%) are reported.

Settings All Search Indoor Search
Method Venue r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP
One-stream [50] ICCV17 12.04 49.68 66.74 13.67 16.94 63.55 82.10 22.95
Two-stream [50] ICCV17 11.65 47.99 65.50 12.85 15.60 61.18 81.02 21.49
Zero-Pad [50] ICCV17 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92
TONE [57] AAAI18 12.52 50.72 68.60 14.42 20.82 68.86 84.46 26.38
HCML [57] AAAI18 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08
cmGAN [7] IJCAI18 26.97 67.51 80.56 31.49 31.63 77.23 89.18 42.19
BDTR [58] IJCAI18 27.32 66.96 81.07 27.32 31.92 77.18 89.28 41.86
eBDTR [58] TIFS19 27.82 67.34 81.34 28.42 32.46 77.42 89.62 42.46
HSME [11] AAAI19 20.68 32.74 77.95 23.12 - - - -
D2RL [49] CVPR19 28.9 70.6 82.4 29.2 - - - -
MAC [56] MM19 33.26 79.04 90.09 36.22 36.43 62.36 71.63 37.03
MSR [9] TIP19 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88
AlignGAN [44] ICCV19 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3
HPILN [23] arXiv19 41.36 84.78 94.31 42.95 45.77 91.82 98.46 56.52
LZM [2] arXiv19 45.00 89.06 - 45.94 49.66 92.47 - 59.81
AGW [59] arXiv20 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
Xmodal [19] AAAI20 49.92 89.79 95.96 50.73 - - - -
DDAG (Ours) - 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98

performance. However, it also greatly increases the difficulty of optimization,
which results in a slightly decreased performance with a too large L. Thus, we
select p = 3 and L = 4 in all our experiments.

4.3 Comparison with State-of-the-Art Methods

This subsection presents a comparison with the current state-of-the-arts on two
different datasets. The comparison includes eBDTR [58], D2RL [49], MAC [56],
MSR [9], AlignGAN [44] and Xmodal [19]. Note that AlignGAN [44] represents
the state-of-the-art by aligning the features in both the feature level and pix-
el level with generated images. Xmodal generates an intermediate modality to
bridge the gap. We also compare with several arXiv papers, including EDFL
[25], HPILN [23], LZM [2] and AGW [59]. The results on two public datasets
are shown in Tables 4 and 5.
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Table 5. Comparison with the state-of-the-art methods on RegDB dataset on visible-
infrared and infrared-visible settings. Rank at r accuracy (%) and mAP (%) are re-
ported.

Setting Visible to Infrared Infrared to Visible
Method r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP
HCML [57] 24.44 47.53 56.78 20.08 21.70 45.02 55.58 22.24
Zero-Pad [50] 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82
BDTR [58] 33.56 58.61 67.43 32.76 32.92 58.46 68.43 31.96
eBDTR [58] 34.62 58.96 68.72 33.46 34.21 58.74 68.64 32.49
HSME [11] 50.85 73.36 81.66 47.00 50.15 72.40 81.07 46.16
D2RL [49] 43.4 66.1 76.3 44.1 - - - -
MAC [56] 36.43 62.36 71.63 37.03 36.20 61.68 70.99 36.63
MSR [9] 48.43 70.32 79.95 48.67 - - - -
EDFL [25] 52.58 72.10 81.47 52.98 51.89 72.09 81.04 52.13
AlignGAN [44] 57.9 - - 53.6 56.3 - - 53.4
Xmodal [19] 62.21 83.13 91.72 60.18 - - - -
DDAG (Ours) 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80

The following observations can be made: 1) Methods with two-stream net-
works (EDFL [25], MSR [9], LZM [2] and our proposed DDAG) generally per-
form better than the one-stream network methods (cmGAN [7], D2RL [49] and
Zero-Pad [50]). We conjecture that the main reason is that two-stream networks
can simultaneously learn modality-specific and modality-sharable features, which
are more suitable for VI-ReID. 2) Our proposed DDAG significantly outperforms
the current state-of-the-art AlignGAN [44] by a large margin on both datasets.
Note that AlignGAN generates cross-modality image pairs to reduce the modal-
ity gap in both feature level and pixel level. In comparison, we do not require
the time-consuming and resource-demanding image generation [44,49], and our
training process is quite efficient without the adversarial training [7], or the
additional modality generation [19].

Another experiment on the RegDB dataset (Table 5) shows that DDAG is ro-
bust to different query settings. We achieve much better performance under both
visible-to-infrared and infrared-to-visible query settings, suggesting that DDAG
can learn better modality-sharable features by utilizing the part relationship
within each modality and graph-structured relations across two modalities.

5 Conclusion

We present a dynamic dual-attentive aggregation learning (DDAG) framework
for VI-ReID. DDAG is innovative in two aspects: its IWPA component utilizes
the part relationship within each modality to enhance the feature representa-
tion by simultaneously considering the part differences and relations; the CGSA
module incorporates the neighborhood information across the two modalities to
reduce the modality gap. We further design a dynamic dual aggregation learning
strategy to seamlessly aggregate the two components. DDAG outperforms the
state-of-the-art models on various settings, usually by a large margin. We believe
the findings can also be applied in general single-modality person re-identification
by mining the relation across multiple body parts, contextual images.
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