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Abstract. In the past few years, we have witnessed the great progress
of image super-resolution (SR) thanks to the power of deep learning.
However, a major limitation of the current image SR approaches is that
they assume a pre-determined degradation model or kernel, e.g. bicubic,
controls the image degradation process. This makes them easily fail to
generalize in a real-world or non-ideal environment since the degrada-
tion model of an unseen image may not obey the pre-determined kernel
used when training the SR model. In this work, we introduce a sim-
ple yet effective zero-shot image super-resolution model. Our zero-shot
SR model learns an image-specific super-resolution network (SRN) from
a low-resolution input image alone, without relying on external train-
ing sets. To circumvent the difficulty caused by the unknown internal
degradation model of an image, we propose to learn an image-specific
degradation simulation network (DSN) together with our image-specific
SRN. Specifically, we exploit the depth information, naturally indicating
the scales of local image patches, of an image to extract the unpaired
high/low-resolution patch collection to train our networks. According to
the benchmark test on four datasets with depth labels or estimated depth
maps, our proposed depth guided degradation model learning-based im-
age super-resolution (DGDML-SR) achieves visually pleasing results and
can outperform the state-of-the-arts in perceptual metrics.
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1 Introduction

Single image super-resolution (SR) aims to restore a high-resolution (HR) image
from a degraded low-resolution (LR) measurement. Image super-resolution, as an
inverse procedure of image downscaling, is an ill-posed problem, in which the in-
ternal degradation patterns or kernels followed by images are image-specific and
unknown. Most modern image super-resolution models, mainly based on super-
vised learning techniques such as deep convolutional neural networks (CNNs) [11],
rely on massive amounts of high-/low-resolution example pairs for training. In
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RCAN

5.438/4.454

ZSSR

5.781/4.619

KernelGAN

5.559/4.297

DGDML-SR

3.841/3.799

Fig. 1: Our proposed DGDML-SR can achieve better visual quality than the
state of the arts. NIQE and PI scores (lower is better) are shown under each
image.

reality, collecting a natural pair of high/low-resolution images is difficult; exist-
ing SR methods [6, 5, 14, 29, 30] resort to manually designed HR/LR image pairs
as a surrogate. In these methods, a given high-resolution image is downscaled to
generate a low-resolution counterpart using a simple and pre-determined degra-
dation kernel, e.g. a bicubic operation, in order to acquire a pair of HR/LR
images. In general, current supervised learning-based SR methods generalize
poorly due to the simplified degradation model, especially when dealing with
the images with details having not been encountered in the training set.

To overcome the above drawbacks, the key is to model the natural degrada-
tion in the images. However, degradation kernels are usually complex and differ
greatly; they can be affected by many factors such as luminance, sensor noise, mo-
tion blur and compression. Thus, to learn a natural degradation and implement
a visually pleasing super-resolution, we should treat each image independently,
i.e. zero-shot image degradation and super-resolution. Zero-shot image super
resolution is more challenging that needs to learn an image-specific SR model
from an image alone, without access to external training sets. The main diffi-
culty of zero-shot SR is to acquire HR/LR image patches for training. Recently,
Shocher et al. [19] have proposed a zero-shot super-resolution (ZSSR) approach
which extracts local patches from an image and then downscales them using
a pre-determined bicubic operation, analogously to other supervised learning-
based SR methods. As such, they construct a patch-level training collection
composed of high-/low-resolution pairs of local patches from a single image.
However, a natural image is seldom degraded by obeying a simple bicubic rule
and an unreasonable assumption about the degradation kernel will impede its in-
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verse super-resolution procedure. Thus, the problem of the unknown degradation
model is still far from solved in existing zero-shot SR works.

In this paper, we present a simple yet effective zero-shot SR method without
assuming a pre-defined degradation kernel. Instead, we learn the image-specific
degradation model in a self-supervised manner. In our method, we sidestep the
difficulty of acquiring the patch-level HR/LR training data by leveraging the
image depth information. The depth information indicates the distance of each
image region relative to the camera. Depth information can be easily computed
using a pre-trained depth estimation model [7] or obtained from datasets with
depth labels [25,9, 20]. Also, the depth or time-of-flight (TOF) camera is becom-
ing increasingly popular on mobile phones, simplifying the acquisition of depth
information. In our method, we view the short-distance local regions as the HR
patches, while the distant local regions as the LR patches. After acquiring the
HR/LR patch collection, we design two fully-convolutional and image-specific
networks: degradation simulation network (DSN), responsible for imitating the
unknown degradation kernel of the image, and super-resolution network (SRN),
in charge of performing the SR task on the image. Since we have no paired
HR/LR local patches but the unpaired HR/LR patch collection, we design a bi-
cycle training strategy to learn our degradation simulation network and super-
resolution network simultaneously. Guided by the image-specific degradation
model internally learned by DSN with the clue of depth information, our zero-
shot or image-specific SR network can achieve a satisfactory SR result for a
single image, without using any external training set except the image itself. As
depicted in Fig. 1, our method can achieve the best NIQE and PI scores, recover
more natural and clear textures, and have fewer artifacts.

Our contributions are three-fold: (1) we propose a zero-shot image SR
model that does not require the high-resolution labels; (2) our method leverages
the depth information of an image and can learn the internal degradation model
of the image in a self-supervised manner; and (3) our method can outperform
the state-of-the-art in perceptual metrics. Compared with the latest zero-shot
and supervised SR methods (e.g. KernelGAN [2]), our approach is average 0.555
better in NIQE [17] and 0.284 better in PI [4] according to the benchmark.

2 Related Work

In the past several years, deep convolutional neural networks (CNN) based im-
age SR models have been proposed [6, 10, 12, 30, 5]. Compared with traditional
methods [8, 23], CNN-based methods are superior in terms of peak signal-to-
noise ratio (PSNR). Since the pioneering work of SRCNN [6], CNN-based SR
models have been boosted with deeper structures [10, 21] by using a progres-
sive upsampling way [12] or a dense structure [22, 30]. Although the CNN-based
SR methods can achieve excellent PSNR results, their results are not visually
pleasing, since they typically use the Mean Squared Error (MSE) loss, inherently
leading to a blurry high-resolution result. To overcome this problem, some new
loss functions have been proposed to replace MSE [12, 16, 15]. Recently, genera-
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tive adversarial networks (GANs) based SR models [13, 24] have been shown to
produce more realistic high-resolution results with finer details.

A fundamental limitation of the aforementioned methods is that they unre-
alistically assume a pre-defined degradation model, e.g. bicubic, to be used in
image SR. In reality, the degradation model is unknown and more complex than
bicubic, often accompanied by severe distracting factors. Thus, existing super-
vised SR methods generally fail to obtain a satisfactory SR result in a natural
environment outside the training condition. RCAN [30] and SRMD [28] added
a variety of conditions (e.g. noise and blur) to the degradation model and can
improve the SR result in the natural environment. Xu et al. [26] shot photos
on real scenes and used raw images from the digital camera sensors to train an
image super-resolution model to fit the natural environment. However, they still
fail to address the problem of the unknown degradation model.

To mitigate the deficiency of supervised learning-based SR models in real-
world environments, CincGAN [27] learned the degradation model on tasks such
as noise reduction in an unsupervised manner, but it still used the bicubic down-
scaling as an intermediate state. Moreover, CincGAN [27] needs a large external
training dataset, which is usually unavailable in real-world environments. Zero-
shot image super-resolution [19], aiming to learn an SR model from a single image
alone and then apply it to super-resolve the image, has drawn considerable at-
tention recently. Zero-shot super-resolution (ZSSR) [19] used a fixed degradation
method such as bicubic as a degradation model for local patches. Bell et al. [2]
proposed a novel SR method named KernelGAN that used a deep linear gen-
erator to learn the downscaling kernel from a single image. Then, they applied
ZSSR to perform the super-resolution on the image with the downscaling ker-
nel learned by KernelGAN. Their method greatly improved ZSSR but cannot
model the complex and superposed degradation in reality. Moreover, learning
the degradation model via KernelGAN and learning the SR model via ZSSR are
separated, thus often resulting in a suboptimal SR result.

3 Approach

A natural image is self-explained in that similar local patches tend to recur
across positions and scales within the image [8]. Moreover, similar patches in the
original scenery will be rescaled during the imaging process due to the changes
of depth. The depth measures the distance of each patch in an image relative
to the camera. The image patches near the camera will be enlarged, while the
patches with similar appearance but away from the camera will be shrunk. In
other words, the distant patches captured in an image are more blurred and
smaller in appearance than the short-distance patches. We call it depth guided
self-similarity prior in images. Fig. 2 gives an example of this prior, in which the
relative distance of an image patch can be continuously measured by the depth;
the image patches with similar textures become more blurred when their depths
are deeper. In this work, we exploit the depth guided information in single image
super-resolution.
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Close

Far

Farther

Fig. 2: An example of the image self-similarity and its relation with depth in-
formation. We select different patches with different levels of depth (Close, Far,
Farther). These patches shares similar textures and the close patch is clearer
than the farther patch.

3.1 Depth Guided Training Data Generation

To learn the internal degradation model in an image, we use the depth informa-
tion to construct a training set from the image. In a nutshell, we treat the distant
patches as the low-resolution image patches and the short-distance patches as
the high-resolution image patches. Note that we do not use a given degradation
kernel as in ZSSR [19], where the image patches need to be downscaled first
using a pre-determined degradation operation, i.e., the bicubic. Instead, we only
extract the image patches with different depths, hoping to learn a more real-
istic degradation model from these image patches. Thus, our method could be
flexible.

Formally, for a given low-resolution image I, we first convert it from the RGB
color space into the YCbCr color space and take the Y, i.e. luminance, channel to
calculate the contrast of each patch. Contrast information, reflecting the texture
details contained in an image, plays an important clue for building our HR and
LR sample patches. Patches with low contrast often contain few image details
and thus are useless for training our model. We process the contrast measurement
as follows:

C =
Ymax − Ymin

255
, (1)

where C is the range of luminance (i.e. contrast), Ymax and Ymin denote the 99%
and 1% value of the Y channel, respectively. In our work, we set the threshold
for C as 0.05; if the range of brightness spans less than the threshold, we define
the patch as low contrast and will eliminate it from our training data.
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(a) Degradation Simulation Network (DSN)

(b) Super-Resolution Network (SRN)

Fig. 3: The proposed structure of the generators in degradation simulation net-
work (DSN) and super-resolution network (SRN).

Then, we calculate the global mean depth value d̄ over the entire depth map
as follows:

d̄ =
1

HW

H∑
i=1

W∑
j=1

Dij , (2)

where H and W denote the height and width of the depth map. Next, we choose
a larger image patch (e.g. 64 × 64 pixels) with a mean depth smaller than d̄ as
a high-resolution image patch; similarly, we choose a smaller image patch (e.g.
32×32 pixels) with a mean depth bigger than d̄ as a low-resolution image patch.
As such, we will get a patch-level training collection, (IHR, ILR), from the test
image, in which IHR = {xh

i } consists of the high-resolution image patches and
ILR = {yli} consists of the low-resolution image patches. Notably, (IHR, ILR) are
unpaired since for each HR patch in IHR, we have no corresponding LR patch
in ILR, and vice versa.

3.2 Network Structure

With the depth guided training data (IHR, ILR) extracted from the low-resolution
test image I, we train a lightweight and image-specific Super-Resolution Net-
work (SRN), denoted as GH , for I from scratch. GH is fully-convolutional and
can super-resolve I to I ↑ s = GH(I) of arbitrary size, where s is the desired SR
scale factor. However, learning GH from the unpaired data (IHR, ILR) is chal-
lenging as the training objective will be highly under-constrained. As suggested
in [31], we pair the super-resolution network GH with another image-specific
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Degradation Simulation Network (DSN), denoted as GL, aiming to learn the
internal degradation model—how the high-resolution patches are degraded to
low-resolution patches during the imaging process—of a specific image I. We
will detail the structures of these two networks in the following.

Degradation simulation network (DSN) The degradation simulation network GL

is lightweight and fully-convolutional, containing five convolutional layers. The
structure of GL is shown in Fig. 3. GL maps a high-resolution image patch to
a low-resolution counterpart. The degradation simulation network GL in our
method indeed learns a specific degradation kernel encoded inside the image,
specifying how the imaging process changes the resolutions of patches in the
image. Our proposed method will degenerate to models like ZSSR [19] if we
use a handcrafted degradation kernel (e.g. a bicubic downscaling) to replace
our DSN—a data-driven degradation model. A comparative experiment on this
aspect will be detailed in Sec. 5.5. Specifically, GL is defined as:

x̃l
i = GL(xh

i ) = F out((F5 · · ·F1(F in(xh
i ))) ↓), (3)

where xh
i means a high-resolution image patch, x̃l

i is the generated low-resolution
patch from xh

i , and F denotes the convolution layers in the degradation simula-
tion network. F in and F out denote the convolution layers mapping the channels
to the desired sizes.

Super-resolution network (SRN) The super-resolution network GH also uses a
lightweight design, in which we stack ten convolutional layers for feature extrac-
tion. We apply sub-pixel convolution [18] to upsample the extracted features
and predict the high-frequency details. To reduce the computational cost and
the number of model parameters, we use the bicubic interpolation for upsampling
low-resolution features to generate the low-frequency and blurred HR images.
Finally, we apply a global residual learning to merge two branches together to
synthesize a visually pleasing high-resolution image as follows:

ỹhi = GH(yli) = F out((F10 · · ·F1(F in(yli))) ↑p) + yli ↑b, (4)

where ỹhi is the high-resolution image patch generated by SRN, ↑p and ↑b denote
the subpixel shuffle and bicubic interpolation, respectively. Fig. 3 shows the
details of the network structure of SRN.

3.3 Bi-cycle training

To learn the degradation simulation network (DSN) and the super-resolution
network (SRN) for producing realistic LR and HR image patches respectively,
we further equip these two networks with two discriminator networks: DL for
DSN and DH for SRN. Since the local patches in our depth guided training
collection are unpaired, we propose a bi-cycle training strategy to learn these
four lightweight networks (GL, DL, GH and DH) for an image. The concrete
learning process contains four steps: (1) our SRN maps the LR patches to the
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Fig. 4: The proposed structure of bi-cycle training. The first cycle maps LR to
HR then back to LR and the second cycle maps HR to LR then back to HR.

fake HR patches, learning to super-resolve the images; (2) the synthesized HR
patches are remapped back to their LR patches through DSN; (3) we map the
HR image patches to the fake LR counterparts using DSN, simulating the image
degradation during the imaging process; and (4) the simulated LR patches is
then regenerated back to their HR patches through SRN.

Our bi-cycle training consists of two closed processing cycles: in the first
cycle, step (1) and (2), we map the real LR patches to fake HR patches and then
remap the synthesized fake HR patches back to LR patches; and in the second
cycle, step (3) and (4), we map the real HR patches to fake LR patches and then
remap the generated fake LR patches back to HR patches. In each cycle in our
model, we consider the adversarial loss to penalize the distribution mismatching
and the pixel-wise reconstruction loss of patches as our learning objectives. More
concretely, the step (1) optimizes the following Wasserstein GAN [1] objective:

LSRN
GAN = Eyl [DH(GH(yl))]− Exh [DH(xh)], (5)

where yl ∼ ILR is the sampled low-resolution image patch and xh ∼ IHR is
the sampled high-resolution image patch. In the step (2), we jointly optimize
the Wasserstein GAN objective and the cycle-consistent loss based L-1 norm as
below:

LSRN
cycle = Eyl [DL(GL(GH(yl)))]− Eyl [DL(yl)] + Eyl [||GL(GH(yl))− yl||1]. (6)

Similarly, in step (3) and (4), we optimize the following two objectives, respec-
tively:

LDSN
GAN = Exh [DL(GL(xh))]− Eyl [DL(yl)]. (7)

and
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LDSN
cycle = Exh [DH(GH(GL(xh)))]− Exh [DH(xh)] + Exh [||GH(GL(xh))− xh||1].

(8)
After completing the training, we input the entire low-resolution image I into
the super-resolution network (SRN) to produce a high-resolution image GH(I).

4 Discussion

Difference to SelfExSR SelfExSR [8] is a searching based method while our
DGDML-SR is learning-based. Although both two methods leverage the internal
self-similarity of images, their exact manners are different. SelfExSR searches
for similar patches within the image and applies the clear patches to recover the
similar but blurred ones. Our DGDML-SR uses the internal patches extracted
according to the image depth information to learn the image-specific degradation
model and super-resolution model, simultaneously.

Difference to ZSSR Both of ZSSR [19] and our DGDML-SR are zero-shot image
super-resolution methods. ZSSR selects patches from the image randomly and
uses the bicubic or other pre-determined degradation kernels to downscale the
patches. After that ZSSR learns the SR model using the downscaled patches and
the original patches; the learned SR model is subsequently used to super-resolve
the entire image. Our DGDML-SR does not rely on a pre-determined degra-
dation model; instead we learn the degradation model using a neural network.
Thus, our method will not suffer from the deficiency of using a pre-determined
degradation kernel. More importantly, even though in the same experimental en-
vironment (i.e. similar hyperparameters and paired data generated with bicubic
downsampling), our method is still better than ZSSR. For example, on Set5 [3],
the PSNR score of our method is 0.21dB higher than ZSSR.

Difference to KernelGAN KernelGAN [2] learns the degradation kernel using a
deep linear network. However, their degradation kernel learning is independent
of the SR model they used; in other words, KernelGAN is not an end-to-end SR
model. KernelGAN needs to learn the degradation kernel first and then use this
kernel to generate the HR/LR patches for training a ZSSR network as the final
SR model. In comparison, our DGDML-SR is an end-to-end model that could
simultaneously learn the degradation kernel and the super-resolution network,
using the unpaired image patches from the test image alone.

5 Experiment

In this section, we conduct experiments to evaluate the performance of the pro-
posed zero-shot SR method based on depth guided internal degradation learning.
Sec. 5.1 introduces the datasets used in our experiment and also the experimen-
tal setup. Then we show the quantitative and qualitative comparisons with the
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NYU Depth B3DO SUN RGBD Urban100

Datasets with Depth Label Estimated Depth

Fig. 5: Examples of images and depth maps from NYU Depth [20], B3DO [9],
SUNRGBD [25] and Urban100 [8].

state of the arts in Sec. 5.2 and Sec. 5.3, respectively. In Sec. 5.4, we present two
examples of zero-shot super-resolution using the estimated depth information.
In the ablation study in Sec. 5.5, we evaluate the performance of our proposed
method with and without learning the degradation model.

5.1 Dataset and Training Setup

In the experiments, we select images from NYU depth V2 [20], B3DO [9], Xtion
of SUN RGBD [25] and Urban100 [8] dataset. The first three datasets consist
of only low-resolution RGB images and low-resolution depth images, while their
high-resolution counterparts remain unknown. Among these datasets, NYU has
the best image quality and the complete depth information. The image quality of
B3DO and SUN RGBD is worse than NYU. In addition to the lower-resolution
images and depth maps, they have JPEG compression with an unknown level
and more sensor noise. Moreover, their depth information is often incomplete and
even incorrect, making these two datasets more challenging. The last dataset only
has RGB images without depth labels and we estimate the depth with a pre-
trained monocular depth estimation model [7]. On all four datasets, we convert
the images from RGB to YCbCr color space and the Y channel is taken out for
training and testing. We set the HR (with the bigger region) and LR (with the
smaller region) sliding windows on each of the images as mentioned in Sec. 3.1.
We use the 64×64 (HR) and 32×32 (LR) sliding windows to extract the image
patches for ×2 scaling. For scaling ×4, we use 128×128 (HR) and 32×32 (LR)
patch sizes. We then rotate and flip the image patches to augment these patches,
so that the number of patches is increased by eight times.

We implement the networks proposed in this paper using PyTorch1.2. We
conduct all experiments on one Nvidia RTX2080Ti GPU card. We use RMSprop
as the optimizer; the initial learning rate is 0.0001; the batch size is 64; and the
learning rate is reduced by 10 times after each iteration of 60 epoch, for a total
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Bicubic

4.969/5.889

RCAN

4.412/4.358

SAN

4.389/4.398

ZSSR

4.879/5.118

KernelGAN

6.672/4.969

DGDML-SR

3.899/4.294

Bicubic

6.415/6.181

RCAN

5.174/4.938

SAN

5.110/4.777

ZSSR

4.967/5.382

KernelGAN

6.341/4.753

DGDML-SR

3.969/4.698

Fig. 6: We compare the visual quality of the super-resolved images from our
proposed DGDML-SR with Bicubic, RCAN [30], SAN [5], ZSSR [19], Kernel-
GAN [2]. The NIQE and PI score for these results are shown under each image.

of 150 epochs. In our environment, it takes less than 10 seconds to train a
lightweight super-resolution network in each epoch.

5.2 Comparison with the state of the arts

In this section, we compare our method with the state of the arts. In this task
we do not have high-resolution labels, thus we use non-reference image quality
assessment methods, including NIQE [17] and PI [4] as the comparison metrics.
Lower PI and NIQE scores mean better visual quality. In Table. 1, we compare
our proposed DGDML-SR with the state of the art zero-shot methods as well
as supervised methods including Bicubic, ZSSR [19], RCAN [30], SAN [5] and
KernelGAN [2]. The best result is highlighted.

As shown in Table. 1, the recent proposed deep learning based zero-shot
methods show great advantages against the supervised methods according to
NIQE on the NYU depth dataset. On the other two datasets with worse quality
and unknown JPEG compressions, KernelGAN usually generates over-sharped
results and amplifies the distracting artifacts. The supervised methods, including
RCAN and SAN, overly smooth the details and cannot cope with the compres-
sion artifacts either. Among the above methods, our proposed DGDML-SR can
achieve almost the best NIQE and PI scores.
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RCAN

4.324/3.742

ZSSR

6.866/4.967

KernelGAN

10.289/6.734

DGDML-SR

3.354/3.300

RCAN

7.253/5.531

ZSSR

7.331/5.537

KernelGAN

11.551/7.341

DGDML-SR

6.316/5.104

Fig. 7: Quality comparison of RCAN [29], ZSSR [19], KernelGAN [2] and our
DGDML-SR on img 002 and img 043 from Urban100 [8] with estimated depth
map. NIQE and PI scores are shown under each image.

5.3 Visual Comparison

In this section, we compare the visual quality of the high-resolution images gener-
ated by our method with those generated by early developed methods, including
Bicubic, ZSSR [19], RCAN [30], SAN [5] and KernelGAN [2]. Fig. 6 shows the
zoomed results. Two examples we choose are the img 044 from NYU Depth V2
and the img 0089 from B3DO. The red squares indicate where the patches are
taken out. The method name and its NIQE score are shown under the image
patch. Similar to the results shown in Sec. 5.2, zero-shot methods can generally
generate more details. Due to the linear degradation structure in KernelGAN [2],
it cannot handle the multiple degradations and usually generates poor results
for the image from B3DO. Among the above methods, our proposed DGDML-
SR could generate sharper edges and more high-frequent details with no extra
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Methods Scale
NYU B3DO SUN

NIQE/PI NIQE/PI NIQE/PI

Zero-Shot

Bicubic
×2 6.378/6.570 5.786/6.203 5.284/5.931
×4 8.876/8.086 7.885/6.526 7.542/6.006

ZSSR [19]
×2 5.753/6.139 5.041/5.360 4.362/5.327
×4 —/— —/— —/—

KernelGAN [2]
×2 5.620/4.896 6.859/4.751 6.613/4.847
×4 6.888/6.591 6.500/5.899 6.457/6.012

Our DGDML-SR
×2 4.824/5.454 4.281/4.884 4.008/4.734
×4 6.712/6.280 5.996/5.779 5.473/5.590

Supervised
RCAN [29]

×2 5.868/6.126 5.108/4.955 4.813/4.911
×4 8.387/7.972 6.524/6.404 6.458/6.571

SAN [5]
×2 6.141/6.258 5.163/5.073 4.713/4.908
×4 8.399/7.975 6.544/6.516 6.248/6.482

Table 1: Performance comparison of our proposed DGDML-SR with the state
of the art zero-shot methods including bicubic, ZSSR [19], KernelGAN [2] and
supervised methods including RCAN [29] and SAN [5] in terms of NIQE (lower
is better) and PI (lower is better).

high-resolution training datasets, which shows great advantages compared with
the state of the arts.

5.4 Super-resolving image with estimated depth

In this section, we use a pre-trained depth estimation model [7] to calculate the
depth information for an image without the ground-truth depth label map. Fig. 7
shows the zoom-in details of the high-resolution images (img 002 and img 043
from Urban100 [8]) generated by RCAN [30], ZSSR [19], KernelGAN [2] and our
method. The NIQE and PI indexes of each method are shown under the zoom-in
image patches. In Fig. 7, the results of RCAN are over-smoothed, losing the high-
frequent details. KernelGAN’s results are over-sharped while ZSSR’s results are
blurred at the dense textures. Among these methods, our proposed DGDML-SR
can recover sharper edges and more high-frequent details of the image and can
also achieve the highest score under the quantitative index.

5.5 Ablation Study

In this section, we first evaluate our depth guided (DG) strategy for collecting
the training HR/LR patches. DG generates the unpaired data with the guidance
of depth information that helps the network learn a more natural degradation
kernel and meanwhile reduce the number of training patches. Without DG, we
have to adopt a trivial manner to select the unpaired HR/LR training patches: we
randomly select a large region as an HR patch and a small region as an LR patch.
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Methods NYU B3DO SUN

None 5.929 5.193 4.926
DG 5.809 4.676 4.687
BCN 5.499 4.328 4.253
DG+BCN 4.824 4.281 4.008

Table 2: Performance comparison with and without the depth guided internal
degradation learning (DG) and bi-cycle training (BCN) in terms of NIQE (lower
is better).

By ignoring the depth or scale information, this trivial strategy will be highly
prone to select a short-distance region as an LR patch and a distant region as
an HR patch. Another important aim of DG is to filter out the low-quality local
patches such that we can decrease the computational burden significantly. The
second important aspect of our method we also evaluate is the bi-cycle training
strategy, denoted as BCN. No-BCN means we remove the cycle-consistent loss
from our training objectives. BCN, the bi-cycle training strategy, ensures that
our training process will be well-constrained. We conduct ablation study on
DG and BCN, and show the results in Table. 2. From top to the bottom are
the model without DG and BCN, models containing one of the two strategies
and the model contains both of them. The results show that the method with
DG+BCN has a lower NIQE score, indicating better perceptual quality.

6 Conclusion

In this work, we have proposed a novel zero-shot image super-resolution method,
in which we have designed a degradation simulation network (DSN) to learn
the internal degradation model from a single image. With the help of DSN,
our image-specific super-resolution network can produce satisfactory zero-shot
SR results. More specifically, to extract the effective unpaired HR/LR patches
from the image, we exploit the depth information to extract the natural HR/LR
patches. Our zero-shot SR model can decrease the NIQE score at least 0.912
among the evaluation datasets. Compared with those recently proposed methods
with pre-determined degradation kernels, our work can learn a more natural
degradation model without relying on extra high-resolution training images and
achieve better performance not only in quantitive comparison but also in visual
quality on NYU Depth, B3DO, SUN and Urban100 datasets.
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