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Abstract. Image-level label based weakly-supervised semantic segmen-
tation (WSSS) aims to adopt image-level labels to train semantic seg-
mentation models, saving vast human labors for costly pixel-level annota-
tions. A typical pipeline for this problem is first to adopt class activation
maps (CAM) with image-level labels to generate pseudo-masks (a.k.a.
seeds) and then use them for training segmentation models. The main
difficulty is that seeds are usually sparse and incomplete. Related works
typically try to alleviate this problem by adopting many bells and whis-
tles to enhance the seeds. Instead of struggling to refine a single seed,
we propose a novel approach to alleviate the inaccurate seed problem
by leveraging the segmentation model’s robustness to learn from multi-
ple seeds. We managed to generate many different seeds for each image,
which are different estimates of the underlying ground truth. The seg-
mentation model simultaneously exploits these seeds to learn and auto-
matically decides the confidence of each seed. Extensive experiments on
Pascal VOC 2012 demonstrate the advantage of this multi-seeds strategy
over previous state-of-the-art.
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1 Introduction

Semantic segmentation has achieved rapid progress with deep learning mod-
els [21,3,4,5]. However, these approaches heavily rely on large-scale pixel-level
annotations for training, which is very costly to obtain. To reduce the require-
ment of precise pixel-level annotations for training, researchers proposed weakly-
supervised semantic segmentation (WSSS). WSSS adopts only coarse annota-
tions to train the semantic segmentation models, such as scribbles [29,20], bound-
ing boxes [6,28], and image-level class labels [31,1,14,13,17,2,23]. Among them,
the image-level label based WSSS only requires image class labels for training,
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which are much easier to obtain than other forms of weak annotations. Thus,
image label based WSSS got much attention from recent works. In this paper,
we focus on the image-level label based WSSS problem.

A common practice to recover targets’ spatial information from image-level
labels is to adopt the class activation maps (CAM) [39] to generate heat maps
for the target objects. These heat maps are utilized to generate pseudo-masks
(a.k.a. seeds) to train the desired segmentation models. The CAM is obtained by
first training a classification model with the image labels and then applying the
last linear classification layer to the feature map columns, which is right before
the global average pooling layer. Because the CAM is trained for classification,
the highlighted regions are usually only the most discriminative ones. Therefore,
only sparse and incomplete seeds can be obtained, and the subsequently trained
segmentation models can only predict partial objects.

To alleviate the incomplete seed problem of CAM, researchers adopt multiple
dilated convolutions [33], iterative erasing strategy [31], random drop connec-
tions [17], region growing algorithms [13], online accumulating activation maps
[14], and many other strategies [26] to generate more complete seeds. Though
these approaches have achieved significant progress, they usually rely on care-
fully designed rules and experience-based hyper-parameters to balance the seed’s
precision and recall, which is hard to generalize.

Instead of struggling for generating a single “perfect” seed for each image by
manually designed rules, we propose a novel principled way to employ multiple
different seeds simultaneously to train the segmentation models. The different
seeds for each image can be seen as the estimates of the common underlying
ground truth. We leverage the robustness of the segmentation models to mine
useful information from these different seeds automatically. The reasons this
strategy works are threefold.

Firstly, different seeds help to reduce the influence of wrong labels. It is gen-
erally reasonable to assume that the probability of a pixel obtaining a correct
pseudo-label is larger than obtaining a wrong label. Pixels assigned with the
same label by all the different seeds are more likely to be right. The contri-
butions of these pixels are not affected, because all the different seeds provide
the same label. Meanwhile, pixels with different seed labels provide gradients
in different directions; thus, the different gradients can be canceled out to some
extent, reducing the risk of optimizing in the wrong direction. Secondly, com-
plementary parts may exist in different seeds, making the pseudo-labels more
complete as a whole. For example, the mask of a person’s body may be absent
in one seed, but present in another different seed. Thirdly, the segmentation
model is robust to noise to some extent. Take the pilot experiments in Tab.
1 as an example, with 30% of the foreground pixels replaced by noise in the
training set, the segmentation model can still achieve about 90% of the perfor-
mance compared with training with the ground truth. This result may because
segmentation models can leverage the knowledge from the whole dataset, thus
reducing the influence of unsystematic noise. This property helps to mine useful
information from multiple seeds.
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Fig. 1. Examples of the CAM and the generated seeds. The three columns of each group
correspond to three different CAM scales. The first row is the image. The second row
is the CAM from the VGG16 backbone, and the last two rows show two types of the
generated seeds. Our approach simultaneously adopts these different seeds to train the
segmentation models.

To further enhance the training process’s robustness, we propose a weighted
selective training (WST) strategy, which adaptively adjusts the weights among
different seeds for each pixel. Compared with previous approaches [33,17,14]
that merge multiple CAMs by hand-crafted rules, e.g., average or max fusion,
our method can leverage the segmentation model’s knowledge to assign weights
among different seeds dynamically. We conduct thorough experiments to demon-
strate the effectiveness of the proposed approach. On Pascal VOC 2012 dataset,
we achieve new state-of-the-art performance with mIoU 67.2% and 66.7% on
the validation and the test set, respectively, demonstrating the advantage of our
approach. In summary, the main contributions of this paper are as following:

– We propose a new principled approach to alleviate the inaccurate seed prob-
lem for WSSS, which simultaneously employs many different seeds to train
the segmentation models. A weighted selective training strategy is proposed
to mitigate the influence of noise further.

– We conduct thorough experiments to demonstrate the approach’s effective-
ness and reveal the influence of different kinds of seeds.

– The proposed approach significantly outperforms the single-seed baseline
and achieves new state-of-the-art performance on Pascal VOC 2012 dataset
with only image-level labels for training.

2 Related Work

2.1 Semantic Segmentation

Recently deep learning based approaches [21,3,4,5,38] have dominated the se-
mantic segmentation community. These approaches usually adopt fully convolu-
tional layers and take the semantic segmentation task as a per-pixel classification
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task. Though these approaches have achieved great progress, they need pixel-
level annotations for training, which cost vast human labors to obtain.

2.2 Weakly-Supervised Semantic Segmentation

Weakly-supervised semantic segmentation (WSSS) is proposed to alleviate the
annotation burden of segmentation tasks. According to the types of annotations,
WSSS approaches can be classified as bounding box based [6,28], scribble based
[29,20], and image-level label based [31,17,13,33,14] approaches. In this paper,
we focus on the image-level label based WSSS.

Most of the present image-level label based WSSS approaches adopt a two-
stage training strategy. It firstly estimates the pseudo-masks (a.k.a. seeds) of
target objects from image-level labels and then takes these seeds to train a reg-
ular semantic segmentation model. Because of the lack of supervision, the seeds
are often incomplete. To alleviate this problem, AE-PSL [31] proposes an it-
erative erasing strategy that iteratively erases already obtained pseudo-masks
in the raw image and re-estimate new regions. MDC [33] proposes to adopt
multiple layers with different dilation rates to expand the activated regions.
DSRG [13] proposes a seed region growing algorithm to expand the initial seeds
gradually. FickleNet [17] uses random connections to generate many different
activation maps and assemble them together. OAA [14] accumulates the acti-
vation maps along the process of training the CAM to obtain more complete
estimates. These approaches apply various hand-crafted rules and carefully ad-
justed hyper-parameters to generate a single seed for each image. However, it is
generally hard to balance the recall and the precision for the underlying target
objects. In contrast, we propose to simultaneously adopt many different seeds to
train the semantic segmentation models and leverage the segmentation models’
robustness to extract useful information from these seeds automatically.

2.3 Learning from Noisy Labels

Some related works also adopt multiple noisy labels to learn [37,36,19]. These
approaches rely on noise distribution assumptions that may not hold in the
WSSS problem, adopt complicated rules to pre-fuse the labels, or train additional
modules to merge them. In contrast, our approach is more computation efficient
and can exploit the pseudo-labels dynamically.

3 Pilot Experiments

Before illustrating the detailed approaches, we first conduct pilot experiments to
demonstrate that the segmentation model benefits from multiple sets of labels
that contain noise. To this end, we manually add noise to the ground truth labels
by randomly set partial foreground blocks as background, as shown in Fig. 2.
Then we adopt these noisy labels to train the segmentation model. We compare
results obtained by only utilizing a single noise label and utilizing two different
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Img / GT Noisy labels Img / GT Noisy labels Img / GT Noisy labels

Fig. 2. The hand-crafted noisy labels. Blocks with random sizes are put on the fore-
ground objects. Two different labels with the same noise ratio are shown in the columns.

Noise ratio
mIoU (%)

One label Two labels

0 (ground truth) 72.1 -
0.1 70.6 71.0
0.2 68.1 69.0
0.3 64.8 66.2

Table 1. Results on the Pascal VOC 2012 val set by the VGG16-Largefov model. The
training data is from the training set with different ratios of hand-crafted noise.

noisy labels. The results are shown in Tab. 1. When adopting two sets of different
noisy labels, the segmentation model consistently outperforms the single label
counterparts under various noise rates.

The intuitive reason for the improvement is because there exists complemen-
tary information between the two sets of labels. We discuss a simplified two-class
case as an example for illustration. Assume the noise is evenly distributed among
all the pixels in the dataset, and the probability of noise is r. When only a sin-
gle label is available, the signal-to-noise rate is (1 − r)/r. When there are two
sets of labels, the probability of a pixel obtains two true or two false labels are
(1 − r)2 and r2, respectively. The remaining 2r(1 − r) of the pixels receive two
contradictory labels, thus do not contribute to the gradients. In this situation,
the signal-to-noise rate becomes (1 − r)2/r2. Generally, r is less than (1 − r),
thus simultaneously adopting two different labels helps to reduce the proportion
of gradients from wrong noise labels. In other words, those pixels with confus-
able labels are depreciated. Similar conclusions can be easily generalized to the
situation of multiple classes and more sets of different labels.

In the setting of WSSS, seeds are estimated from image-level labels to ap-
proach the unknown pixel-level ground truth, and utilized to train the segmenta-
tion models. Although different seeds generally are not independent of each other
and the noise is not evenly distributed, our experiments empirically demonstrate
that there is still some complementary information available from multiple seeds.
Thus, adopting multi-seeds can help the segmentation model recognize more ro-
bust estimates and improve the training, as shown in Sec. 5.
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Fig. 3. The framework of our approach. The pipeline for WSSS contains two stages. In
the first stage, we train the CAM by the image-level labels and generate multiple seeds
via different approaches. In the second stage, we adopt these seeds simultaneously to
train the segmentation model. Finally, the segmentation model outputs the semantic
segmentation predictions for evaluation.

4 Approach

The whole framework of our approach contains two stages, as shown in Fig. 3.
The first stage generates many different seeds from the CAM, and the second
stage utilizes all of these seeds to train segmentation models. After training,
segmentation results are obtained by inferring the segmentation models.

4.1 The Class Activation Map

The class activation map (CAM) [39] is widely adopted to generate initial es-
timates (seeds) for WSSS. The first step is to adopt the image-level labels to
train a classification network, which contains a global average pooling layer right
before the final classification layer. The training loss is simply the multi-class
sigmoid loss:

Lcam(X) = −
C∑

c=1

yc log σ(pc) + (1− yc) log[1− σ(pc)], (1)

Where, X is the input image, pc is the model’s prediction for the c-th class,
σ(·) is the sigmoid function, C is the total number of foreground classes. yc is
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the image-level label for the c-th class, whose value is 1 if the class present in
the image else 0.

After training, the global average pooling layer is removed, and the final
linear classification layer is directly applied to each column of the last feature
map to derive the CAM:

M c
i,j = fTi,jw

c, {c ∈ Cfg} (2)

Where, wc is the weight vector for the c-th class in the classification layer,
fi,j is the feature vector in the feature map at spatial location {i, j}. M c

i,j is the
corresponding value of CAM of the c-th class at location {i, j}. Cfg is the set of
foreground classes present in the image. For those classes that are not present
in the image, the corresponding maps are directly set to zero.

Before generating the seeds, the CAM is normalized by filtering out negative
values and dividing the spatial maximum:

M̃ c
i,j =

[M c
i,j ]+

max
i∈1∼H,j∈1∼W

{[M c
i,j ]+}

, {c ∈ Cfg} (3)

Where, operator [·]+ sets the negative values to 0. H and W are the height
and width of the CAM, respectively. The obtained CAM M̃ ∈ RC×H×W is then
bilinearly interpolated to the original image size and utilized to generate the
seeds.

4.2 Multi-Type Seeds

A common practice to generate seeds is to use the CAM and a hard threshold to
estimate foreground regions and adopt saliency models to estimate background
regions. CRF is also widely adopted to refine the estimate. In this paper, we
adopt two different approaches to generate two types of seeds.

The first approach simply adopts the threshold method to generate seeds.
We take pixels with normalized CAM scores large than 0.1 as the foreground.
We adopt the same saliency model [11] utilized by previous approaches [14] to
estimate the background. Pixels with saliency scores less than 0.06 are taken as
background, which follows the same setting in previous approaches. The remain-
ing unassigned pixels and those pixels with conflict assignments are marked as
unknown and will be ignored when training the segmentation models.

The second approach concatenates the background scores from the saliency
and the foreground scores from the normalized CAM, then adopts the CRF
algorithm [16] to refine the scores. Finally, the seeds are obtained by selecting
the class with the largest score for each pixel. With this strategy, every pixel
is assigned with a valid pseudo-label, and there are no conflicts and unknowns.
Examples of the generated seeds are shown in Fig. 1.

Although the seeds generated by the CRF approach have more details, it may
raise additional false positives and false negatives compared with the threshold
approach. Therefore, there may exist complementary information in these two
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types of seeds. As demonstrated in Tab. 2, even though CRF based seeds per-
form better than threshold based seeds, there is still a considerable boost by
simultaneously adopting both of them for training.

4.3 Multi-Scale Seeds

Scale plays an important role in deep convolutional network based approaches.
Because the receptive field is fixed, the convolution kernels face quite different
input patterns with different scales. The network is forced to handle different
scales simultaneously; thus, it generally needs different parameters for different
scales. As a result, different patterns may be highlighted by the network in
different input scales, and further derives different seeds. To utilize this property,
we resize the input image size with different scales and feed them into the network
to obtain CAMs under different scales. We adopt these CAMs with different
scales to generate multiple seeds.

4.4 Multi-Architecture Seeds

Generally, different architectures of the backbone do not produce identically the
same predictions. Thus, different architectures can potentially provide different
estimates for the underlying ground truth masks. VGG16 [27] and ResNet38 [34]
are two widely adopted networks for generating seeds in the WSSS community.
We adopt these two different architectures to generate different seeds.

4.5 The Weighted Selective Training

A plain way to adopt different seeds to train the segmentation model is to com-
pute the per-pixel cross-entropy loss with each seed and adopts the average:

Lplain(X) =
1

NkHW

∑
k

∑
i,j

∑
c

y
(k)
i,j,c log pi,j,c, (4)

Where, X is the input image, y
(k)
i,j,c is the label for pixel {i, j} from the k-th

seed, which equals 1 if the label belongs to the c-th class or else 0. pi,j,c is the
prediction of the segmentation model at location {i, j} for the c-th class, which
is normalized by the softmax operator. Nk is the total number of the seeds for
the given image. H and W are the height and width of the feature, respectively.

Because of the robustness of the segmentation model and the effect of in-
creasing the signal-to-noise rate by multiple seeds, directly adopting Lplain is
able to boost the performance over single-seed baselines. To further improve
the robustness over noise labels, we propose to utilize the segmentation model’s
online predictions to weight different seeds. The training loss becomes:

Lwst(X) =
1

HW

∑
k

∑
i,j

wi,j,k

∑
c

y
(k)
i,j,c log pi,j,c, (5)
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Where, wi,j,k ∈ [0, 1] is the weight for the k-th seed label at location {i, j},
which is computed by comparing the label with the segmentation model’s online
prediction:

wi,j,k = exp(s · w̃i,j,k)/
∑
k

exp(s · w̃i,j,k), (6)

w̃i,j,k = I[arg max
c

(pi,j,c) = arg max
c

(yi,j,c)], (7)

That is, we take the value as 1 if and only if the segmentation model’s
prediction matches the pseudo-label, then we adopt the softmax operator to
normalize all the values across different seeds to ensure that

∑
k wi,j,k = 1. s is

a scale factor to control the sharpness of the weight. When s equals 0, the loss
is identical to the plain training loss Lplain. In practice, we simply set s equals
1. Along the training process, the segmentation model converges and predicts
more stable results. As a result, outliers that contradict the prediction will be
inhibited, further reducing the influence of the noise.

5 Experiments

5.1 Dataset

Following previous works, we adopt the Pascal VOC 2012 dataset [8] to evalu-
ate our approach. It contains 20 foreground classes and a background class for
semantic segmentation. The extended training set [10] contains 10582 images,
the validation set contains 1449 images, and the test set contains 1456 images.
For training our weakly-supervised models, only the image-level labels are used,
i.e., the image class labels of the 20 foreground object classes. The performance
is evaluated by the standard mean intersection over union (mIoU) with all the
21 classes.

5.2 Implementation Details

We adopt two popular backbones to generate the seeds, i.e., VGG16 [27] and
ResNet38 [34], which are widely adopted in the WSSS community. To obtain
larger receptive fields for the details of the objects, we follow the DeepLab’s
setting to set the last two downsampling layers’ strides to 1 and adopt dilated
convolutions in the following layers. The total downsampling rate of the feature
map is 8. Backbones are pre-trained by the ImageNet classification task [7],
New layers are initialized by Normal distribution with a standard deviation
0.01. The initial learning rate is 0.001 and is poly decayed with power 0.9 every
epoch. The learning rate for newly initialized layers is multiplied by 10. We
adopt the SGD optimizer and train 20 epochs with the batch size 16. The input
images for training are randomly scaled between 0.5 and 1.5, randomly mirrored
horizontally with a probability 0.5, and randomly cropped into size 321. After
obtaining the seeds, we adopt the proposed approach and follow the standard
hyper-parameters to train the DeepLab-v2 segmentation models.
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CAM-Backbone
Seed-Type

Threshold (T.) CRF (C.) Both (T.+C.)

VGG16 61.4 (1) 62.9 (1) 63.8 (2)
RES38 62.3 (1) 62.6 (1) 63.5 (2)

Table 2. Ablation study of the multi-type seeds. Results are obtained by the VGG16-
Largefov segmentation model and evaluated on the VOC 12 val set using mIoU (%).
The numbers in the parenthesis represent the number of seeds adopted.

Seed-Type Single-Scale Multi-Scale
Merge-Scale

Max Avg

Threshold (T.) 61.4 (1) 62.5 (3) 60.2 (1) 61.1 (1)
CRF (C.) 62.9 (1) 63.5 (3) 62.5 (1) 62.8 (1)
Both (T.+C.) 63.8 (2) 64.0 (6) 63.7 (2) 63.9 (2)

Table 3. Ablation study of the multi-scale seeds. Results are obtained by the VGG16-
Largefov segmentation model and evaluated on the VOC 12 val set using mIoU (%).
The numbers in the parenthesis represent the number of seeds adopted.

5.3 The Influence of Multiple Seeds

Multi-Type Seeds We firstly demonstrate that adopting the multi-type seeds
helps to train the segmentation network. We generate seeds by both the threshold
based approach and the CRF based approach, as described in Sec. 4.2. The
baseline results are obtained by training on these two types of seeds separately,
and our approach takes both of them for training. The results are summarized
in Tab. 2. With only a single type of seeds, the best result is achieved by using
the CRF based seeds, showing that CRF provides more details based on the
low-level RGB cues. However, additional wrong labels may also be incurred by
the CRF. Thus by simultaneously adopting these two types of seeds with our
approach, there is a further 0.9% improvement, demonstrating that our method
can mine useful complementary information from multi-type seeds.

Multi-Scale Seeds To verify the effectiveness of exploiting multi-scale seeds,
we generate seeds by inferring CAMs with three different scales, i.e., 1, 0.75, and
0.5. Examples of the multi-scale CAMs and corresponding seeds are shown in
Fig. 1. As shown in Tab. 5.2, employing multiple seeds of different scales consis-
tently provides improvement over single-scale counterparts. It is also noteworthy
that adopting both multi-type seeds and multi-scale seeds simultaneously fur-
ther improves the performance, demonstrating the effectiveness of our approach.
To more concretely demonstrate the advantage of utilizing multiple seeds over
single seeds, we also generate a single set of seeds by merging the multi-scale
CAMs. Specifically, we merge the CAMs from all the three scales by the max-
or the average-fusion. We generate seeds from the merged CAM and adopt them
for training. The last two columns in Tab. 5.2 shows the results. If we only
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Seed-Type
CAM-Backbone

VGG16 RES38 VGG16+RES38

Threshold (T.) 61.4 (1) 62.3 (1) 63.5 (2)
CRF (C.) 62.9 (1) 62.6 (1) 63.1 (2)
Both (T.+C.) 63.8 (2) 63.5 (2) 64.2 (4)

Table 4. Ablation study of the multi-architecture seeds. Results are obtained by the
VGG16-Largefov segmentation model and evaluated on the VOC 12 val set using mIoU
(%). The numbers in the parenthesis represent the number of seeds adopted.

Multi-Type Multi-Scale Multi-Architecture w/o WST w/ WST

X 63.9 63.8
X X 63.8 64.0
X X X 63.9 64.6

Table 5. Ablation study of the weighted selective training (WST). Results are obtained
by the VGG16-Largefov segmentation model and evaluated on the VOC 12 val set using
mIoU (%).

adopt the merged single-type seeds for training, there is no obvious improvement
over the baseline. It may because simply merging multi-scale CAMs introduces
some ambiguity and additional noise. In contrast, our approach generates seeds
from different CAMs independently and utilizes these different seeds for training,
which is more robust to leverage the multi-scale information.

Multi-Architecture Seeds Because of the difference in network depth, recep-
tive field, and connection structures, different networks usually produce differ-
ent activation maps for the same input. To leverage this character, we adopt
different backbones to generate the seeds. In previous works, either VGG16 or
ResNet38 is adopted to generate the seeds. Thus we choose these two networks
to conduct experiments of the multi-architecture seeds. Results in Tab. 4 shows
that taking seeds from these two architectures always improves the performance,
demonstrating that seeds from different networks can also provide complemen-
tary information to the segmentation models.

5.4 The Weighted Selective Training

We conduct ablation studies to demonstrate the effectiveness of the proposed
weighted selective training (WST) strategy, as shown in Tab. 5. The results
show that the influence of the WST approach is more apparent when there are
more different kinds of seeds. When only adopting the multi-type seeds, there
is no noticeable improvement. It may because many ambiguous pixels are set to
empty in the threshold-based seeds, which reduces the number of conflict noise
labels between the two types of seeds. It is also noteworthy that even without the
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Fig. 4. Visualization of the WST weights among different seeds. The first column
shows the input images and online predictions. The rest columns show the seeds and
the corresponding weights obtained by the WST approach.

WST approach, adopting multiple seeds for training improves over the baseline
with a clear margin, demonstrating that the segmentation model can effectively
learn from multiple seeds, even with noise. Fig. 4 is the visualization of the
weights among different seeds. It shows that the assigned per-pixel weights can
generally inhibit noisy labels.

5.5 Comparison with Related Works

We employ all the above approaches to generate many different seeds to train
our model to compare with related works. Specifically, two types, three scales,
and two architectures are adopted, resulting in 12 different seeds. The VGG16-
LargeFov and the ResNet101-LargeFov are two widely used segmentation models
for evaluating the WSSS approaches. We report results for both of them, as
shown in Tab. 6 and Tab. 7, respectively. To the best of our knowledge, previous
best results on the VGG16 backbone are achieved by AISI [9] and OAA [14]. Our
approach significantly outperforms them by 1.5% and 1.1% mIoU scores on the
validation set and the test set, respectively. It is noteworthy that ablation results
in Tab. 5.2 reveal that even with only VGG16-CAM based seeds, our approach
could achieve mIoU 64.0% on the validation set, which outperforms previous
best results by 0.9%, demonstrating the advantage of adopting multiple different
seeds. The ResNet101 based segmentation model generally performs better than
the VGG16. Our approach also works with this stronger segmentation model,
which outperforms previous best results by 2.0% and 0.3% on the validation and
the test set, respectively, demonstrating our approach’s generalization ability.
Fig. 5 shows the visualization results of the segmentation models’ predictions.
Compared with the single seed baseline, our approach generally obtains more
complete and robust predictions.

1 http://host.robots.ox.ac.uk:8080/anonymous/QR5OFW.html
2 http://host.robots.ox.ac.uk:8080/anonymous/ZHCI9F.html

http://host.robots.ox.ac.uk:8080/anonymous/QR5OFW.html
http://host.robots.ox.ac.uk:8080/anonymous/ZHCI9F.html
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Method Publication
mIoU (%)

val test

CCNN [23] ICCV15 35.3 35.6
EM-Adapt [22] ICCV15 38.2 39.6
MIL [24] CVPR15 42.0 40.6
SEC [15] ECCV16 50.7 51.7
AugFeed [25] ECCV16 54.3 55.5
STC [32] PAMI17 49.8 51.2
AE-PSL [31] CVPR17 55.0 55.7
DCSP [2] BMVC17 58.6 59.2
AffinityNet [1] CVPR18 58.4 60.5
GAIN [18] CVPR18 55.3 56.8
MCOF [30] CVPR18 56.2 57.6
DSRG [13] CVPR18 59.0 60.4
MDC [33] CVPR18 60.4 60.8
AISI [9] ECCV18 61.9 63.1
SeeNet [12] NIPS18 61.1 60.7
FickleNet [17] CVPR19 61.2 61.9
SSNet [35] ICCV19 57.1 58.6
OAA [14] ICCV19 63.1 62.8

Ours 64.6 64.21

Table 6. Comparison with related works. All the results are obtained by the VGG16
backbone and evaluated on the VOC 12 semantic segmentation benchmark.

Method Publication
mIoU (%)

val test

DCSP [2] BMVC17 60.8 61.9
MCOF [30] CVPR18 60.3 61.2
DSRG [13] CVPR18 61.4 63.2
AISI [9] ECCV18 64.5 65.6
SeeNet [12] NIPS18 63.1 62.8
FickleNet [17] CVPR19 64.9 65.3
OAA [14] ICCV19 65.2 66.4

Ours 67.2 66.72

Table 7. Comparison with related works. All the results are obtained by the ResNet101
backbone and evaluated on the VOC 12 semantic segmentation benchmark.
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Image GT Baseline Ours Baseline Ours

VGG16 ResNet101

Fig. 5. The prediction results of single-seed baseline and our approach on VOC 2012 val
set. The first two columns are images and ground truth (unavailable for training). The
third and the fourth columns are obtained by the VGG16 based segmentation model.
The last two columns are obtained by the ResNet101 based segmentation model.

6 Conclusions

Image-level label based weakly-supervised semantic segmentation suffers from
incomplete seeds for training. To alleviate this problem, we propose a novel
approach to employing multiple different seeds simultaneously to train the seg-
mentation models. We propose a weighted selective training strategy to reduce
further the influence of noise in the multiple seeds. Extensive experiments demon-
strate that our training framework can effectively mine reliable and complemen-
tary information from a group of different seeds. Our approach significantly
improves over the baseline and achieves new state-of-the-art performance on the
Pascal VOC 2012 semantic segmentation benchmark with only image-level labels
for training.
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