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Abstract. Easy availability of wearable egocentric cameras, and the sense of
privacy propagated by the fact that the wearer is never seen in the captured videos,
has led to a tremendous rise in public sharing of such videos. Unlike hand-held
cameras, egocentric cameras are harnessed on the wearer’s head, which makes it
possible to track the wearer’s head motion by observing optical flow in the ego-
centric videos. In this work, we create a novel kind of privacy attack by extracting
the wearer’s gait profile, a well known biometric signature, from such optical flow
in the egocentric videos. We demonstrate strong wearer recognition capabilities
based on extracted gait features, an unprecedented and critical weakness com-
pletely absent in hand-held videos. We demonstrate the following attack scenarios:
(1) In a closed-set scenario, we show that it is possible to recognize the wearer of
an egocentric video with an accuracy of more than 92.5% on the benchmark video
dataset. (2) In an open-set setting, when the system has not seen the camera wearer
even once during the training, we show that it is still possible to identify that the
two egocentric videos have been captured by the same wearer with an Equal Error
Rate (EER) of less than 14.35%. (3) We show that it is possible to extract gait
signature even if only sparse optical flow and no other scene information from
egocentric video is available. We demonstrate the accuracy of more than 84%
for wearer recognition with only global optical flow. (4) While the first person
to first person matching does not give us access to the wearer’s face, we show
that it is possible to match the extracted gait features against the one obtained
from a third person view such as a surveillance camera looking at the wearer
in a completely different background at a different time. In essence, our work
indicates that sharing one’s egocentric video should be treated as giving away
one’s biometric identity and recommend much more oversight before sharing of
egocentric videos. The code, trained models, and the datasets and their annotations
are available at https://egocentricbiometric.github.io/

1 Introduction

With the reducing cost and increasing comfort level, the use of wearable egocentric
cameras is on the rise. Unlike typical point and shoot versions, egocentric cameras are
usually harnessed on a wearer’s head and allow to capture one’s perspective. While
the hands-free mode and the first-person perspective make these cameras attractive for
adventure sports, and law enforcement, the always-on mode has led to its popularity
for life-logging, and geriatric care applications. The broader availability of first-person
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Fig. 1: The figure motivates the presence of the signal to identify a wearer from his/her first person
video, even when a wearer is never seen in such videos. Here, we show the relation of optical
flow vectors computed from egocentric videos with respect to the gait stance of the camera wearer
for two different subjects. The first row shows an indicative third-person stance corresponding
to the first person frame. Whereas, the second and third rows show the actual frames captured
using the first person camera at the above-specified instance. We synchronized the first-person and
third-person videos for purposes of this illustration. We overlay the optical flow vectors for the
two different subjects on the respective RGB frames to illustrate the significant difference between
the two subjects’ optical flow. We draw the reader’s attention to the large optical flow observed
in the initial contact and pre-swing phases for the first subject (2nd row), whereas for the second
subject (3rd row), large optical flow is observed in mid and terminal stance. In this work, we show
that it is possible to extract and match the camera wearer’s gait features from such optical flow in
an open set recognition setting.

videos has attracted interest from computer vision community, with specialized tech-
niques proposed for egocentric video summarization, temporal segmentation, and object,
action, and activity recognition from first-person viewpoint [1–9].

One exciting feature of egocentric videos is that the camera wearer is never visible
in them. This has led to many novel applications of egocentric videos, exploiting the
unavailability of user identity in such videos. For example, Poleg et al. [10] has observed
that since an egocentric camera is mounted on the wearer’s head, the head motion cues
are embedded in the observed motion of the captured scene. They have suggested to
freely share the observed optical flow in the first-person video to be used as a temporally
volatile, authentication signature of the wearer. Their premise is that the optical flow
from egocentric videos does not reveal any private identifying information about the
wearer. We speculate that the same belief may also be one reason for the wider public
sharing of egocentric videos.

In this work, we take position exactly opposite Poleg et al. and posit that the head
motion cues contain private information, but they are also highly correlated with the
wearer’s gait. Human gait is a well known biometric signature [11] and have been



Is Sharing of Egocentric Video Giving Away Your Biometric Signature? 3

traditionally extracted from the third-person view. Hence, through our exploration, we
wish to draw the community’s attention to a hitherto unknown privacy risk associated
with the sharing of egocentric videos, which has never been seen in the videos captured
from hand-held cameras. We focus on following specific questions: (1) Given a set
of egocentric videos, can we classify a video to its camera wearer? (2) Given two
anonymous videos picked from the public video-sharing website, can we say if the same
camera wearer captured the two videos without seeing any other video from the wearer
earlier? (3) What is the minimum resolution of the optical flow, which may be sufficient
to recognize a camera wearer. Specifically, Poleg et al. has suggested the use of global
optical flow as privacy safe, temporally volatile signatures. Is it possible to create a
wearer’s gait profile based on global optical flow? (4) How strong is the gait profile
recovered from an egocentric video. Specifically, if there is a corresponding gait profile
from a third-person point of view, say from a surveillance camera, is it possible to match
the two gait profiles and verify if they belong to the same person? Our findings and
specific contributions are as follows:

1. We analyze the biomechanics of a human gait and design a deep neural network,
called EgoGaitNet (EGN) to extract the wearer gait from the optical flow in a given
egocentric video. In a closed-set setting, when the set of camera wearers are known
a-priori, we report an accuracy of 92.5% on the benchmark dataset.

2. We also explore the open-set scenario in which the camera wearers are not known
a-priori. For this we train the EGN with ranking loss, and report an Equal Error Ratio
(EER) of 14.85% on the benchmark egocentric dataset containing 32% subjects.3

3. We tweak the proposed EGN architecture to work with sparse optical flow and show
that even with global optical (2 scalars per frame corresponding to the flow in x and y
directions), one can identify the camera wearer with a classification accuracy of 77%.

4. While, the three contributions above give a strong capability to recognize a wearer in
the closed set setting or identify other egocentric videos from the wearer in a closed
set scenario, and they do not reveal the identity/face of the wearer. We propose a
novel Hybrid Symmetrical Siamese Network (HSSN), which can extract the gait
from third person videos and match it with the gait recovered from EGN. It may
be noted that the first-person and third-person videos for this task may have been
captured at a completely different time and context/background. Since there is no
benchmark dataset available with the corresponding first person and third person
videos of the same person, we experiment with dataset generated by us and report an
EER of 10.52% for recognizing a wearer across the views.

5. We contribute two new video datasets. The first dataset contains 3.1 hours of first-
person videos captured from 31 subjects with a variety of physical build in multiple
scenarios. The second contains videos captured from 12 subjects for both first-person
and third-person setting. We also use the datasets to test the proposed models on the
tasks as described above.

3 To put the numbers in perspective, for the gait based recognition from third-person views, state
of the art EER (on a different third-person dataset) is 4%
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2 Related Work

Gait Recognition from Third Person Viewpoint: We note that there has been a signif-
icant amount of work on gait recognition from third-person videos that use the trajectory
of the limbs [11], joints [12], or silhouette [13–16]. The focus of our work is on extracting
gait from egocentric videos. Hence, these works are not directly relevant to the proposed
work. However, they serve to support our hypothesis that the motion of the limbs (or the
gait in general) also affects the motion of the head, which ultimately gets reflected in the
observed optical flow in an egocentric video. Below, we describe only the works related
to wearer recognition from first person videos.
Wearer Recognition from Egocentric Videos: Tao et al. [17] have shown that gait
features could also be captured from wearable sensors like accelerometer and gyroscope.
Finocchiaro et al. [7] estimated the height of the camera from the ground using only the
egocentric video. They have extended the original network model proposed in [18] to
estimate the height of the wearer, with an Average Mean Error of 14.04 cm over a range
of 103 cm of data. They have reported the classification accuracy for relative height (tall,
medium, or short) at 93.75%. Jian and Graumann [19], have infered the wearer’s pose
from the egocentric camera. They have given a learning-based approach that gives the
full body 3D joint positions in each frame. The technique uses both the optical flow as
well as static scene structures to reveal the viewpoint (e.g., sitting vs. standing).

Hoshen and Poleg [9] have shown that one could identify a camera wearer in a
closed set scenario, based on shared optical flow from his/her egocentric camera. They
have trained a convolutional neural network using the block-wise optical flow computed
from the consecutive egocentric video frames and showed a classification accuracy of
90%. However, their work assumes critical restrictive assumptions relevant to privacy
preservation. First, their framework requires many more samples from the same camera
wearer to train the classifier for the identification task. The requirement is unrealistic
for anonymous videos typically posted on public video sharing websites, with non-
cooperating camera wearers. Secondly, original head motion signatures suggested by
Poleg et al. [10] were computed by averaging the optical flows (resulting in 2 scalars per
frame), whereas Hoshen and Poleg have used full-frame optical flows. Thirdly, since the
work only matches the first-person to first-person videos, the true identity (or face) of
the wearer is never revealed.
Wearer Recognition using Egocentric and Third-Person Videos: There have been
techniques that assume the presence of another third-person camera (wearable or static)
present simultaneously to the egocentric camera and aim to identify the camera wearer
in the third-person view. In [20], authors exploit multiple wearable cameras sharing
fields-of-view to measure visual similarity and identify the target subject. Whereas, in
[21], the common scene observed by the wearer and a surveillance camera has been
used to identify the wearer. Other works compute the location of the wearer directly
[22, 23] or indirectly (using gaze, social interactions, etc.) [24, 25] which is then used to
identify the wearer. Unlike our approach, all these techniques assume the presence of
the third-person camera view within the same context and time, which though exciting,
does not lead to mounting privacy attacks, which is the focus of our work.
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Fig. 2: The network architecture for the proposed first person verification network EgoGaitNet.

3 Proposed Approach

In traditional gait recognition systems, where the subject is visible in the video, the
salient features are the limbs’ movement. However, in the case of egocentric videos,
the subject is not visible, thus ruling out traditional gait recognition methods. Hence
for doing so, we look into the biomechanics of gait. A gait cycle consists of multiple
gait cycle segments/phases (GCS). Transitioning from these segments causes the overall
motion of the body, and hence the correlated motion of the camera harnessed on the head
of the camera wearer. Thus, assuming a stationary background, optical flow provides us
with information about the GCS transitions.

3.1 Extracting Gait Signatures from Egocentric Videos

In order to extract the gait features from egocentric videos, we propose EgoGaitNet
(EGN) model. The architecture of EGN is shown in Figure 2. We have extracted frames
from the videos at 15FPS. We resize each frame to the size of 112× 112× 3 and divide
each video into clips of 4 seconds (i.e. 60 frames). We compute dense optical flows
between each consecutive frame using Gunner Farneback’s algorithm [26]. Hence, for
each frame, we get 112 × 112 × 2 optical flow matrix, where the channels depict the
flow at each point in x and y directions. We compute the magnitude of flow at each point
and append the magnitudes with the flow matrix to make it 112× 112× 3 optical flow
matrix. We hypothesize that each 4-second clip of size 60× 112× 112× 3 contains the
camera wearer’s gait information embedded in the optical flow transitions. We further
assume that one gait cycle (half step while walking) is 15 frames (1 second) and divides
each clip into four parts of 15 frames each. Our choice of gait cycle time (1 sec) and
the number of gait cycles sufficient to extract gait information (4) is inspired by similar
work in third person gait recognition [16].

To extract the gait cycle feature from each of the segmented clips, we propose a
Gait Cycle Analysis (GCA) module (as shown in Figure 2). It consists of a pre-trained
spatio-temporal (3D CNN) feature extractor for extracting the intra-gait cycle segment
information. We use the features from the last convolutional layer from the 3D CNN and
reshape the spatial channels to 1D and obtain a 4× 4096 feature vector representation
for inputting to the GCA module. Note that the feature vector is obtained from each
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Fig. 3: The network architecture used for the proposed first person to third person Matching
Network. The first-person gait feature extractor is taken from the proposed EgoGaitNet. The
third-person gait feature extractor is taken from [16].

gait cycle of 15 frames. To further learn features specific to first-person videos, we
split the temporal features to make it four vectors of 4096 dimension each. These
features are inputted to a temporal feature extractor (LSTM) having 4096 recurrent
dimensions (Figure 2(right side)), and giving us a single 4096 dimensional feature vector
representation of a gait cycle. We use four gait cycles to extract the gait signature of a
wearer. To learn inter gait cycle relationships, we pass the 4096 dimensional features
corresponding to a gait cycle to a gait cycle merging process, which is an LSTM based
architecture with 4096 recurrent dimensions(Figure 2 (left side)). The output of the
LSTM gives us a feature representation of 4096 containing the gait signature of a wearer.

In our experiments, we have done an ablation study to understand the effect of 3D
CNN architecture on the performance of EGN. We give the details in the experiment
section later as well as in the Supplementary Section.

3.2 Recognizing Wearer from First Person Video

To recognize a wearer from her/his first-person video, we train the EGN network for two
scenarios. The first one is closed set recognition, in which the network has already seen
the data of every subject during training (classification mode). The second one is the
open set scenario in which the testing is done on subjects that have not been seen by the
network (metric learning mode).

Closed Set Recognition For closed set recognition, we train the EGN as a classifier
for the camera wearer task. This task is not the prime focus of the work but has been
done to compare the performance of the architecture with the current state of the art [9].
A classification layer is added at the end of EGN, and the network is trained using a
categorical cross-entropy loss function. To perform the verification task, we have trained
our network in a one vs. rest fashion as done by [9] for the fair comparison. We have used
ADAM optimizer with a learning rate of 0.0005. We apply dropouts with the dropping
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probability of 0.5 over the fully connected layer and LSTM except for the classification
layer for better regularization. ReLU activation has been used in all the layers except
LSTM, where Tanh activation is used. The output of the classification layer is normalized
using the softmax activation to convert the output to a pseudo probability vector.

Open Set Recognition To perform open set recognition of camera wearer from ego-
centric videos, we train the EGN network to learn a distance metric between two head
motion signatures using triplet loss function. This enables the network to learn a suitable
mapping between a sequence of optical flow vectors to a final feature vector (a point
in the embedding space defined by the output layer of the network), such that the L2

distance between the embeddings of the same camera wearer is small and distance
between embeddings of different wearers is large. For efficient training of EGN, we
apply semi-hard negative mining and dynamic adaptive margin in triplet loss as described
by [27]. We use a step-wise modular training procedure to streamline the training of
EGN, as described further. First, we train only the 3D CNN, then freeze the 3D CNN and
only train the LSTM of GCA module, followed by freezing the GCA and training the
gait cycle merging module. Finally, we fine-tune the complete EGN for the first-person
recognition task via. triplet loss. Given two video segments i and j, the network must pro-
duce an embedding Θ, such that if i and j belong to the same subject, then L2(Θ

i, Θj)
should tend to 0, otherwise, L2(Θ

i, Θj) ≥ β, where β is the margin. The loss has been
defined over 3 embeddings: (1) Θi: embedding of an anchor video, (2) Θi

+

: embedding
of another video from the same wearer, and (3) Θi

−
: embedding of a video from another

arbitrary wearer. Formally: L(i, i+, i−) = max(0, (Θi − Θi+)2 − (Θi − Θi−)2 + β)
We sum the loss for all possible triples (i, i+, i−) to form the cost function J , which is
minimized during the training of the proposed architecture: J = 1

N

∑N
i=1 L(i, i+, i−)

3.3 Extracting Gait from Sparse Optical Flow

One of the questions that we seek to answer from this work is whether the original head
motion signatures proposed by [10], which contain only two scalar values per frame,
can reveal wearer’s identity? A naive way to do this would be to compute the flow at
appropriate spatial resolution and follow the same train and test procedure as done for the
dense optical flow. However, given the limited information offered by the global optical
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Fig. 5: The network architecture used for the proposed Combine Net.

flow, we observe severe over-fitting using the naive approach. One possible solution is to
use a pre-trained network. However, here we propose a simple but extremely effective
workaround, as described below.

Given a desired optical flow resolution of x× y, we divide each frame into a same-
sized grid. We compute the optical flow per cell independently, which is then given as an
input to the EGN. However, instead of giving the optical flow of size x× y, we copy the
optical flow, coming from each cell to every pixel underlying the cell. This is equivalent
to up-sampling the optical flow image using the nearest neighbor technique. We give this
up-sampled optical flow as input to the EGN network. Matching the size of the optical
flow vector allows us to use a pre-trained network at a much higher resolution and then
only fine-tune it on the lower resolution flow as required. As shown in the experimental
section, the simple workaround gives us a reasonably good accuracy and allows us to
claim the wearer recognition capability even with the frame-level global optical flow.
We understand that more sophisticated methods for optical flow up-sampling, including
learnable up-sampling, could have used but have not been explored in our experiments.

3.4 Recognizing Wearer from Third Person Video

The main goal of this paper is to match the gait profile extracted from an egocentric
video to the gait profile extracted from a third-person video, which allows us to track a
camera wearer based on his/her egocentric video alone. To achieve this, we propose two
deep neural network architectures called Hybrid Siamese Network (HSN) and Combine
Net. The overall pipeline is shown in Figure 3.

We first extract the third-person gait features using a state-of-the-art third-person gait
recognition technique. We have used [16] in our experiments; however, any other similar
technique could have been used as well. The input to [16] is 60 RGB frames, divided
into four gait cycles as in the case of EGN (which only took optical flow and not RGB).
The output of [16] is the gait feature vector of 4× 4096 dimension denoted as XT .

For extracting the gait features from egocentric videos, we use the GCA module
described in the EGN and extract a 4096 dimensional feature vector corresponding to
each gait cycle segment/phase. Hence for four segments, we get a feature vector of
size 4× 4096, denoted as XF in our model. Both XT and XF vectors contain the gait
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information of the camera wearer, but they lie in entirely different spaces as they are
coming from very different viewing modalities. To make them compatible, we pass
them through the proposed Hybrid Siamese Network (HSN), which is trained to learn a
mapping that can project the two vectors into the same gait space.

The HSN is trained using cross-modal triplet loss function (described later below) in
which anchors are coming from one modality, and positives and negatives are coming
from other modality. This adds a directional attribute to the HSN, causing the metric
function learned by HSN to be asymmetric. Hence, we train two HSN networks, one
HSN-TF, where the anchor videos are chosen from third-person, and the second HSN-FT,
where the anchors are chosen from egocentric videos. The output embeddings from the
two HSN are denotes as XTF

F (XTF
T ) and XFT

F (XFT
T ) respectively, where subscript T

indicates the third person, and F denotes the first-person features.
One way to create an undirectional metric is to merge the matching scores obtained

from both HSN TF and HSN FT. Another way is to perform a feature level fusion
between the gait features extracted from both the HSN’s. The four features (namely
XTF
F , X

TF
T , X

FT
F , X

FT
T ) transformed by HSN-TF and HSN-FT are not compatible for

direct fusion. Hence we propose another neural network CombineNet to fuse the features.
The details of HSN and Combine Net are given below.
HSN Architecture: As shown in Figure 4, we first pass both 4 × 4096 dimensional
XT and XF vectors through a many-to-many LSTM. The weights of the LSTM for the
two vectors are not tied. We follow this up with another many-to-one LSTM network,
which transforms the two vectors to a common 4096 dimensional feature space. Both
the LSTM layers have a recurrent dimension of 4096. As described earlier, we train two
HSNs: HSN-TF, and HSN-FT, with different anchor modalities.
CombineNet Architecture: We combine the asymmetrical features received from the
two HSN’s using the CombineNet. The Combine Net receives four distinct features of
size 4096 (XTF

F , XTF
T , XFT

F , and XFT
T ). As shown in Figure 5, first, a non-shared fully

connected layer (FC) is applied over the features. However, since XTF
F and XTF

T are
already in the same feature space and so are XFT

F and XFT
T , this FC layer is shared among

them. Finally, to transform all the features into the same space, a shared FC layer is
applied over the four feature vectors. As the features are now in the same space, both
the first-person features and third-person features are averaged for fusion to provide the
undirected gait features (XF , XT ). The training of CombineNet is explained below.
Training procedure using Cross-modal triplet loss: Both the HSN and CombineNet
are trained using cross-modal triplet loss function as described for EGN. However, the
selection of triplets is done differently, to learn the desired metrics in both cases. Since
the loss function here deals with two modalities, the anchor video is selected from the
first modality, whereas the positive and negative videos are selected from the second
modality. Despite the different modalities, anchor and positive must belong to the same
subject, whereas anchor and negative should belong to different subjects. We train the
HSN-FT with cross-modality triplet loss function by selecting the anchors from the
first-person videos, whereas for HSN-TF, we select the anchors from third-person videos.
We finally freeze the two HSNs and train the CombineNet by selecting both first-person
and third-person videos as anchors. For the triplets having first-person videos as the
anchor, the positive and negative videos are selected from third-person. Whereas, for
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triplets having third-person videos as the anchor, the positive and negative videos are
selected from the first-person videos.

4 Datasets Used

First Person Social Interactions dataset (FPSI) [28]: FPSI is a publicly available
dataset consisting of video captured by 6 people wearing cameras mounted on their hat,
and spending their day at Disney World Resort in Orlando, Florida. We have used only
walking sequences from this dataset, where the gait profile of the wearer is reflected in
the observed optical flow in the video. Further, we have tested in the unseen sequence
mode where morning videos have been used for training and evening ones for testing.

Egocentric Video Photographer Recognition dataset (EVPR) [9]: It consists of videos
of 32 subjects taken for egocentric first-person recognition. The data is made using two
different cameras. In our experiments, we use videos captured from one of the cameras
for training while the remaining videos have been used for testing.

Our Dataset for Wearer Recognition in Egocentric Video (IITMD-WFP): We also
contribute a new egocentric dataset consisting of 3.1 hours of videos captured by 31
different subjects. We introduced variability by taking videos on two different days for
each subject. To maintain testing in unseen sequence settings, we have used the videos
from one of the days for training and other for testing. To introduce further variability
in the scene, we have captured in two scenarios: indoor and outdoor, and refer to the
respective datasets as DB-01 (indoor), and DB-02 (outdoor). To make sure that the
network does not rely on the scene-specific optical flow, we have captured video for each
subject in a similar scenario. For both the indoor and outdoor datasets, the path taken
by each of the subjects was predefined and fixed, and the videos were captured using
the SJCAM 4000 camera. For the biometric applications, it is especially important to
show the verification performance over many subjects, since the performance metrics
typically degrade quickly with dataset size, due to an exponential increase in the imposter
matchings. Hence, we create a combined dataset by merging DB-01, and DB-02, and
refer to it as DB-03. We combine EVPR, FPSI, and DB-03 and refer to it as DB-04.
After merging, the combined DB-04 dataset contains 69 subjects.

Our Dataset for Wearer Recognition in Third Person Video(IITMD-WTP): To val-
idate our first-person to third-person matching approach, we have collected a dataset
containing both third-person and first-person videos of 12 subjects. The third-person
videos are captured using Logitech C930 HD camera, whereas the first-person videos
from SJCAM 4000 camera. The axis of the third person camera is perpendicular to the
walking line of each subject. The total video time of IITMD-WTP dataset is 1 hour 3
minutes having 56,700 frames. For the open-set verification, we use six subjects for
training, and remaining unseen subjects for testing. For closed-set analysis, the first five
rounds have been used for training and the last five for testing. The representative images
and detailed statistics for each dataset have been given in the supplementary material.
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5 Experiments and Results

5.1 Hyper-parameters and Ablation Study

Our gait feature extractor module (c.f. Section 3.1), uses 3D CNNs for finding spatio-
temporal optical flow patterns correlated with wearer’s gait. We have performed a
rigorous ablation study using different network backbones: C3D [29], I3D [30], and
3D-ResNet [31], which C3D performs the best and has been used for further analysis.
We have also compared our architecture with various combination style for merging
features from individual gait cycles, and have finally chosen uni-directional LSTM with
four gait cycle input. The detailed ablation study is given in the supplementary material.

5.2 Wearer Recognition in Egocentric Videos

We first analyze our system for recognition capability in egocentric videos. We test
in both closed-set (wearers are known and trained for during training) and open-set
(wearers are unseen during training) scenarios. Table 1, columns 2–5, compare the
Table 1: Comparative analysis of our system with [9] for wearer recogni-
tion in egocentric videos. While [9] works only for closed-set scenarios,
our system can work both in closed-set as well as open-set scenarios. CA,
EER, and DI denote the classification accuracy, Equal Error Rate, and
Decidability Index respectively in percentage. Higher CA and lower EER
is better.

Dataset
Closed Set Analysis Open Set Analysis

[9] EgoGaitNet EgoGaitNet

CA EER CA EER EER CRR DI

FPSI 76.0 20.34 82.0 19.71 – – –
EVPR 90.0 11.3 92.5 9.8 14.35 68.12 1.95
DB-01 95.1 4.38 99.2 2.79 6.43 83.67 2.35
DB-02 93.7 5.03 97.3 3.81 8.23 82.77 2.15
DB-03 94.0 5.72 98.7 4.35 9.39 80.56 2.02
DB-04 85.6 19.64 89.9 15.44 20.61 62.17 0.27

performance with
[9] for closed-set
scenario, in terms
of classification ac-
curacy (CA) and
Equal Error Rate
(EER). The values
for EVPR and FPSI
datasets have been
taken from their
paper, whereas for
others, we computed
the results using the
authors’ code. It is
easy to see that for
each dataset, our
system improves [9].

For the open-
set scenario, we establish the validity of the learned distance by our approach using the
decidability index (DI) and rank one correct recognition rate (CRR). Decidability index
[32] is a commonly used score in biometrics to evaluate the discrimination between
genuine and impostor matching scores in a verification task. The score is defined as:
DI =

|µg−µi|√
(σ2

g+σ
2
i )/2

, where µg(µi) is the mean of the genuine (impostor) matching

scores, and σg(σi) is the standard deviation of the genuine (impostor) matching scores.
A large decidability index indicates strong distinguishability characteristics, i.e., high
recognition accuracy and robustness. The open-set analysis is not performed over the
FPSI dataset as the number of subjects is very small. For the rest of the datasets, half
of the subjects from each of the individual datasets were taken for training and rest
half for testing. We believe that open set analysis mimics much more practical attack
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scenarios with uncooperative wearers, which have not been seen at the train time, but
we would still like to find other videos captured by them. From Table 1, columns 6–8, it
is apparent there is only a minor decrease in the performance of the network compared
to the closed-set scenario, which still has a very low error rate. Hence, we can conclude
that the proposed model can verify unseen camera wearers also.
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Fig. 6: Left: ROC curves of proposed system on various datasets.
Right: The ROC curves for individual datasets when trained and
tested on a combined DB-04 dataset. Note that in the combined
dataset, an imposter matching increase exponentially and the stable
performance of our approach show the technique’s strength.

The ROC curves for
our approach on vari-
ous datasets are shown
in Figure 6. It can be
seen that performance
over the EVPR dataset
is better than FPSI. This
may be due to the
fact that the activities
performed by the sub-
jects in FPSI are varied,
whereas EVPR contains
only walking sequences.
We also show the curves
for a much larger DB-04 dataset to establish robust recognition performance even with
a large number of subjects, indicating significant privacy risk associated with sharing
egocentric videos.

Wearer Height Analysis: A doubt regarding our system’s good performance can be that
it is differentiating based on the wearer’s height. We did a limited analysis to verify that
there is no such over-fitting in the system. We segregated three subjects of similar height
and tested our model on just those 3. For those three subjects of similar height, we got
an equal error rate of only 2.03%, showing us that the proposed model can differentiate
successfully between the subjects despite having the same height.
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Fig. 7: Performance of our classifier on
averaged optical flow, as used in [10].

Effect of Spatial Resolution of Optical Flow:
The experiments so far have been done on dense
optical flow. However, one of the questions that we
seek to answer is whether the original head motion
signatures proposed by [10], which contain only
two scalar values per frame, can reveal wearer’s
identity. As explained in Section 3.3, we have cre-
ated a simple workaround by simply up-sampling
the optical flow given at a lower resolution to the
original resolution using the nearest neighbor ap-
proach. This allows us to use a pre-trained network trained with dense optical flow, and
fine-tune it with the up-sampled flow. As done in the earlier experiments, we have been
careful in separating the unseen wearers at an early stage, which are never shown to the
network, either in pre-training or fine-tuning stage. The performance over different sizes
of optical flow input is shown in Figure 7. In the figure, x-axis maps to the number of
optical flow values in rows and columns. 112 refers to dense optical flow, and 1 refers
to the case where the whole optical flow was globally averaged to a single vector as
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in [10]. We get a high identification accuracy of 92% when dealing with only a 7× 7
optical flow matrix. Even with a single global flow vector, we achieve an accuracy of
84%, indicating that even averaged head motion signatures are enough to recover the
gait profile and recognize a camera wearer.

5.3 Wearer Recognition in Third Person Videos

Taking the privacy attack one step further, in this section we show that using HSN pro-
posed in this paper; it is possible to match the gait profile extracted from
Table 2: Performance analysis for recognizing a wearer in a third per-
son video. The score fusion approach refers to classifying/verifying
a sample by average of HSN-FT and HSN-TF scores.

Model Closed-set Analysis Open-set Analysis

EER CRR DI EER CRR DI

HSN-FT 11.45 72.46 1.68 15.84 69.27 1.02
HSN-TF 11.02 75.78 1.70 15.36 69.75 1.02
Score Fusion 8.76 76.24 1.72 13.68 71.65 1.05
CombineNet 9.21 79.86 1.71 14.02 73.36 1.06

egocentric videos, even
with the one extracted
from regular third per-
son videos. For this, we
perform experiments on
the IITMD-WTP dataset
under both closed-set
and open-set protocols.
For the former, the first
five walks of every sub-
ject were used for train-
ing and the last 5 for

testing the system. Whereas in the open-set scenario, only the first six subjects were
used for training, and the system has been evaluated on the last six unseen subjects.
Table 2 shows the results. We report the scores for both HSN-FT and HSN-TF and the
CombineNet, which fuses the features from HSN-FT and HSN-TF.

5.4 Model Interpretability

We have tried to analyze our model to understand if it can learn the wearer’s gait cues.
We have visualized the activations of 3-D convolutional filters of the first layer of our
model. We extract activations from the optical flow input of 2 different subjects and
compare the filters having maximum activation corresponding to the two subjects. Figure
8 shows two such filters for subjects 1 and 2. Recall that the first layer in our model is a
3-D CNN layer with the kernel of size 3× 3× 3, and input to the network is of the size
15× 112× 112× 3, where 3 channels correspond to optical flow in x, and y directions,
and its magnitude. Recall that we take a gait cycle of 15 frames. The output of the first
layer filter is of size 15 × 112 × 112. Figure 8 shows the activations for 10 frames.
In the first and last columns, we have shown the 3rd person gait respective to each of
the subjects. The second column from the left and right shows the corresponding 1st
person video frame. The 3rd and 4th columns show the activations corresponding to each
subject’s optical flow input from filter 1. The 5th and 6th columns show the activations
corresponding to each subject’s optical flow input from filter 2. These activations have
been overlaid with the input optical flow vectors. Note that the RGB frames are only for
illustration purposes, whereas the proposed model only uses the optical flow.

We observe that filter activations are mostly synchronized with the gait phases. For
example, filter 1 activations are high when subject 1 moves his/her one leg while the
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Subject 1 Subject 2Filter 1
activations

Subject 1 Subject 2

Filter 2
activations

Subject 1 Subject 2
3rd person

sidewise stream
Ego

stream
3rd person

sidewise stream
Ego

stream

Fig. 8: Filter activations of filter 1 and 2 of first layer for two different subjects with same
background and external surroundings. Please refer to the paper text for the details. We speculate on
the basis of the visualization that initial layers of the proposed network are temporally segmenting
a gait phase. This effectively allows the following layers to learn gait specific features.

other leg is stationary. We observe that similar movement of subject 2 is captured by
filter 2. We speculate that the initial layers of our network are trying to segment the gait
and trigger on a specific gait phase, which then is combined into distinguishing features
by the later layers. Moreover, it can also be seen that the activations are high in the
spatially salient parts of the image. In these parts, one can capture useful features for
computing optical flows. Since gait features are present in the transition of optical flows
from one frame to another, we believe that the network captures the gait features only
and not overfitting over the structure of the input scene.

6 Conclusion and Future Work

In this paper, we have tried to create a new kind of privacy attack by using the head-
mounting property of wearable egocentric cameras. Our experiments validate a startling
revelation that it is possible to extract gait signatures of the wearer from the observed
optical flow in the egocentric videos. Once the gait features are extracted, it is possible
to train a deep neural network to match it with the gait features extracted from another
egocentric video, or more surprisingly, even with the gait extracted from another third
person video. While the former allows us to search other first person videos captured
by the wearer, the latter completely exposes the camera wearer’s identity. We hope that
through our work, we will be able to convince the community that sharing egocentric
videos should be treated as sharing one’s biometric signatures, and strong oversight may
be required before public sharing of such videos. To extend this work in the future, we
would like to investigate other body-worn devices’ ability to extract gait of the wearer.
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