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We will give more detailed results on Cityscapes in this supplemental mate-
rial.

1 More Experimental Details

More implementation details on the edge supervision: As discussed in
the paper, we use the edge supervision for two purposes: one for edge prediction
and one for edge hardest pixel mining. For edge prediction, we use binary edge
map generated from the category label map as the ground-truth, and add extra
weights by counting the reciprocal of positive and negative pixels to balance the
binary cross-entropy loss. For edge hardest pixel mining, we set K = 0.1 based
on the input resolution due to the various sizes in different datasets. Since our
method requires a fine-grained edge from the ground truth mask, we only use
the fine-annotated set.

More implementation details on related methods: For SPN [1], we use the
authors’ original Pytorch code [1] and append it after the FCN output to replace
our proposed Body Generation module. For DCN [2], we use the implementation
of mmdetction repo [3] and replace our Body Generation module with two DCN
operators. Note that both supervisions and the edge preservation module are
kept untouched. For G-SCNN [4], we port the author’s open sourced code [4]
into our framework with extra shape stream and dual-task loss on the FCN.
Ablation study on component design in body generation (BG). Here
we carry out more detailed explorations on our BG design. We adopt the same
setting shown in the experiment part. Table 1(a) shows that depth-wise conv
works better than bilinear and is also slightly better than naive conv with less
computation. Table 1(b) shows that naive bilinear upsampling works better than
deconvolution and nearest neighbor during upsampling. Table 1(c) shows that
two successive strided-conv with total stride 4 works the best while larger stride
leads to degradation due to the loss of details.
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Method mIoU (%) ∆(%)

FCN (Baseline) 76.6

bilinear 78.2 1.6↑
naive conv 79.7 3.1↑
depth-wise-conv 80.1 3.5↑

(a) Ablation study on downsampling
operations in BG.

Method mIoU (%) ∆(%)

FCN (Baseline) 76.6 -

de-conv 79.0 2.4↑
nearest neighbor 79.5 2.9↑
bilinear 80.1 3.5↑

(b) Ablation study on upsampling
operations in BG.

Method mIoU (%) ∆(%)

FCN (Baseline) 76.6 -

(1, stride=2) 79.2 2.6↑
(2, stride=4) 80.1 3.5↑
(3, stride=8) 78.8 2.2↑
(4, stride=16) 78.5 1.9↑

(c) Ablation study on number of
strided-convs in BG.

Table 1. Experiment results on Cityscapes validation set with component design in
body generation part.

Method Thrs mIoU road swalk build. wall fence pole tlight sign veg terrain sky person rider car truck bus train motor bike

Deeplabv3+ 3px 69.7 83.7 65.1 69.7 52.2 46.2 72.2 62.8 67.7 71.8 52.2 80.9 61.5 66.4 78.8 78.2 83.9 91.7 77.9 60.9
G-SCNN 3px 73.6 85.0 68.8 74.1 53.3 47.0 79.6 74.3 76.2 75.3 53.1 83.5 69.8 73.1 83.4 75.8 88.0 93.9 75.1 68.5
Ours 3px 73.8 85.2 69.1 74.0 50.3 50.2 78.6 74.6 75.2 75.1 55.3 81.5 70.2 72.1 82.4 76.3 89.1 92.8 76.2 69.5

Deeplabv3+ 5px 74.7 88.1 72.6 78.1 55.0 49.1 77.9 69.0 74.7 81.0 55.8 86.4 69.0 71.9 85.4 79.4 85.4 92.1 79.4 68.4
G-SCNN 5px 77.6 88.7 75.3 80.9 55.9 49.9 83.6 78.6 80.4 83.4 56.6 88.4 75.4 77.8 88.3 77.0 88.9 94.2 76.9 75.1
Ours 5px 79.2 88.6 74.6 81.8 55.2 55.3 83.3 80.0 80.6 82.9 60.3 88.2 75.4 79.5 89.2 83.6 92.8 96.3 80.9 75.5

Deeplabv3+ 9px 78.7 91.2 78.3 84.8 58.1 52.4 82.1 73.7 79.5 87.9 59.4 89.5 74.7 76.8 90.0 80.5 86.6 92.5 81.0 75.4
G-SCNN 9px 80.7 91.3 80.1 86.0 58.5 52.9 86.1 81.5 83.3 89.0 59.8 91.1 79.1 81.5 91.5 78.1 89.7 94.4 78.5 80.4
Ours 9px 82.3 91.5 79.7 87.4 57.7 58.3 86.1 83.1 83.8 88.9 63.7 90.8 79.3 83.5 92.5 84.6 93.5 96.6 82.4 82.4

Deeplabv3+ 12px 80.1 92.3 80.4 87.2 59.6 53.7 83.8 75.2 81.2 90.2 60.8 90.4 76.6 78.7 91.6 81.0 87.1 92.6 81.8 78.0
G-SCNN 12px 81.8 92.2 81.7 87.9 59.6 54.3 87.1 82.3 84.4 90.9 61.1 91.9 80.4 82.8 92.6 78.5 90.0 94.6 79.1 82.2
Ours 12px 83.5 92.4 81.5 89.4 58.8 59.5 87.1 83.9 84.9 91.0 65.0 91.6 80.6 84.9 93.5 85.1 93.7 96.7 82.9 83.1

Table 2. Per-category F-score results on the Cityscapes val set for 4 different thresh-
olds based on Deeplabv3+. Note that our methods output G-SCNN over all four
thresholds. Best view on screen and zoom in.

Detailed boundaries improvements analysis: We analyze the improve-
ments over boundaries using F-score [5] on the Cityscapes dataset. The analysis
is performed on Deeplabv3+ over each class with 4 different boundary thresh-
olds. For a fair comparison, we also include the G-SCNN [4] results on the val set
since both models are based on Deeplabv3+. The results are shown in Tab. 2.

Detailed results on the Cityscapes test server: We first give the compari-
son results with models trained with only fine-annotated data using ResNet-101
as the backbone in Tab. 3. Our method leads to a significant margin with previ-
ous state-of-the-art models and outperforms them in 18 of 19 categories. Then
we compare the our model with Wider-ResNet in Tab. 4. For both cases, we
achieve state-of-the-art results.

2 More Visualisation Results

In this section, we give more visualization examples, as shown in the paper’s
Experiment parts.
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Method mIoU road swalk build. wall fence pole tlight sign veg terrain sky person rider car truck bus train motor bike

PSPNet [6] 78.4 98.6 86.2 92.9 50.8 58.8 64.0 75.6 79.0 93.4 72.3 95.4 86.5 71.3 95.9 68.2 79.5 73.8 69.5 77.2
AAF [7] 79.1 98.5 85.6 93.0 53.8 58.9 65.9 75.0 78.4 93.7 72.4 95.6 86.4 70.5 95.9 73.9 82.7 76.9 68.7 76.4
DenseASPP [8] 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8
DANet [9] 81.5 98.6 87.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

Ours 82.8 98.7 87.2 93.9 62.1 62.9 71.2 78.5 81.8 94.0 73.3 96.0 88.1 74.4 96.5 79.4 92.5 89.8 73.3 78.7

Table 3. Per-category results on the Cityscapes test set. Note that all the models are
trained with only fine annotated data. Our method outperforms existing approaches
on 18 out of 19 categories, and achieves 82.8% in mIoU.

Method Coarse mIoU road swalk build. wall fence pole tlight sign veg terrain sky person rider car truck bus train motor bike

PSP-Net [6] X 81.2 98.7 86.9 93.5 58.4 63.7 67.7 76.1 80.5 93.6 72.2 95.3 86.8 71.9 96.2 77.7 91.5 83.6 70.8 77.5
DeepLabV3 [10] X 81.3 98.6 86.2 93.5 55.2 63.2 70.0 77.1 81.3 93.8 72.3 95.9 87.6 73.4 96.3 75.1 90.4 85.1 72.1 78.3
DeepLabV3+ [11] X 81.9 98.7 87.0 93.9 59.5 63.7 71.4 78.2 82.2 94.0 73.0 95.8 88.0 73.3 96.4 78.0 90.9 83.9 73.8 78.9
AutoDeepLab-L [12] X 82.1 98.8 87.6 93.8 61.4 64.4 71.2 77.6 80.9 94.1 72.7 96.0 87.8 72.8 96.5 78.2 90.9 88.4 69.0 77.6
DPC [13] X 82.7 98.7 87.1 93.8 57.7 63.5 71.0 78.0 82.1 94.0 73.3 95.4 88.2 74.5 96.5 81.2 93.3 89.0 74.1 79.0

G-SCNN [4] × 82.8 98.7 87.4 94.2 61.9 64.6 72.9 79.6 82.5 94.3 74.3 96.2 88.3 74.2 96.0 77.2 90.1 87.7 72.6 79.4
Ours × 83.7 98.8 87.8 94.4 66.1 64.7 72.3 78.8 82.6 94.2 73.9 96.1 88.6 75.9 96.6 80.2 93.8 91.6 74.3 79.5

Table 4. Per-category results on the Cityscapes test set. Note that G-SCNN and our
method are trained with only fine annotated data. We achieve the state-of-the-art
results with 83.7 mIoU. Best view on screen and zoom in.

More visualization improvement analysis: In Fig. 1, we include more visual
comparisons on FCN and Deeplabv3+ with our methods. The right figures are
our method’s outputs. Our method solves the inner blur problem in large pat-
terns for FCN and fixes missing details and inconsistent results on small objects
on Deeplabv3+.

More visualization on decoupled feature representations and predic-
tions: We give more visualization examples on decouple feature representation
in Fig. 2.

More visualization on predicted flow fields: We also give more flow visu-
alization examples in Fig. 3. The flow color encoding is shown below. The left
part is the colormap, while the right part is the direction map.

More predicted fine-grained mask visualization: Fig. 4 gives more fine-
grained mask prediction which are shown in the red boxes.
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FCN

DeepLabV3+

Fig. 1. Improvements over FCN (First four rows) and Deeplabv3+ (Last four rows).
Best view it in color and zoom in.
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Input (a) (b) (c) (d) prediction

Fig. 2. More examples on Decoupled Feature Representation.(a) is Fbody. (b) is F −
Fbody. (c) is re-constructed feature F̂ . (d) is edge prior prediction b with tb = 0.8. Best
view it in color and zoom in.

Flow Color Coding

Fig. 3. Flow field visualizations. The first row shows the input images. The second row
shows the generated flow fields based on FCN, while the third row shows the generated
fields based on Deeplabv3+. We show flow directions and the color map in the last
row.
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Fig. 4. Mask prediction examples based on Deeplabv3+. The refined parts are shown
in red boxes.
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