000	Attention Guided Anomaly Localization in
001	Images
002	
003	Supplementary Material
004	
005	
006	Anonymous ECCV submission
007	Daman ID 9912
800	raper 1D 2813
009	
010	1 CAVGA is insensitive to anomaly localization threshold
011	
012	Most baseline methods discussed in Sec. 4 (in the main paper) use anomalous
013	training images to compute a threshold for localizing anomalies in images. How-
014	ever, as discussed in Sec. 3.1 (in the main paper), we empirically set 0.5 as our
015	threshold for anomaly localization. To show that $CAVGA-R_u$ is insensitive to
016	the variations in threshold values we choose 0.2 through 0.6 as our threshold
017	on attention map. We compare the localization performance of CAVGA-R $_u$ for
018	different threshold values to the best performing baseline method $(\gamma$ -VAE _g) on
019	the MvTAD dataset. We use the cell color in the quantitative result tables to

denote the performance ranking in that row, where darker cell color means better performance. From Table 1, we observe that CAVGA- R_u is insensitive to the variations in threshold and that CAVGA- R_u outperforms γ -VAE_g in at least 9 out of 15 categories.

Table 1: Comparison of anomaly localization in IoU of CAVGA- R_u for different threshold values with the best baseline method (γ -VAE_g) on the MVTAD dataset

Method	$\gamma\text{-VAE}_{\rm g}$	CAVGA- \mathbf{R}_u	CAVGA- R_u	CAVGA- \mathbf{R}_u	CAVGA- R_u	CAVGA-R _u
Threshold		0.2	0.3	0.4	0.5	0.0
Bottle	0.27	0.29	0.28	0.29	0.34	0.31
Hazelnut	0.63	0.41	0.45	0.46	0.51	0.46
Capsule	0.24	0.25	0.24	0.27	0.31	0.28
Metal Nut	0.22	0.38	0.39	0.44	0.45	0.36
Leather	0.41	0.78	0.77	0.78	0.79	0.77
Pill	0.48	0.34	0.31	0.35	0.40	0.33
Wood	0.45	0.52	0.54	0.57	0.59	0.56
Carpet	0.79	0.70	0.69	0.71	0.73	0.71
Tile	0.38	0.28	0.26	0.31	0.38	0.38
Grid	0.36	0.37	0.38	0.34	0.38	0.37
Cable	0.26	0.38	0.41	0.41	0.44	0.38
Transistor	0.44	0.27	0.25	0.31	0.35	0.29
Toothbrush	0.37	0.52	0.51	0.53	0.57	0.53
Screw	0.38	0.38	0.40	0.45	0.48	0.46
Zipper	0.17	0.23	0.25	0.26	0.26	0.25
mean	0.39	0.41	0.41	0.43	0.47	0.43

$\mathbf{2}$ Implementation details

All the images of the MVTAD, mSTC and LAG datasets are randomly center cropped to 256×256 and randomly rotated between $[-15^{\circ}, +15^{\circ}]$ to create variations in data during training. We train CAVGA_w and CAVGA_w with a learning rate of $1e^{-4}$ with a batch size of 16 for 150 epochs. To stabilize the training, the learning rate is decayed by 0.1 for every 30 epochs. For the MNIST, CIFAR-10 and Fashion-MNIST datasets, we use the images of size 32×32 and follow the same data augmentation and training procedure as mentioned in Sec. 4 (in main paper).

Additional quantitative results

We use the cell color in the quantitative result tables to denote the performance ranking in that row, where darker cell color means better performance.

AuBOC of β -VAE on the MNIST and CIFAR-10 datasets: We com-pare CAVGA-D_u with the baseline methods in Table 7 (in main paper) along with β -VAE [6] as an additional baseline in terms of AuROC on MNIST and CIFAR-10 datasets for anomaly detection. From Table 2, we see that $CAVGA-D_u$ outperforms β -VAE on all classes on MNIST and 9 out of 10 classes on CIFAR-10 datasets. Since [5] does not provide the class wise performance of MemAE on MNIST and CIFAR-10 and only provide the mean AuROC, we compared $CAVGA-D_{u}$ with MemAE in terms of mean AuROC and reported the result in Sec. 5 (in main paper under "performance on anomaly detection").

IoU for all baseline methods on MVTAD dataset: We compare CAVGA_u and $CAVGA_{w}$ with the baseline methods in Table 3 (in main paper) along with CNNFD [11], TI [3] and VM [14] as additional baselines in terms of IoU on each category of the MVTAD dataset for anomaly localization. From Table 3, we see that $CAVGA-D_{\mu}$ and $CAVGA-R_{\mu}$ outperform all baselines including CNNFD, TI and VM in terms of IoU and mean IoU.

Category specific AuROC on the MVTAD dataset: We compare $CAVGA_{u}$ and $CAVGA_{w}$ with the baseline methods in terms of AuROC on each category of the MVTAD dataset. Table 4 shows that $CAVGA-D_{\mu}$ and CAVGA- R_{μ} achieve comparable performance with the baseline methods AE_{SSIM}. γ -VAE_g and ADVAE. Furthermore, CAVGA-D_u and CAVGA-R_u outperform the best performing baseline (AE_{SSIM}) in 11 out of 15 and 13 out of 15 categories with an improvement ranging from 1% to 6% and 1% to 21% respectively.

Table 2: Performance comparison of CAVGA- D_{μ} and β -VAE in terms of AuROC and mean AuROC on MNIST and CIFAR-10 datasets for anomaly detection

											v		
35	Dataset	Method	0	1	2	3	4	5	6	7	8	9	mean
36	MNIST [8]	β -VAE [6]	0.890	0.841	0.967	0.947	0.968	0.966	0.907	0.899	0.946	0.794	0.913
7		$CAVGA-D_u$	0.994	0.997	0.989	0.983	0.977	0.968	0.988	0.986	0.988	0.991	0.986
8	CIFAR-10 [7]	β -VAE [6]	0.368	0.746	0.397	0.604	0.387	0.611	0.500	0.614	0.399	0.698	0.532
9		$\mathbf{CAVGA}\text{-}\mathbf{D}_{u}$	0.653	0.784	0.761	0.747	0.775	0.552	0.813	0.745	0.801	0.730	0.736

090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106

Table 3: Performance comparison of anomaly localization in category specific IoU and mean IoU (\overline{IoU}) on the MVTAD dataset. The darker cell color indicates better performance ranking in each row

ECCV-20 submission ID 2813

0.59	0.51	0.47	0.41	0.12	0.38	0.13	0.20	0.37	0.39	0.09	0.33	0.22	0.26	ĪoŪ
0.31	0.29	0.26	0.20	i.		0.00	0.06	0.14	0.17	0.01	0.13	0.10	0.25	Zipper
0.66	0.51	0.48	0.42	0.12	ı	0.00	0.17	0.38	0.38	0.01	0.34	0.03	0.22	Screw
0.63	0.60	0.57	0.54	0.24	ı	0.00	0.14	0.48	0.37	0.07	0.51	0.08	0.43	Toothbrush
0.45	0.38	0.35	0.30	i.	ı.	0.03	0.30	0.21	0.44	0.08	0.22	0.01	0.18	Transistor
0.51	0.49	0.44	0.37	i.	ı.	0.13	0.18	0.36	0.26	0.01	0.05	0.01	0.27	Cable
0.55	0.42	0.38	0.32	i.	0.01	0.02	0.02	0.20	0.36	0.04	0.83	0.88	0.51	Grid
0.81	0.68	0.38	0.31	•	0.11	0.14	0.23	0.32	0.38	0.08	0.23	0.04	0.09	Tile
0.81	0.70	0.73	0.71	ı.	0.29	0.20	0.10	0.76	0.79	0.34	0.38	0.69	0.25	Carpet
0.66	0.61	0.59	0.56	i.	0.51	0.47	0.14	0.41	0.45	0.14	0.29	0.36	0.14	Wood
0.53	0.44	0.40	0.34	0.13	ı.	0.00	0.18	0.18	0.48	0.17	0.25	0.07	0.11	Pill
0.84	0.80	0.79	0.76	i.	0.98	0.74	0.24	0.77	0.41	0.34	0.67	0.34	0.32	Leather
0.46	0.46	0.45	0.39	0.19	ı.	0.13	0.49	0.38	0.22	0.00	0.26	0.01	0.05	Metal Nut
0.41	0.38	0.31	0.25	0.01	ı	0.00	0.11	0.22	0.24	0.04	0.11	0.09	0.21	Capsule
0.79	0.58	0.51	0.44	ī	ı	0.00	0.44	0.41	0.63	0.02	0.41	0.00	0.54	Hazelnut
0.39	0.36	0.34	0.30	0.03		0.07	0.27	0.27	0.27	0.05	0.22	0.15	0.28	Bottle
$-\mathbf{R}_w$	-Dw	$-\mathbf{R}_u$	-D _u	[14]	Ξ	[11]	[10]	Ξ	[4]	[13]	[2]	[2]	[12]	
CAVGA	CAVGA	CAVGA	CAVGA	VM	, LI	CNNDE	ADVAE	LSA	γ -VAE _e	AnoGAN	AE_{L2}	AEssim	AVID	Category

135		135
126	Table 4: Comparison of anomaly localization in AuROC and mean AuROC of	126
130	CAVCA and $CAVCA$ with state of the art approaches on the MVTAD dataset	130
137	G_{M} G_{M} and G_{M} G_{M} with state-of-the-art approaches on the MV MD dataset	137

	ory AVID LSA ADVAE γ
	AVID LSA ADVAE γ
	D LSA ADVAE γ
	SA ADVAE γ
	ADVAE γ
10] [2] 87 0.83 .98 0.95 .94 0.93 .94 0.93 .95 0.78 .94 0.72 .77 0.72 .78 0.83 .90 0.79 .93 0.85 .94 0.87 .95 0.86 .96 0.87	VAE γ
[2] 0.83 0.95 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.91 0.87 0.85 0.87 0.87 0.87 0.82 0.87 0.82	E く
[2] 0.83 0.95 0.93 0.93 0.93 0.78 0.91 0.83 0.85 0.87 0.87 0.87 0.82 0.82 0.82	
6 1 1 2 7 9 7 7 5 5 9 3 2 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-VA
	E
	AE
22] 93 94 94 94 95 94 94 94 91 91 73 85 79 94 85 88 88 88 88 88 88 88 88 88 88 88 88	VISS
	Ā
	E_{L2}
	An
$\begin{array}{c} [4] \\ [4] \\ [6] \\$	G
	AN
	, CN
111] 111] 111] 111] 111] 111] 111] 111	ND
	Ŧ
.7572 .73	
	M
	[C/
$-D_u$ 0.87 0.96 0.96 0.84 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.85	AVC
	βA
	CA
89 84 85 85 85 85 85 85 85 85 85 85	VG
	A C
-D 0.9 0.9 0.9 0.9 0.9 0.9 0.9	AV
	GΑ
	CA
$\begin{array}{c} \mathbf{R}_w\\ 0, 91\\ 0, 92\\ 0, 93\\ 0, 94\\ 0, 94\\ 0, 95\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 94\\ 0, 0, 0\\ 0, 0, 0\\ 0, 0, 0\\ 0, 0, 0\\ 0, 0, 0\\ 0\\ 0, 0\\$	
	G

Scene specific AuROC on the mSTC dataset: We compare CAVGA_u and CAVGA_w with the baseline methods in terms of AuROC on each scene of the mSTC dataset. From Table 5, we observe that CAVGA-D_u and CAVGA-R_u outperform the best performing baseline method (γ -VAE_g) in 8 out of 12 scenes with an improvement ranging from 1% to 30%. Furthermore, CAVGA-D_w and CAVGA-R_w also outperform the baseline methods in all scenes of the mSTC dataset.

Table 5: Comparison of AuROC for anomaly localization on the mSTC dataset
for each scene ID and their mean

s_i	γ -VAE _g	AVID	LSA	AE _{SSIM}	AE_{L2}	CAVGA	CAVGA	CAVGA	CAVG
	[4]	[12]	[1]	[2]	[2]	$-\mathrm{D}_u$	$-\mathrm{R}_{u}$	$-\mathrm{D}_w$	$-\mathbf{R}_w$
01	0.73	0.65	0.77	0.63	0.72	0.69	0.71	0.78	0.81
02	0.82	0.68	0.89	0.71	0.64	0.75	0.80	0.90	0.89
03	0.81	0.79	0.83	0.83	0.64	0.84	0.85	0.87	0.88
04	0.76	0.63	0.69	0.94	0.91	0.93	0.94	0.95	0.95
05	0.88	0.77	0.75	0.90	0.83	0.89	0.91	0.92	0.92
06	0.90	0.71	0.85	0.87	0.80	0.91	0.92	0.91	0.92
07	0.87	0.83	0.86	0.88	0.89	0.88	0.92	0.93	0.93
08	0.89	0.89	0.73	0.61	0.68	0.75	0.83	0.84	0.86
09	0.88	0.90	0.88	0.53	0.75	0.89	0.89	0.91	0.90
10	0.73	0.63	0.67	0.41	0.31	0.60	0.65	0.74	0.85
11	0.69	0.85	0.90	0.88	0.85	0.90	0.90	0.93	0.93
12	0.85	0.87	0.88	0.93	0.89	0.91	0.93	0.94	0.95
mean	0.82	0.77	0.81	0.76	0.74	0.83	0.85	0.89	0.90

AuROC on the Fashion-MNIST dataset: Table 6 shows that CAVGA-D_u outperforms the most competitive baseline (γ -VAE_g) in AuROC in the unsupervised setting on the Fashion-MNIST dataset [15]. Specifically, CAVGA-D_u outperforms γ -VAE_g in 8 out of 10 classes of the Fashion-MNIST dataset with an improvement ranging from 2% to 24%.

Table 6: Comparison of $CAVGA-D_u$ for anomaly detection in terms of AuROC and its mean with the state-of-the-art methods on the Fashion-MNIST dataset

Class	LSA $[1]$	$\gamma\text{-VAE}_{\rm g}~[4]$	CapsNet_{PP} $[9]$	CapsNet_{RE} $[9]$	$\beta\text{-VAE}~[6]$	$CAVGA-D_u$
0	0.755	0.750	0.620	0.454	0.500	0.768
1	0.841	0.866	0.851	0.871	0.860	0.884
2	0.883	0.810	0.818	0.486	0.459	0.861
3	0.906	0.933	0.895	0.693	0.730	0.947
4	0.854	0.931	0.790	0.394	0.379	0.755
5	0.983	0.934	0.691	0.982	0.985	0.952
6	0.766	0.655	0.801	0.480	0.501	0.814
7	0.844	0.930	0.619	0.787	0.842	0.945
8	0.980	0.971	0.912	0.885	0.876	0.991
9	0.918	0.977	0.656	0.754	0.701	0.930
mean	0.873	0.876	0.765	0.679	0.683	0.885

6 ECCV-20 submission ID 2813

225Complexity analysis: We compare $CAVGA_u$ with the baseline methods225226in terms of training and testing time (in hours) for anomaly localization and226227detection. From Table 7, we see that CAVGA is practically reasonable to train227228and test on a single NVIDIA GeForce GTX 1080Ti GPU having comparable228229training and testing time with the baseline methods.229

Table 7: Training/testing time (in hours) needed on the entire training/testing set of MVTAD for anomaly localization and detection

method A	noGAN	AVID	AE_{SSIM}	AE_{L2}	LSA	OCGAN	ULSLM	CAVGA-D	CAVGA-R
training	2.5	3.0	2.0	2.0	4.0	1.5	2.0	3.0	7.0
testing	0.2	0.3	0.1	0.1	0.3	0.1	0.1	0.4	0.6

Ablation study: As mentioned in Sec. 6 (in main paper), we perform the ablation studies on 15 categories of the MVTAD dataset. Table 8 shows the ablation for all 15 categories, which illustrates the effectiveness of the convolutional z in CAVGA, L_{ae} in the unsupervised setting, and L_{cga} in the weakly supervised setting.

Table 8: The ablation study showing anomaly localization in IoU on all 15 categories of the MVTAD dataset. CAVGA- R_u^* and CAVGA- R_w^* are our base architecture with a flattened z in the unsupervised and weakly supervised settings respectively. "conv z" means using convolutional z

Method	$\begin{array}{c} \text{CAVGA} \\ \textbf{-} \mathbf{R}^{*}_{u} \end{array}$	CAVGA $-R_u^*$	CAVGA $-\mathbf{R}_u$	CAVGA $-\mathbf{R}_u$	$\begin{array}{c} \text{CAVGA} \\ -\mathbf{R}_w^* \end{array}$	CAVGA $-\mathbf{R}_w^*$	CAVGA $-\mathbf{R}_w$	CAVGA $-\mathbf{R}_w$
Category		$+ L_{ae}$	$+ \operatorname{conv} z$	$+ \operatorname{conv} z + L_{ae}$		$+ L_{cga}$	$+ \operatorname{conv} z$	$+ \operatorname{conv} + L_{cga}$
Column ID	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8
Bottle	0.24	0.27	0.26	0.33	0.16	0.34	0.28	0.39
Hazelnut	0.16	0.26	0.31	0.47	0.51	0.76	0.67	0.79
Capsule	0.09	0.22	0.14	0.31	0.18	0.36	0.27	0.41
Metal Nut	0.28	0.38	0.34	0.45	0.25	0.38	0.28	0.46
Leather	0.55	0.71	0.64	0.79	0.72	0.79	0.75	0.84
Pill	0.24	0.35	0.29	0.40	0.24	0.44	0.43	0.53
Wood	0.25	0.43	0.36	0.59	0.51	0.62	0.61	0.66
Carpet	0.48	0.59	0.53	0.73	0.69	0.78	0.72	0.81
Tile	0.07	0.18	0.23	0.32	0.66	0.77	0.73	0.81
Grid	0.15	0.27	0.24	0.32	0.31	0.48	0.51	0.55
Cable	0.30	0.38	0.36	0.43	0.47	0.58	0.51	0.63
Transistor	0.17	0.29	0.26	0.34	0.33	0.41	0.39	0.45
Toothbrush	0.41	0.46	0.49	0.55	0.54	0.61	0.60	0.66
Screw	0.11	0.18	0.34	0.48	0.16	0.24	0.22	0.31
Zipper	0.07	0.18	0.21	0.25	0.19	0.24	0.29	0.31
mean	0.24	0.34	0.33	0.47	0.39	0.52	0.48	0.60

4 Architectural details

Table 9: Architectural details of CAVGA- R_u and CAVGA- R_w . The notation in each row is as follows: operation, filter $h \times$ filter w, number of filters, stride, pad. W.S. denotes the additional layers for the weakly supervised setting. ConvTr 2D denotes transpose convolution layer. Conv 2D denotes convolution layer

network	layer name	layer dimensions	output dimensions
	Layer 1 - 18	pretrained Resnet-18 (convolution only)	$8 \times 8 \times 512$
	Layer 19	ReLU	$8 \times 8 \times 512$
	Layer 20	Conv 2D, 1×1 , 512, 1,0	$8 \times 8 \times 512$
Encoder	Layer 21	Conv 2D, 1×1 , 512, 1,0	$8 \times 8 \times 512$
	W.S.: Layer 22	Flatten	32768
	W.S.: Layer 23	Linear	2
	W.S.: Layer 24	Softmax	2
	Layer 1	ConvTr 2D, 4 × 4, 512, 2, 1	$16\times16\times512$
	Layer 2	BatchNorm	$16 \times 16 \times 512$
	Layer 3	ReLU	$16 \times 16 \times 512$
	Layer 4	Conv 2D 3 \times 3, 512, 1, 1	$16 \times 16 \times 512$
	Layer 5	BatchNorm	$16 \times 16 \times 512$
	Layer 6	ReLU	$16 \times 16 \times 512$
	-	output layer $1 + $ output layer 6	$16 \times 16 \times 512$
	Layer 7	ConvTr 2D, 4×4 , 256, 2, 1	$32 \times 32 \times 256$
	Layer 8	BatchNorm	$32 \times 32 \times 256$
	Layer 9	ReLU	$32 \times 32 \times 256$
	Layer 10	Conv 2D 3 \times 3, 256, 1, 1	$32 \times 32 \times 256$
	Layer 11	BatchNorm	$32 \times 32 \times 256$
	Layer 12	ReLU	$32 \times 32 \times 256$
	-	output layer $7 + $ output layer 12	$32 \times 32 \times 256$
Decoder	Layer 13	ConvTr 2D, 4×4 , 128, 2, 1	$64 \times 64 \times 128$
	Layer 14	BatchNorm	$64 \times 64 \times 128$
	Layer 15	ReLU	$64 \times 64 \times 128$
	Layer 16	Conv 2D 3 \times 3, 128, 1, 1	$64 \times 64 \times 128$
	Layer 17	BatchNorm	$64 \times 64 \times 128$
	Layer 18	ReLU	$64 \times 64 \times 128$
	-	output layer $13 + $ output layer 18	$64 \times 64 \times 128$
	Layer 19	ConvTr 2D, 4×4 , 64 , 2 , 1	$128 \times 128 \times 64$
	Layer 20	BatchNorm	$128 \times 128 \times 64$
	Layer 21	ReLU	$128 \times 128 \times 64$
	Layer 22	Conv 2D 3 \times 3, 64, 1, 1	$128 \times 128 \times 64$
	Layer 23	BatchNorm	$128 \times 128 \times 64$
	Layer 24	ReLU	$128 \times 128 \times 64$
	-	output layer $19 + $ output layer 24	$128\times128\times64$
	Layer 25	ConvTr 2D, 4×4 , 3, 2, 1	$256 \times 256 \times 3$
	Layer 26	Sigmoid	$256 \times 256 \times 3$
	Layer 1	Conv2D, 4×4 , 64 , 2 , 1	$128 \times 128 \times 64$
	Layer 2 Layer 3	Leaky ReLU (0.2)	$128 \times 128 \times 64$ 64 × 64 × 128
	Layer 3 Laver 4	$\begin{array}{c} \text{BatchNorm} \\ \end{array}$	$64 \times 64 \times 128$
	Layer 5	Leaky ReLU (0.2)	$64 \times 64 \times 128$
	Layer 6	Conv2D, 4×4 , 256, 2, 1	$32 \times 32 \times 256$
Discriminato	r Layer 7	BatchNorm	$32 \times 32 \times 256$
	Layer 8	Leaky ReLU (0.2)	$32 \times 32 \times 256$
	Layer 9	Conv2D, 4×4 , 512, 2, 1	$16\times16\times512$
	Layer 10	BatchNorm	$16\times16\times512$
	Layer 11	Leaky ReLU (0.2)	$16 \times 16 \times 512$
	Layer 12	Conv2D, 4×4 , 512, 2, 1	$8 \times 8 \times 512$
	T array 19	Sigmoid	$8 \times 8 \times 512$

Table 10: Architectural details of $CAVGA-D_u$ and $CAVGA-D_w$. The notation in each row is as follows: operation, filter $h \times$ filter w, number of filters, stride, pad. W.S. denotes the additional layers for the weakly supervised setting. ConvTr 2D denotes transpose convolution layer, Conv 2D denotes convolution layer

network	layer name	layer dimensions	output dimensions
	Laver 1	Conv2D, 4×4 , 64 , 2 , 1	$128 \times 128 \times 64$
	Layer 2	Leaky ReLU (0.2)	$128\times128\times64$
	Layer 3	Conv2D, 4×4 , 128, 2, 1	$64 \times 64 \times 128$
	Layer 4	BatchNorm	$64 \times 64 \times 128$
	Layer 5	Leaky ReLU (0.2)	$64 \times 64 \times 128$
	Layer 6	Conv2D, 4×4 , 256, 2, 1	$32 \times 32 \times 256$
Encoder	Layer 7	BatchNorm	$32 \times 32 \times 256$
	Layer 8	Leaky ReLU (0.2)	$32 \times 32 \times 256$
	Layer 9	$\begin{array}{c} \text{Conv2D, 4 \times 4, 512, 2, 1} \\ \text{BatchNorm} \end{array}$	$10 \times 10 \times 512$ $16 \times 16 \times 512$
	Layer 11	Leeky BeLU (0.2)	$16 \times 16 \times 512$ $16 \times 16 \times 512$
	Layer 12	Conv2D. 4 \times 4, 512, 2, 1	$10 \times 10 \times 012$ 8 × 8 × 512
	Laver 13	BatchNorm	$8 \times 8 \times 512$
	Layer 14	ReLU	$8 \times 8 \times 512$
	W.S.: Layer 15	Flatten	32768
	W.S.: Layer 16	Linear	2
	W.S.: Layer 17	Softmax	2
	Layer 1	ConvTr 2D, 4×4 , 512, 2, 1	$16 \times 16 \times 512$
	Layer 2	BatchNorm	$16 \times 16 \times 512$
	Layer 3	ReLU	$16 \times 16 \times 512$
	Layer 4	ConvTr 2D, 4×4 , 512, 2, 1	$32 \times 32 \times 512$
	Layer 5	BatchNorm	$32 \times 32 \times 512$
	Layer 6 Layer 7	$\begin{array}{c} \text{KeLU} \\ \text{ConvTr 2D} 4 \\ \times 4 256 2 1 \end{array}$	$32 \times 32 \times 512$ $64 \times 64 \times 256$
	Layer 7	BatchNorm	04 × 04 × 200 64 × 64 × 256
	Layer 9	BeLU	$64 \times 64 \times 256$
Decoder	Laver 10	ConvTr 2D, 4×4 , 128. 2. 1	$128 \times 128 \times 128$
Decodor	Layer 11	BatchNorm	$128 \times 128 \times 128$
	Layer 12	ReLU	$128 \times 128 \times 128$
	Layer 13	ConvTr 2D, 4 × 4, 64, 2, 1	$256\times256\times64$
	Layer 14	BatchNorm	$256\times256\times64$
	Layer 15	ReLU	$256 \times 256 \times 64$
	Layer 16	ConvTr 2D, 1×1 , 3, 1, 0	$256 \times 256 \times 3$
	Layer 17	Sigmoid	$256 \times 256 \times 3$
	Layer 1	Conv2D, 4×4 , 64 , 2 , 1	$128 \times 128 \times 64$
	Layer 2	Leaky ReLU (0.2)	$128 \times 128 \times 64$
	Layer 3	$\begin{array}{c} \text{OIIV2D, 4 \times 4, 128, 2, 1} \\ \text{BatchNorm} \end{array}$	$04 \times 04 \times 128$ 64 × 64 × 128
	Laver 5	Leaky BeLU (0.2)	$64 \times 64 \times 120$
	Laver 6	Conv2D, 4×4 , 256, 2, 1	$32 \times 32 \times 256$
Discriminator	Layer 7	BatchNorm	$32 \times 32 \times 256$
	Layer 8	Leaky ReLU (0.2)	$32 \times 32 \times 256$
	Layer 9	Conv2D, 4×4 , 512 , 2, 1	$16 \times 16 \times 512$
	Layer 10	BatchNorm	$16\times16\times512$
	Layer 11	Leaky ReLU (0.2)	$16\times16\times512$
	Layer 12	Conv2D, 4×4 , 512, 2, 1	$8 \times 8 \times 512$
	Layer 13	Sigmoid	$8 \times 8 \times 512$

Qualitative results on MVTAD, mSTC and LAG datasets

We compare CAVGA- R_u and CAVGA- R_w with the baseline methods on MVTAD and mSTC datasets and present additional anomaly localization results on the MVTAD, mSTC and LAG datasets, Fig. 1 illustrates the ability of CAVGA-D. to localize the anomalous regions on the LAG dataset. From Fig. 2, Fig. 3, Fig. 4 and Fig. 5, we see that CAVGA- R_u and CAVGA- R_w outperform the baselines in localizing the anomaly and that $CAVGA-R_{w}$ has better localization performance than CAVGA- R_{μ} on the MVTAD dataset. From Fig. 6 and Fig. 7 we see that CAVGA- R_{u} and CAVGA- R_{w} have better anomaly localization as compared to the baseline methods and that CAVGA- R_w surpasses CAVGA- R_u in its ability to localize the anomaly on the mSTC dataset.

Fig. 1: Qualitative results for anomaly localization of $CAVGA-D_u$ on the LAG dataset. The anomalous attention map depicts the localization of the anomaly in the image.

Fig. 2: Qualitative comparison of anomaly localization of CAVGA- R_u and CAVGA- R_w with baseline methods on the MVTAD dataset. The anomalous attention map (in red) depicts the localization of the anomaly in the image.

Fig. 3: Qualitative comparison of anomaly localization of CAVGA- R_u and CAVGA- R_w with baseline methods on the MVTAD dataset. The anomalous attention map (in red) depicts the localization of the anomaly in the image.

Fig. 4: Qualitative comparison of anomaly localization of CAVGA- R_u and $CAVGA-R_w$ with baseline methods on the MVTAD dataset. The anomalous attention map (in red) depicts the localization of the anomaly in the image.

Fig. 5: Qualitative comparison of anomaly localization of CAVGA- R_{u} and CAVGA- \mathbf{R}_w with baseline methods on the MVTAD dataset. The anomalous attention map (in red) depicts the localization of the anomaly in the image.

Fig. 6: Qualitative comparison of anomaly localization of CAVGA- R_u and CAVGA- R_w with baseline methods on the mSTC dataset. The anomalous attention map (in red) depicts the localization of the anomaly in the image.

Fig. 7: Qualitative comparison of anomaly localization of CAVGA- R_{μ} and CAVGA- R_w with baseline methods on the mSTC dataset. The anomalous attention map (in red) depicts the localization of the anomaly in the image.

Bibliography

[1] Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression

for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 481–490 (2019) Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsu-[2]pervised defect segmentation by applying structural similarity to autoencoders. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), vol. 5 (2019) [3] Böttger, T., Ulrich, M.: Real-time texture error detection on textured surfaces with compressed sensing. Pattern Recognition and Image Analysis **26**(1), 88–94 (2016) [4] Dehaene, D., Frigo, O., Combrexelle, S., Eline, P.: Iterative energy-based projection on a normal data manifold for anomaly localization. International Conference on Learning Representations (2020) [5] Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Hengel, A.v.d.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1705–1714 (2019) [6] Higgins, I., Matthev, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-VAE: Learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations 2(5). 6(2017)[7] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Tech. rep., Citeseer (2009) [8] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)[9] Li, X., Kiringa, I., Yeap, T., Zhu, X., Li, Y.: Exploring deep anomaly detection methods based on capsule net. International Conference on Machine Learning 2019 Workshop on Uncertainty and Robustness in Deep Learning (2019) [10] Liu, W., Li, R., Zheng, M., Karanam, S., Wu, Z., Bhanu, B., Radke, R.J., Camps, O.: Towards visually explaining variational autoencoders. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020) [11] Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by CNN-based self-similarity. Sensors 18(1), 209 (2018) [12] Sabokrou, M., Pourreza, M., Favyaz, M., Entezari, R., Fathy, M., Gall, J., Adeli, E.: Avid: Adversarial visual irregularity detection. In: Asian Conference on Computer Vision. pp. 488–505. Springer (2018) [13] Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsu-pervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging. pp. 146–157. Springer (2017) [14] Steger, C.: Similarity measures for occlusion, clutter, and illumination invariant object recognition. In: Joint Pattern Recognition Symposium. pp. 148–154. Springer (2001)[15] Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)