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Abstract. Monocular 3D object detection aims to extract the 3D po-
sition and properties of objects from a 2D input image. This is an ill-
posed problem with a major difficulty lying in the information loss by
depth-agnostic cameras. Conventional approaches sample 3D bounding
boxes from the space and infer the relationship between the target ob-
ject and each of them, however, the probability of effective samples is
relatively small in the 3D space. To improve the efficiency of sampling,
we propose to start with an initial prediction and refine it gradually to-
wards the ground truth, with only one 3d parameter changed in each
step. This requires designing a policy which gets a reward after sev-
eral steps, and thus we adopt reinforcement learning to optimize it. The
proposed framework, Reinforced Axial Refinement Network (RAR-Net),
serves as a post-processing stage which can be freely integrated into ex-
isting monocular 3D detection methods, and improve the performance
on the KITTI dataset with small extra computational costs.

Keywords: 3D Object Detection, Refinement, Reinforcement Learning

1 Introduction

Over the past years, monocular 3D object detection has attracted increasing
attentions in computer vision [6, 19, 7, 39, 42]. For many practical applications
such as autonomous driving [2, 15, 14, 8, 18], augmented reality [1, 37] and robotic
grasping [40, 27, 21], high-precision 3D perception of surrounding objects is an
essential prerequisite. Compared to 2D object detection, monocular 3D object
detection can provide more useful information including orientation, dimension,
and 3D spatial location. However, due to the increase in dimensionality, the
3D Intersection-over-Union (3D-IoU) evaluation criterion is much more strict
than 2D-IoU, making monocular 3D object detection a very difficult problem.
In some challenging scenarios, state-of-the-art methods can only achieve a 3D
average precision (3D AP) of around 10% [3, 26].

There have been a variety of efforts on detecting the objects in 3D space from
a single image, and two popular trends are using geometry constraints [32, 20,
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Fig. 1. Illustration of our idea that sequentially refines 3D detection using deep rein-
forcement learning. During the process, the 3D parameters are refined iteratively. In
this example, we can see the trend that 3D-IoU gets improved as the 3D box gradually
fits the object. Many intermediate steps are omitted here due to the limited space.

22] and depth estimation [47, 35, 28, 44]. Due to the lack of real 3D cues, these
methods often suffer from the problem of foreshortening (for distant objects, a
tiny displacement on the image plane can lead to a large shift in the 3D space),
and thus fail to achieve high 3D-IoU rates between detection results and ground-
truth. To make up for the loss of 3D information, recently researchers propose to
use a sampling-based method [25] to score the fitting degree between a sampled
box and the object. However, in 3D space, the efficiency of sampling is very
low and a randomly placed 3D box often has no overlap (3D-IoU is 0) to the
target, which leads to inefficient learning. To this end, it is desirable to propose
a method which can significantly increase the sampling efficiency.

In this paper, we ease this challenge by presenting a new framework called
Reinforced Axial Refinement Network (RAR-Net), which, as illustrated in Fig. 1,
iteratively refines the detected 3D object to the most probable direction. In this
way, the probability of effective sampling (finding a positive example with a
non-zero 3D-IoU) increases with iteration. This is a Markov Decision Process
(MDP), which involves optimizing a strategy that gets a reward after multiple
steps. We train the model using a Reinforcement Learning (RL) algorithm.

RAR-Net takes the current status as input, and outputs one refining action
at a time. In each step, to provide the current detection information as auxiliary
cues, we project it to an image of the same spatial resolution as the input image
(each face of the box is painted in a specific color), concatenate this additional
image to the original input, and feed the 6-channel input to the RAR-Net. This
implicit way of embedding the 2D image and 3D information into the same
feature space brings consistent accuracy gain. Overall, RAR-Net is optimized
smoothly during training, in particular, with the help of abundant training data
that are easily generated by simply jittering the ground-truth 3D box.

We conduct extensive experiments on the KITTI object orientation estima-
tion benchmark, 3D object detection benchmark and bird’s eye view benchmark.
As a refinement step, RAR-Net works well upon four popular 3D detection base-
lines, improving the base detection accuracy by a large margin, while requiring
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relatively small extra computational costs. This implies its potential in real-world
scenarios. In summary, our contributions are three-fold:

– To the best of our knowledge, this is the first work that applies deep RL to
refine 3D parameters in an iterative manner.

– We define the action space and state representation, and propose a data
enhancement which embeds axial information and image contents.

– RAR-Net is a plug-and-play refinement module. Experimental results on the
KITTI dataset demonstrate its effectiveness and efficiency.

2 Related Work

Monocular 3D Object Detection. Monocular 3D object detection aims to
generate 3D bounding-boxes for objects from single RGB images. It is more
challenging than 2D object detection due to the increased dimension and the
absence of depth information. Early studies use handcrafted approaches trying
to design efficient features for certain domain scenarios [33, 13, 34, 9]. However,
they suffer with the ability to generalize. Recently, researchers have developed
deep learning based approaches aiming to solve this problem leveraging largely
labeled data. One cut-in point is to use geometry constraints to make up for the
lack of 3D information. Mousavian et al. [32] present MultiBin architecture for
orientation regression and compute the 3D translation using tight constraint.
Kundu et al. [20] propose a differentiable Render-and-Compare loss to supervise
3D parameters learning. Li et al. [22] utilize surface features to explore the
3D structure information of the object. Apart from these pure geometry-based
methods, there are some other methods which turn to the depth estimation to
recover 3D information. One straightforward way is to first predict the depth
map using the depth estimation module and then perform 3D detection using
the estimated 3D depth [47, 28, 44, 26]. Another way is to infer instance depth
instead of global depth map [35], which does not require additional training data.
Recently, Liu et al. [25] propose to sample 3D bounding boxes from the space
and introduce fitting degree to score the candidates. Brazil et al. [3] design a
3D region proposal network called M3D-RPN to generate 3D object proposals
in the space. However, the performance of these methods is still limited because
of the low efficiency of sampling in the 3D space. Our work jumps out of the
limitation of trending object detection modules by iteratively refining the box
to the ground-truth. It greatly solves the issue when network cannot directly
regress to the goal detection and achieves better result.
Pose Refinement Methods. Our method belongs to the large category of
coarse-to-fine learning [5, 48, 49], which refines visual recognition in an iterative
manner. The approaches most relevant to ours are the iterative 3D object pose
refinement approaches in [29, 23]. Manhardt et al. [29] train a deep neural net-
work to predict a translational and rotational update for 6D model tracking.
DeepIM [23] aims to iteratively refine estimated 6D pose of objects given the
initial pose estimation. They also see the limitation of direct regression of im-
ages. However, these methods require the CAD model of the objects for fine



4 L. Liu et al.

correction and cannot be used in autonomous driving directly. In our case, we
do not require complex CAD models and optimize the whole pose refinement
process using deep RL.
Deep RL. RL aims at maximizing a reward signal instead of trying to generate
a representational hidden state like traditional supervised learning problem [24,
31, 43]. Deep RL is the method of incorporating RL with deep learning. Due
to the distinguished feature of delayed reward and the massive power of deep
learning, deep RL has been widely used on decision making in goal-oriented
problems like object detection [4, 30], deformable face tracking [16], interaction
mining [12], object tracking [50, 38] and video face recognition [36]. However,
to our best knowledge, little work has been made in RL for pose refinement,
especially in monocular 3D object detection. Our approach sees 3D parameter
refinement problem as a multi-step decision-making problem by updating the
3D box using action from each step, which takes advantage of trial-and-error
search in RL to achieve better result.

3 Approach

The monocular 3D object detection task requires solving a 9-Degree-of-Freedom
(9-DoF) problem including dimension, orientation and location using a single
RGB image as input. In this paper, we focus on improving the detection accuracy
in the context of autonomous driving, where the object can only rotate around
the Y axis, so the orientation has only 1-DoF. Although many excellent methods
have been proposed so far, the monocular 3D object detection accuracy is still
below satisfactory. So, we formulate the refinement problem as follows: given
an initial estimation (x̂, ŷ, ẑ, ĥ, ŵ, l̂, θ̂), the refinement model predicts a set of
displacement values (∆x,∆y,∆z,∆h,∆w,∆l,∆θ). Then, a new estimation is

computed as (x̂+∆x, ŷ +∆y, ẑ +∆z, ĥ+∆h, ŵ +∆w, l̂ +∆l, θ̂ +∆θ) and fed
into the refinement model again. After several iterations, the refinement model
can generate more and more accurate estimates.

3.1 Baseline and the Curse of Sampling in 3D Space

Monocular 3D object detection is an ill-posed problem, i.e., to recover 3D per-
ception from 2D data. Although some powerful models have been proposed for
3D understanding [32, 35, 3], it is still difficult to build relationship between the
depth-agnostic input image and the desired 3D location. To alleviate the infor-
mation gap, researchers came up with an alternative idea that samples a number
of 3D boxes from the space and asks the model to judge the IoU between the
target object and each sampled box [25]. Such models, sometimes referred to
as a fitting network, produced significant improvement under sufficient training
data and the help of extra (e.g., geometric) constraints.

However, we point out that the above sampling-based approaches suffer a
difficulty in finding ‘effective samples’ (those having non-zero overlap with the
target) especially in the testing stage. This is mainly caused by the increased
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dimensionality: the probability that a randomly placed 3D box has overlap to a
pre-defined object is much lower than that in the 2D scenario. For example, if we
use a Gaussian distribution with a deviation of 1 meter, there is only a chance
of 0.12 to place an effective sample on a car that is 5 meters away from the ini-
tial detection result. This situation even deteriorates with the distance becomes
larger. That being said, unless the initial detection is sufficiently accurate, the
sampling efficiency can be very low.

3.2 Towards Higher Sampling Efficiency

To improve the sampling efficiency, a straightforward idea is to go towards a
roughly correct direction and then perform sampling at a better place. For the
same example of the car that is 5 meters behind the detection result, if we
move the current detection result towards the back direction for 2 meters, the
possibility of sampling a non-zero IoU box will increase to 0.63. Furthermore,
with multi-step refinement, the 3D box can even converge to the ground-truth
and sampling becomes unnecessary.

There are many moving options to choose, and we find that moving in only
one direction at a time is the most efficient, because the training data col-
lected in this way is the most concentrated (the output targets will not be scat-
tered throughout the three-dimensional space). Most existing refinement models
choose to optimize their objective function using one-step optimization, which
learns to move from the initial estimate to the ground-truth directly. However,
one-step optimization can barely achieve the global optimum, especially when
there is more than one variable to be refined, because different variables can
have an effect on each other. For example, refining the orientation first can help
the model make better use of appearance information to refine to a more precise
location. Two-stage cascaded refinement algorithm is another design choice, but
it may bring considerable difficulties in algorithm design, especially in the way
of defining different stages. Also, it is a challenging topic to prepare data for
each stage, e.g. how to guarantee the training input fed into the second stage
match the case in testing scenario.

Motivated by this concern, we choose to optimize the learning objective
for the entire MDP instead of one step using RL-based framework which can
support an arbitrary number of stages and the training procedure is elegant
(few heuristic rules are required). Our approach starts from an initial estimate

(x̂, ŷ, ẑ, ĥ, ŵ, l̂, θ̂), and outputs a refining operation at a time. The 3D-IoU of the
predicted object is therefore improved as the refinement of the 3D parameters.

Fig. 2 shows our overall pipeline, Reinforced Axial Refinement Network
(RAR-Net), where we first enhance the input information using a parameter-
aware module and then use a ResNet-101 [17] backbone to output the action
value (Q-value). Similar to [4], we also use the history vector to encode 10 past
actions in order to stabilize search trajectories that might get stuck in repeti-
tive cycles. We formulate the process of refining the 3D box from initial coarse
estimate to the destination as an MDP and introduce an RL method for opti-
mization. The goal is to predict a tight bounding-box with a high 3D-IoU.
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Fig. 2. The proposed framework for monocular 3D object detection. It is an itera-
tive algorithm optimized by RL. In each iteration, an input image is enhanced by a
parameter-aware mask and fed into a deep network, which produces a Q-value for each
action as output and the 3D box is refined according to ε-greedy policy.

3.3 Refining 3D Detection with Reinforcement Learning

In the RL setting, the optimal policy of selecting actions should maximize the
sum of expected rewards R on a given initial estimated state Si. Since we do not
have a priori knowledge about the optimal path to refine the initial predicted
3D bounding-box to the destination, we address the learning problem through
standard DQN [31]. This approach learns an approximate action value function
Q(Si,Ai) for each action Ai, and selects the action with the maximum value as
the next action to be done at each iteration. In order to prevent falling into local
optimum, we use ε-greedy policy, where there is certain possibility to choose
random actions. The learning process iteratively updates the action-selection
policy by minimizing the following loss function:

L(θ) = [Ri + γmax
Ai+1

Q(Si+1,Ai+1; θ−1)−Q(Si,Ai; θ)]
2, (1)

where γ is the discount factor, θ are the parameters of the Q-network, and θ−1

are the parameters of the target-Q-network, whose weights are kept frozen most
of the time, but are updated with the Q-network’s weights every few hundred
iterations. We use [Ri +γmaxAi+1

Q(Si+1,Ai+1; θ−1)] to approximate the opti-
mal target value, because the optimal action-value function obeys the Bellman
equation:

Q?(Si,Ai) = ESi+1 [Ri + γmax
Ai+1

Q?(Si+1,Ai+1)|Si,Ai]. (2)
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Under our refinement problem setting, for the output Q-value, we use a 15-
dimensional vector to represent 15 different refining operations and actions are
chosen based on ε-greedy policy. Considering that continuous action space is too
large and difficult to learn, we set the refinement value to be discrete during
each iteration. In practice, we define the refinement value as a fixed ratio of
the corresponding dimension of the object. We present the detailed settings of
the definition of state, action, state transition and reward of our refinement
framework for monocular 3D object detection as follows:

State: In this work, we define the state to include both the observation image
patch and the projected 3D cuboid. Given an initial estimate of the object X =
(x̂, ŷ, ẑ, ĥ, ŵ, l̂, θ̂), which is often the detection results of other monocular 3D
object detection methods, we use a standard camera projection to obtain the
top left point and bottom right point of the crop image patch:

(umin, vmin, umax, vmax) = µ(X,K), (3)

where K ∈ R3×4 is the camera intrinsic matrix and the function µ is the pro-
jection operation. To include more context information, we enlarge the patch
regions by a factor of 1.2 in height and width. For the projected 3D cuboid,
we crop in the same position as the image patch and use white color as the
background. Therefore, our state is a 6-channal image patch:

S = [φ(umin, vmin, umax, vmax, I); P(X,K)], (4)

where I is the original image, P(X,K) is the projected 3D cuboid and φ(·) is
the crop operation. Finally, S is resized to fit the input size of RAR-Net.

Action: Our action set A consists of 15 refining operations, including a none
operation indicating no refinement. These operations are related to the 3D pa-
rameters of the detections. For instance, the action +∆x will lead to a displace-
ment along the width axis of the object with the value (∆x′ = δ × ŵ), where δ
is a fixed ratio. It is worth mentioning that there are two choices for the defini-
tion of our shifting actions, one is defined in the world coordinate system and
the other is defined in the axial coordinate system of the object as shown in
Fig. 3. If we need to move the object to the left in the world coordinate system,
for the former definition, we have to predict the same moving action for cars
with different orientations (appearances). But, if we use the latter definition,
the shifting operation will be related to the orientation of the cars, thus turning
a many-to-one mapping to one-to-one mapping and easing the training process.

State Transition: Our state transition function T refines the predicted box
of the objects from Xi = (x̂, ŷ, ẑ, ĥ, ŵ, l̂, θ̂) to Xi+1 = (x̂ + ∆x, ŷ + ∆y, ẑ +

∆z, ĥ + ∆h, ŵ + ∆w, l̂ + ∆l, θ̂ + ∆θ). However, the moving direction is defined
along the coordinate axes of the object, while the (x̂, ŷ, ẑ) is defined in the world
coordinate system, so we need to transform the displacement value across two
different coordinate systems. Denote the output displacement of RAR-Net as
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(b) Axial Coordinate System

Fig. 3. (a) shows the world coordinate system, which is related to the camera pose and
shared by all the objects. (b) shows the axial coordinate system for one sample object.
We also illustrate how to generate the parameter-aware mask from a 3D object (best
viewed in color). Each color indicates one fixed face. Only two faces are visible in this
real example.

(∆x′, ∆y′, ∆z′), which is defined in the axial coordinate system, we have:
∆x =∆z′ × cos θ̂ +∆x′ × sin θ̂

∆y =∆y′

∆z =∆z′ × (− sin θ̂) +∆x′ × cos θ̂

(5)

Therefore, we can translate state Si to state Si+1 according to the output dis-
placement value of RAR-Net.
Reward: The reward function R reflects the detection accuracy improvement
from state Si to Si+1. Considering that increasing the 3D-IoU will have posi-
tive reward and decreasing the 3D-IoU will have negative reward, we define the
reward function as:

Ri =


+ 1, if ∆IoU3D > 0

− 1, if ∆IoU3D < 0

sgn[(Xi+1 −Xi)(X
? −Xi)], if ∆IoU3D = 0

(6)

where X? is the ground-truth 3D parameters and ∆IoU3D is the changes of 3D-
IoU. When there is no overlap between the estimated and ground-truth boxes,
we use the changes in 3D parameters as the reward signal. In addition, when we
arrive at a none action or the end of the sequence, we set the reward to +3 for
a successful refinement (IoU ≥ 0.7), and −3 otherwise.

3.4 Parameter-aware Data Enhancement

In our iteration-based framework, two input sources are necessary, namely, an
image patch which lies in the 2D image space (high-level image features), and
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the current detection result which lies in the 3D physical space (low-level ge-
ometry features). Provided that the desired output is strongly related to both
information, it remains unclear how to combine both cues, in particular they
come from two domains which are quite different from each other. Based on the
above motivation, we propose to attach the refined result of last iteration into
the input of current iteration. There are many options to achieve this goal, and
the naive case is to concatenate the 3D parameters and the image feature in
a late-fusion manner, but this practice can barely provide enough appearance
cues. Another way is to project the 3D bounding-box on the input image patch
[25] or render the 3D object when 3D CAD models are available [20], but these
methods may damage the original information since the projection result will
obscure the original image.

To avoid loss of information while providing sufficient appearance cues, we
propose to project the 3D bounding box on the 2D image plane, and draw
different colors on each face of the projected cuboid. This idea is similar to [38].
In order to prevent loss of depth information during the projection operation, we
embed the instance depth into the intensity of the color as c′, where c′ = c× 128

255
if z > 50, and c′ = c × (1 − z

100 ) if z ≤ 50, c is the base RGB value shown
in Fig. 3, and z is the instance depth of the object. Thus, different appearance
will represent different 3D parameters of the object. For example, we paint blue
for the front face, so the blue cue can guide the model to learn the refining
policy along the forward-backward axis. A sample projection is shown in Fig. 3.
We concatenate the painted cuboid and the original image patch to construct a
6-channel input patch as the final input of our RAR-Net.

For the painting process, we use the OpenCV function fillConvexPoly to
color each face of the projected cuboid. We also apply black to the edges of the
projected cuboid to strengthen the boundary. Since some faces are invisible from
the front view, we have to determine the visibility of each face. Denote the center
of i-th face as Ci, and the center of the 3D bounding box as C, the visibility of
i-th face, Vi, is determined by whether (0−C)(Ci −C) is greater than 0.

3.5 Implementation Details

Training: We used the ResNet-101 as backbone, and changed the input size into
224× 224× 6, and the output size into 15. We trained the model from scratch.
In order to speed up the RL process, we first performed supervised pre-training
using one-step optimization where the model learns to perform the operation
with the largest amount of correction. To create the training set, we added a
jitter of Gaussian distribution to the 3D bounding boxes and each object leads to
300 training samples, whose projection is checked to be inside the image space.
During the pre-training process, the model was trained with SGD optimizer using
a start learning rate of 10−2 with a batch size of 64. The model was trained for
15 epochs and the learning rate was decayed by 10 every 5 epochs. During RL,
The model was trained with Adam optimizer using a start learning rate of 10−4

with a batch size of 64 for 40000 iterations. We used memory replay [41] with
buffer size of 104. The target Q-Network is updated for every 1000 iterations.
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The ε for greedy policy is set to 0.5 and will decay exponentially towards 0.05.
The discount factor γ is set to 0.9. Testing: we set the total refinement steps
to 20, and during each step, we chose the action based on ε-greedy policy, which
is to take actions either randomly or with the highest action-value. For each
action, the refining stride was set to 0.05× corresponding dimensions. The ε for
greedy policy is set to 0.05.

4 Experiments

4.1 Dataset and Evaluation

We evaluate our method on the real-world KITTI dataset [15], including the
object orientation estimation benchmark, the 3D object detection benchmark,
and the bird’s eye view benchmark. There are 7481 training images and 7518
testing images in the dataset, and in each image, the object is annotated with 2D
location, dimension, 3D location, and orientation. However, only the labels in the
KITTI training set are released, so we mainly conduct controlled experiments
in the training set. Results are evaluated based on three levels of difficulty,
namely, Easy, Moderate, and Hard, which are defined according to the minimum
bounding-box height, occlusion, and truncation grade. There are two commonly
used train/val experimental settings: Chen et al. [10, 9] (val 1) and Xiang et
al. [45, 46] (val 2). Both splits guarantee that images from the training set and
validation set are sampled from different videos.

We evaluate 3D object detection results using the official evaluation metrics
from KITTI. 3D box evaluation is conducted on both two validation splits (dif-
ferent models are trained with the corresponding training sets). We focus our
experiments on the car category as KITTI provides enough car instances for
our method. Following the KITTI setting, we perform evaluation on the three
difficulty regimes individually. In our evaluation, the 3D-IoU threshold is set
to be 0.5 and 0.7 for better comparison. We compute the Average Orientation
Similarity (AOS) for the object orientation estimation benchmark, the Average
Precision (AP) for the bird’s eye view boxes (which are obtained by project-
ing the 3D boxes to the ground plane), and the 3D Average Precision (3D AP)
metric for evaluating the full 3D bounding-boxes.

4.2 Comparison to the State-of-the-Arts

To demonstrate that our proposed refinement method’s effectiveness, we use the
3D detection results from different state-of-the-art 3D object detectors including
Deep3DBox [32], MonoGRNet [35], GS3D [22] and M3D-RPN [3] as the initial
coarse estimates. These detection results are provided by the authors, except
that we reproduce M3D-RPN by ourselves.

We first compare AOS with these baseline methods, and the results are shown
in Table 1. The 2D Average Precision (2D AP) is the upper bound of AOS by
definition, and we can see that our refinement method can improve the baseline
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Table 1. Comparisons of the Average Orientation Similarity (AOS, %) to baseline
methods on the KITTI orientation estimation benchmark. (In each group, we also
show the 2D Average Precision (2D AP) of 2D detection results, which is the upper
bound of AOS).

Method
Easy Moderate Hard

val 1 val 2 val 1 val 2 val 1 val 2

Deep3DBox [32] - 98.59 (98.84) - 96.69 (97.20) - 80.50 (81.16)
+RAR-Net - 98.61 (98.84) - 96.68 (97.20) - 80.51 (81.16)

MonoGRNet [35] 87.83 (88.17) - 77.80 (78.24) - 67.49 (68.02) -
+RAR-Net 87.86 (88.17) - 77.80 (78.24) - 67.51 (68.02) -

GS3D [22] 81.08 (82.02) 81.02 (81.66) 73.01 (74.47) 70.76 (71.68) 64.65 (66.21) 61.77 (62.80)
+RAR-Net 81.32 (82.02) 81.21 (81.66) 73.64 (74.47) 70.92 (71.68) 64.89 (66.21) 61.88 (62.80)

M3D-RPN [3] 90.71 (91.49) - 82.50 (84.09) - 66.44 (67.94) -
+RAR-Net 91.01 (91.49) - 82.92 (84.09) - 66.74 (67.94) -

Table 2. Comparisons of 3D localization accuracy (AP, %) to state-of-the-arts methods
on the KITTI bird’s eye view benchmark.

Method
IoU = 0.5 IoU = 0.7

Easy Moderate Hard Easy Moderate Hard
val 1 val 2 val 1 val 2 val 1 val 2 val 1 val 2 val 1 val 2 val 1 val 2

Deep3DBox [32] - 30.02 - 23.77 - 18.83 - 9.99 - 7.71 - 5.30
+RAR-Net - 33.12 - 24.42 - 19.11 - 14.38 - 10.28 - 8.29

MonoGRNet [35] 53.91 - 39.45 - 32.84 - 24.84 - 19.27 - 16.20 -
+RAR-Net 54.01 - 41.29 - 32.89 - 26.34 - 23.15 - 19.12 -

GS3D [22] 38.24 46.50 32.01 39.15 28.71 33.46 14.34 20.00 12.52 16.44 11.36 13.40
+RAR-Net 38.31 48.90 34.01 39.91 29.70 35.16 18.47 24.29 16.21 19.23 14.10 15.92

M3D-RPN [3] 56.92 - 43.03 - 35.86 - 27.56 - 21.66 - 18.01 -
+RAR-Net 57.12 - 44.41 - 37.12 - 29.16 - 22.14 - 18.78 -

even if the performance is already very close to the upper bound. Then we
compare 2D AP in bird’s view of our method with these published methods. As
can be seen in Table 2, our method improve the existing monocular 3D object
detection methods for a large margin. For example, the AP of Deep3DBox in the
setting of IoU = 0.7 gains a 4% improvement. We also notice that for different
baselines, our improvements differ – for the lower baseline, the improvements are
larger because they have more less perfect detection results. Similarly, we report
a performance boost on 3D AP as shown in Table 3. In addition, our method
works better in the hard scenario that requires IoU = 0.7.

Table 4 shows our results on the KITTI test set using M3D-RPN as baseline,
which is consistent with the results in the validation set. We also tried to use
D4LCN[11] as a baseline, which used additional depth data for training, and we
can still observe accuracy gain (0.51% AP) with a smaller step size (0.02).
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Table 3. Comparisons of 3D detection accuracy (AP, %) with state-of-the-arts on the
KITTI 3D object detection benchmark.

Method
IoU = 0.5 IoU = 0.7

Easy Moderate Hard Easy Moderate Hard
val 1 val 2 val 1 val 2 val 1 val 2 val 1 val 2 val 1 val 2 val 1 val 2

Deep3DBox [32] - 27.04 - 20.55 - 15.88 - 5.85 - 4.10 - 3.84
+RAR-Net - 28.92 - 22.13 - 16.12 - 14.25 - 9.90 - 6.14

MonoGRNet [35] 50.27 - 36.67 - 30.53 - 13.84 - 10.11 - 7.59 -
+RAR-Net 54.17 - 39.71 - 31.82 - 18.25 - 14.40 - 11.98 -

GS3D [22] 30.60 42.15 26.40 31.98 22.89 30.91 11.63 13.46 10.51 10.97 10.51 10.38
+RAR-Net 33.12 42.29 28.11 32.18 24.12 31.85 17.82 19.10 14.71 15.72 14.81 13.85

M3D-RPN [3] 50.24 - 40.01 - 33.48 - 20.45 - 17.03 - 15.32 -
+RAR-Net 51.20 - 44.12 - 32.12 - 23.12 - 19.82 - 16.19 -

Table 4. 3D detection accuracy (AP, %) in the KITTI test set (in each group, the left
accuracy is produced by M3D-RPN, and the right one by M3D-RPN+RAR-Net).

Metirc Easy Moderate Hard

AOS 88.38/88.48 82.81/83.29 67.08/67.54

Bird 21.02/22.45 13.67/15.02 10.23/12.93

3D AP 14.76/16.37 9.71/11.01 7.42/9.52

4.3 Diagnostic Studies

In the ablation study we want to analyze the contributions of different sub-
module and different design choices of our framework. In Table 5, We use the
initial detection results of MonoGRNet [35] as baseline. Discrete Output is to
output a discrete refining choice instead of a continuous refining value. We also
tried three different feature combining methods: Simple Fusion is the naive op-
tion which concatenates the current detection results parameters and the image
feature vector, Direct Projection is to project the bounding box on the original
image as [25] did, and Parameter-aware means our parameter-aware module. We
refer Axial Coordinate to the option of refining the location along the axial co-
ordinate system rather than the world coordinate system. Single Action is to
output one single refinement operation at a time rather than output all refine-
ment operations for all the 3D parameters at the same time. RL is to optimize
the model using RL. Final Model is our fully model with the best design choices.

Through comparing Discrete Output with Final Model, we find that directly
regressing the continuous 3D parameters can easily lead to a failure in refinement
and with controlled discrete refinement stride, the results can be much better.
Also, we can see that Simple Fusion does not work well, which verifies that
our image enhancement approach captures richer information. Besides, moving
along the axial coordinate system and using the single refinement operation
can also improve the performance and verify our arguments. Experiment also
demonstrate that RL play an important role in boosting the performance further
since it optimizes the whole refinement process.
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Table 5. Ablation experiments on KITTI dataset (val 1, Easy, IoU = 0.7). The per-
formance difference can be seen by comparing each column with the last column.

Module Design Choices Final Model

Discrete Output X X X X X X
Simple Fusion X
Direct Projection X
Parameter-aware X X X X X
Axial Coordinate X X X X X X
Single Action X X X X X X
RL X X X X X
3D AP 1.81 0.40 10.88 5.34 2.27 13.96 18.25

We notice that the number of steps and the refining stride have great impact
to the final refinement results. So, during the test phase, we have tried different
setting of steps and stride. With smaller strides and more steps, better perfor-
mance can be achieved but with lager time cost. In addition, when the strides
are too large, the initial 3D box of an object may jump to its neighboring object
occasionally and some false positives can also be adjusted to overlap with an
existing, true 3D box by accident. Since the moving stride and steps are also a
part of the refinement policy, using RL to optimize them is feasible as well.

Last but not least, we visualize some refinement results in Fig. 4, where the
initial 3D bounding box and the final refinement result are in shown with their
3D-IoU to ground-truth. We can see that our refinement method can refine the
3D bounding box from a coarse estimate to the destination where it can fit
the object tightly. Apart from drawing the starting point and ending point of
3D detection boxes on 2D images, we also show some intermediate result for
better understanding. During each iteration, our approach can output a refining
operation to increase the detection performance.

4.4 Computational Costs

We also compute the latency for our model. Our method achieves about 4% im-
provement compared to baseline, with a computation burden of 0.3s (10 steps),
which is much smaller than the detection time cost: 2s (GS3D [22]). Generally
speaking, the cost is related to three aspects: (1) network backbone, (2) num-
ber of steps, (3) number of objects. For (1), using smaller backbone (such as
ResNet-18) can further speed up the refinement process with some degraded
performance. For (2), we can increase the refining stride of each step that will
cause the number of steps to drop and further accelerate the refining stage, with
the price of some imperfect correction. For (3), multiple objects in one image
can be fed into the GPU as a batch and processed in parallel, so the inference
time does not increase significantly compared to a single object.
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front front left front

left front front front left

front

front

Fig. 4. Top 2 rows: Representative examples on which the proposed refinement method
achieves significant improvement beyond the baseline detection results. The rightmost
example is further detailed in the bottom 2 rows.

5 Conclusions

In this paper, we have proposed a unified refinement framework called RAR-
Net. In order to use multi-step refinement to increase the sampling efficiency,
we formulate the entire refinement process as an MDP and use RL to optimize
the model. At each step, to fuse two information sources from the image and 3D
spaces into the same input, we project the current detection into the image space,
which maximally preserves information and eases model design. quantitative and
qualitative results demonstrate that our approach boost the performance of the
state-of-the-art monocular 3D detectors with a small time cost.

The success of our approach sheds light on applying indirect optimization to
improve the data sampling efficiency in challenging vision problems. We believe
that inferring 3D parameters from 2D cues will be a promising direction of a
variety of challenges in the future research.
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