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Abstract. Matching two different sets of items, called heterogeneous
set-to-set matching problem, has recently received attention as a promis-
ing problem. The difficulties are to extract features to match a correct
pair of different sets and also preserve two types of exchangeability re-
quired for set-to-set matching: the pair of sets, as well as the items
in each set, should be exchangeable. In this study, we propose a novel
deep learning architecture to address the abovementioned difficulties and
also an efficient training framework for set-to-set matching. We evaluate
the methods through experiments based on two industrial applications:
fashion set recommendation and group re-identification. In these experi-
ments, we show that the proposed method provides significant improve-
ments and results compared with the state-of-the-art methods, thereby
validating our architecture for the heterogeneous set matching problem.

Keywords: set to set matching; deep learning; permutation invariance

1 Introduction

Matching pairs of data is a crucial part of many machine learning tasks, in-
cluding recommendation [61, 56, 36], person re-identification (re-id) [87], image
search [74], and face recognition [54], as typical industrial applications. Over the
past decade, a deep learning framework for matching up data, e.g., images, has
served as the core of such systems.

Aside from these tasks, set-to-set matching, which is an extension of multi-
ple instance matching, has recently been identified as an important element in
various applications required by emerging web technologies or services. A rep-
resentative example in e-commerce is fashion recommendation, where a group
of fashion items deemed to match the collection of fashion items already owned
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Fig. 1: One of the main questions that set-to-set matching attempts to answer
is as follows: which candidate is more compatible than others with the reference
set? Here, we consider the matching of the reference set and the respective
candidate set and then selecting the best pair.

by a user is recommended. Regarding the group as an unordered set, we can
consider this task a set-to-set matching problem, as shown in Figure 1. Another
example is group re-identification (group re-id) in surveillance systems [41, 77,
40], which has recently started implementing a function to track known groups of
suspicious persons or criminals, a task that can also be simplified as a set-to-set
matching problem. Other examples include image-set retrieval [11, 9], image-
set classification [45], image-set reconstruction [42], person re-id [44], taxonomy
matching [59], cross-lingual matching [29], relational data matching [30], and
face verification [43, 78]. Earlier studies have also explored face recognition as a
set-to-set matching problem [63, 1, 6, 79] and next-basket recommendation [56].

Set matching scenarios can be grouped into two classes: homogeneous set
matching and heterogeneous set matching. In the former, two positive sets com-
prising the same instances, such as the images of the face of the same person, are
to be matched. Except for variations such as differences in illumination or pose
in the images, both sets contain similar instances. This scenario has been investi-
gated in several studies [11, 45, 9, 44, 43, 78, 63, 1, 6, 79, 42]. In the heterogeneous
case, the instances within paired sets can be considerably different, as is the case
in fashion recommendation and group re-id. To the best of our knowledge, there
are very few studies on constructing deep learning models for heterogeneous set
matching. We consider that matching heterogeneous sets is a more difficult task
and requires a strong learning architecture to match different sets.

Furthermore, another fundamental difficulty in set-to-set matching, com-
pared with ordinary data matching, lies in the two types of exchangeability
required: exchangeability between the pair of sets and invariance across different
permutations of the items in each set. A function that calculates a matching
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score should provide an invariant response, regardless of the order of the two
sets, or the permutations of the items.

The main focus of this paper is an architecture that preserves the aforemen-
tioned exchangeability properties, and at the same time, realizes a high perfor-
mance in heterogeneous set matching tasks. In this study, we argue that allowing
the feature extractor and matching layer to include interactions between the two
sets is crucial to identify matching pairs among different items. We propose a
deep learning model for (1) feature extraction, named cross-set feature transfor-
mation (CSeFT), which iteratively provides the interactions between the pair
of sets to each other in the intermediate layers. Our novel functions, attention-
and affinity-based functions, organize the CSeFT spanning two different sets in
the feature spaces, thereby improving the feature representations. The proposed
architecture also includes (2) a matching layer, named cross-similarity function
(CS function), that calculates the matching score between the features of the
set members across the two sets accurately. Our model guarantees both types of
exchangeability in the modules. Figure 2 shows the proposed architecture.

We examine the set-to-set matching problem in a supervised setting, where
examples of correctly paired sets are deployed as training data. The objective
is to train the feature extractor and matching layer in an end-to-end manner
such that the appropriate sets of features to be matched can be extracted. To
train the model efficiently, we also propose a novel training framework, K-pair-
set loss. Following training, the model is then used to find correct pairs of sets
among a group of candidates.

The effectiveness of our approach is demonstrated in two real-world applica-
tions. First, we consider fashion set matching, where provided examples of the
outfits are used as correct combinations of items (clothes). Using a large number
of examples of the outfits in the form of images, we aim to match the correct
pair of defined sets using the IQON dataset [51]. Since two positive sets include
images of different fashion items, we regard this case as heterogeneous set match-
ing. Next, we evaluate our methods through group re-id experiments using two
datasets, a new extension of the Market-1501 dataset [87] (Market-1501 Group)
and the Road Group dataset [77]. We use the Market-1501 Group dataset to
analyze sensitivity to noises or outliers in set matching and the Road Group
dataset as a more practical search task. Considering group membership change
caused by the noises, we regard group re-id as a heterogeneous set matching
problem. In the fashion set matching and group re-id experiments performed
on the Market-1501 Group dataset, our methods show significant improvements
compared with the results of baseline methods. Moreover, using the data aug-
mentation method that we developed for the pair set (set-aug), our methods
show competitive results without using any external datasets or spatial layout
information on the Road Group dataset.

The main contributions of this paper are as follows. (i) A novel deep learning
architecture is proposed to provide the two types of exchangeability required
for set-to-set matching. (ii) The proposed feature extractors using the interac-
tions between two sets are shown to extract better features for heterogeneous set
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matching. (iii) A new loss function, K-pair-set loss, is proposed and provide bet-
ter performances in our tasks. (iv) We introduce set-input methods into group
re-id tasks (Road Group) using a new set-data augmentation, thereby show-
ing competitive results without using external datasets or spatial relations. (v)
The proposed models show state-of-the-art results for the fashion set matching
and group re-id, supporting the claim that the interactions and exchangeability
improve the accuracy and robustness of the set-matching procedure.

2 Preliminaries: Set-to-Set Matching

We introduce the necessary notation as follows. Let xn,ym ∈ X = Rd be feature
vectors representing the features of each individual item. Let X = {x1, ...,xN}
and Y = {y1, ...,yM} be sets of these feature vectors, where X ,Y ∈ 2X.

The function f : 2X × 2X → R calculates a matching score between the
two sets X and Y. Guaranteeing the exchangeability of the set-to-set matching
requires that the matching function f(X ,Y) is symmetric and invariant under
any permutation of items within each set.

We consider tasks where the matching function f is used per pair of sets [92]
to select a correct matching. Given candidate pairs of sets (X ,Y(k)), where
X ,Y(k) ∈ 2X and k ∈ {1, · · · ,K}, we choose Y(k∗) as a correct one so that
f(X ,Y(k∗)) achieves the maximum score from amongst the K candidates. In
this study, a supervised learning setting is considered, where the function f is
trained to classify the correct pair and unmatched pairs.

2.1 Mappings of Exchangeability

We present a brief review on several notions of exchangeability, which are used
in building our models.
Permutation Invariance. A set-input function f is said to be permutation
invariant if

f(X ,Y) = f(πxX , πyY) (1)

for permutations πx on {1, . . . , N} and πy on {1, . . . ,M}.
Permutation Equivariance. A map f : XN ×XM → XN is said to be permu-
tation equivariant if

f(πxX , πyY) = πxf(X ,Y) (2)

for permutations πx and πy, where πx and πy are on {1, . . . , N} and {1, . . . ,M},
respectively. Note that f is permutation invariant for permutations within Y.
Symmetric Function. A map f : 2X × 2X → R is said to be symmetric if

f(X ,Y) = f(Y,X ). (3)

Two-Set-Permutation Equivariance. Given Z(1) ∈ XN and Z(2) ∈ XM , a
map f : X∗ × X∗ → X∗ × X∗ is said to be two-set-permutation equivariant if

pf(Z(1),Z(2)) = f(Z(p(1)),Z(p(2))) (4)

for any permutation operator p exchanging the two sets, where X∗ = ∪∞n=0X
n

indicates a sequence of arbitrary length such as XN or XM .
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Fig. 2: Our model calculates a matching score between the paired sets. Enci,
CSeFT, CS, and FC indicate an (i+1)-th (one-layered) encoder sharing weights
within the same layer, cross-set feature transformation, cross-similarity function,
and fully connected layer, respectively. We exclude the multihead structure in g.

3 Matching and Learning for Sets

3.1 Cross-Set Feature Transformation

We construct the architecture of the feature extractor, which transforms sets of
features using the interactions between the pair of sets, and extracts the desired
features to be matched in the post-processing stages (Section 3.2).

Here, consider the transformation of a pair of set-feature vectors (X ,Y) into
new feature representations on XN ×XM , using two-set-permutation equivariant
functions. Let i be the iteration (layer) number of the CSeFT layers. Our feature
extraction then can be described as a map of (Xi,Yi) → (Xi+1,Yi+1), where
Xi+1,Xi ∈ XN , Yi+1,Yi ∈ XM , Xi+1 = (x(n,i+1))

N
n=1, Xi = (x(n,i))

N
n=1, Yi+1 =

(y(m,i+1))
M
m=1, and Yi = (y(m,i))

M
m=1. For example, x(n,i) ∈ X denotes the feature

vector extracted by the i-th layer representing the n-th item, xn, and y(m,i) is
defined similarly. Note that the initial feature vectors with i = 0 are found with
a typical feature extractor, i.e., a deep convolutional neural network (CNN) for
the image of each item. Then, we construct a parallel architecture of CSeFT,
with an asymmetric transformation g, as follows:

cross-set feature transformation (CSeFT) :

{
Xi+1 = g(Xi,Yi|Θi)
Yi+1 = g(Yi,Xi|Θi),

(5)

where g : X∗×X∗ → X∗ is a permutation equivariant function and Θi is learnable
weights shared in the same layer. Also, we introduce the respective residual
paths [17] to Eq. (5). Figure 3 shows the model of our CSeFT.

We propose two possible feature extractors for g: an attention-based func-
tion, and an affinity-based function. Both are constructed to assign the matched
feature vectors to the reference feature vector, taking account of interactions
between the two sets. For simplicity, we provide an explanation via the case of
extracting the features for X as follows (we can easily exchange X and Y for Y).

The attention-based function of g maps x(n,i) → x(n,i+1) as follows:

x(n,i+1) =
1

|Yi|
∑
y∈Yi

(
l
(1)
i (x(n,i))

Tl
(2)
i (y)√

dg

)
+

l
(3)
i (y), (6)
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Fig. 3: A diagram of CSeFT.
Here, we assume |X | = 3 and
|Y| = 2. The colors indicate
the respective set members.

Fig. 4: K-pair-set-based matching candidates.
Red and blue lines indicate correct pairs (X (k),
Y(k)) and negative cross pairs (X (k), Y(k′)) :
∀k′ 6= k, where k, k′ ∈ {1, · · · ,K}, respectively.

where n ∈ {1, · · · , N}, Θi = {Θ(1)
i , Θ

(2)
i , Θ

(3)
i }, Θ

(j)
i ∈ Rdg×d, |Yi| = M , l

(j)
i

denote a linear transformation, i.e., l
(j)
i (x) := Θ

(j)
i x, and ()+ is a non-negative

mapping, i.e., ReLU [13], which introduces nonlinear interactions between the
two elements.

Note that Eq. (6) relates to other attention models [31, 28, 81, 22, 70, 37], es-
pecially the dot-product attention [70, 37]. The dot-product attention has been
introduced to calculate the weighted average on Y using softmax as the coeffi-
cients. However, the softmax operation would be inconsistent with our match-
ing objective, as through normalization it increases the coefficients even in un-
matched cases of X and Y. To preserve non-linearity, we use the non-negative
weighted sum instead and average it.

The affinity-based function of g maps x(n,i) → x(n,i+1) as follows:

x(n,i+1) =
1

2

x̄(n,i) +
1

|Ȳi|
∑
ȳ∈Ȳi

(
x̄T

(n,i)ȳ√
dg

)
+

ȳ

 , (7)

where Θi = {Θ(1)
i , Θ

(2)
i }, x̄(n,i) = l

(1)
i (x(n,i)), and Ȳi = {l(2)

i (y(m,i))}Mm=1. Using

the two linear transformations l
(1)
i and l

(2)
i , the affinity-based function combines

the resembling feature vectors within different sets so that the feature vectors
for X have similar representations to the linearly transformed vectors in Y.

Other simple permutation equivariant functions of g, e.g., x(n,i+1) = x(n,i) +
1
|Yi|

∑
y∈Yi

y, may be utilized. However, we consider it a function incapable of

extracting appropriate enough features without any rich interactions between
the two sets to yield accurate matching for two sets.

Instead of performing g singly, we introduce a multihead structure [70] to
our feature extractor g, which is also a permutation equivariant function. De-

noting the output of g(Xi,Yi|Θ(j)
i ) as g

(j)
Xi

, the multihead version of g is defined

as ΘhConcat
(
g

(1)
Xi
, · · · , g(h)

Xi

)
, where Concat indicates a concatenation for each

corresponding set member in g
(j)
Xi

, Θh ∈ Rd×hdg , and hdg = d. Note that the
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multihead structure is related to recent models such as MobileNet [20], which
isolates and places the convolutional operations in parallel to reduce the calcu-
lation costs whilst preserving the accuracy of the recognition. We assume that
the multihead structure provides various interactions between the set members,
reducing the calculation costs as well.

Note that we can stack CSeFTs or combine it with other networks that
operate upon the sets or items independently, which preserves the symmetric
architecture. Although a function of our CSeFT does not entail interactions
within a set, stacking CSeFTs takes account of higher-order interactions between
multiple elements involving the intra-set, which is a similar way of overlaying
convolution layers for CNNs. We discuss the overall architecture in Section 5.1.

3.2 Calculating Matching Score for Sets

We introduce a matching layer to calculate the matching score between two given
sets, mapping 2X × 2X → [0,∞]. It is designed to calculate the inner product
for every combination of set members across sets, so we call this cross-similarity
(CS), defined as follows:

CS(X ,Y|W ) :=
1

|X ||Y|
∑
x∈X

∑
y∈Y

(
l(x|W )Tl(y|W )√

dw

)
+

, (8)

where x and y are feature vectors in X and Y, respectively, l is a linear function
allowing conversions into a lower-dimensional space using learnable weights W ∈
Rdw×d, i.e., l(x|W ) := Wx, and dw is the number of dimensions of the lower-
dimensional space. CS can be seen as a calculation of the average similarity in
the linear subspaces created by the dimensionality reduction l, or the normalized
and non-negative inner product if both sets contain only one set member.

While CS function is based on a simple pair relationship, considering the
feature extraction provided by CSeFT layers that involves multiple elements to
represent each feature, thereby higher-order relationships are included.

Instead of calculating CS singly, we utilize multiple CSs (mCS) to combine
the CSs calculated with different linear mappings. The procedure runs as follows:

mCS(X ,Y|W) = l(Concat (CS1, · · · ,CSh′) |Wo), (9)

where W = {W1, · · · ,Wh′ ,Wo}, CSj = CS(X ,Y|Wj) ∈ R, the linear function l

with learnable weights Wo maps Rh′ → R, and h′dw = d.
Since CS and mCS are symmetric and permutation invariant functions, com-

bined with the fact that CSeFT is a two-set-permutation equivariant function,
our model is symmetric and invariant under any permutation of items within
each set in these properties.

3.3 Training for Pairs of Sets

Next, the task of maximizing the matching score is translated into a minimiza-
tion of a loss function of set matching, allowing for comparison against the scores
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for other matching candidates. Although several studies have investigated loss
functions for point-to-point [67, 48] or point-to-set [84, 90] metric learning, the
loss function for set matching has not been well studied, and the efficient ap-
proach to preparing K candidates for each query set is non-trivial.

To train our model efficiently, we create matching candidates from the correct
pairs, as described in Figure 4. Let (X (k),Y(k)) be a correct pair of sets, where
k ∈ {1, · · · ,K}. From those K-pair, by extracting all Y(k), we create the set of
Y(k) as Y = {Y(1), · · · ,Y(K)}. That is, Y is composed of sets exhibiting correct
relations to the respective X (k), and Y can be used as a set of candidates for each
X (k) in the training stage. We construct positive pairs and negative cross pairs
from these candidates by assuming that one correct pair exists for the respective
sets, as described in Section 2. Then, we train our models using these pairs with a
conventional softmax cross-entropy loss. We consider the above training method
as a set version of N -pair loss [67], so we call this K-pair-set loss.

4 Related Works

Set-Input Neural Networks. Deep learning architectures for set data have
been well studied [72, 37, 85, 55], and several studies have investigated its rep-
resentation universality [82, 73, 60, 62]. In the work of Lee et al. [37], the state-
of-the-art set-feature model, Set Transformer, was introduced by applying a
self-attention based Transformer [70] to a set data. Set Transformer is trained
through supervised/unsupervised learning and transforms a set data into a vec-
tor/matrix representation to recognize set features. However, constructing a deep
learning model that can manage multiple sets has not been well studied.
Set-to-Set Matching. Various studies have suggested modeling a set as a
hull [6, 23, 80, 92], hyperplanes [71, 12], linear subspace [79, 34, 76, 15], convex
cone [66], covariance matrix [75, 4], Gaussian model [63, 1], among others, for
matching sets. The methods above do not include feature learning schemes
for paired sets, and most of them require specific computations involving op-
timization methods to measure the similarity/distance between the set models.
Compared with these optimization-based methods, our models are based on a
feed-forward function, thus are potentially easier to scale up.
Applications. Many fashion item recommendation studies have investigated
natural combinations of fashion items, the so-called visual fashion compatibility,
to recommend fashion items or outfits [16, 18, 21, 69, 39]. In this study, the main
difficulties of the fashion set matching procedures lie in satisfying the fashion
compatibility requirements of the matched sets.

In the applications of group re-id [41, 77, 40, 88, 4, 24, 91], problems of multiple
instance matching arise. One group re-id scenario has been proposed that the
detection of known groups from videos [40] is required. Also, two group re-id
datasets, the Road Group dataset, and the DukeMTMC Group dataset5 have
been constructed [40], which include bounding box annotations for each person.
Our experiments focus on set-to-set matching using these given cropped images.

5 Note that the DukeMTMC [57] is no longer available.
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Methods for Non-Exchangeable Data. Many powerful data-processing meth-
ods, such as graph matching [2, 14, 38, 3, 86, 10, 83], graph classification [47], en-
tity matching [50], and sequence matching [64, 5] have been proposed based
on the specific data structures. In natural language processing, Devlin et al.
achieved state-of-the-art results in various tasks using the bidirectional encoder
representations from transformers (BERT) [8]. Furthermore, Cucurull et al. ap-
plied graph neural networks (GNNs) to predict fashion compatibility between
related fashion items using graph structures [7]. Although the data in those
tasks are known to be non-exchangeable, we still consider that comparing these
promising models with our model is possible and necessary.

5 Experiments

5.1 Overall Architecture

In this section, we briefly describe our models. Borrowing from the encoder–
decoder structure [70, 37, 52], we construct our architecture by combining the
encoder [37], called a self-attention block, with the decoder of our CSeFT. We
apply a feed-forward network comprising two fully connected layers with a leaky
ReLU [46] to the first argument of each function g. We then repeat this structure
L times in succession, as described in Figure 2. We set h, h′, L, and d to 8,
8, 2, and 512, respectively. To combine it with CNN features, for the fashion
task, we use the Inception-v3 [68], which is pre-trained using the ILSVRC-2012
ImageNet [58], and finetune it. We extract the feature vectors on R2048 from the
global average pooling layer and linearly transform it into R512. For the group
re-id tasks, we utilize a simple CNN that maps 3 → 64 → 128 → 256 → 512
channels using 3× 3 kernels and train it from scratch.

5.2 Baselines for Comparisons

We validate our architecture through comparison with other set-matching mod-
els. However, to the best of our knowledge, studies using deep neural networks
for matching two heterogeneous sets are non-existent. Instead, we use extensions
from the state-of-the-art set-input method and the promising models in other
related domains to a set-to-set matching procedure as described below, and
consider this acceptable for the comparison. We also present ablation studies
including other ordinary set matching functions.
Set Transformer. The Set Transformer [37] transforms a set of feature vectors
into a vector on Rd. Denoting the Set Transformer model ST, we perform the
extension by calculating the matching score between the two sets X and Y via
the inner product ST(X )TST(Y), sharing the weights between the two ST.
BERT. We consider a union of two sets as a set-input for the extension of
BERT [8] and omit the individual token embedding, i.e., the position embedding.
We use the segment embedding to designate items of X and Y. We use three
variants: BERTBASE is the same model as described in [8]; BERTBASE−AP uses
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the average pooling in the last layer; and BERTSMALL is a four-layered version
of BERTBASE with eight heads, and the hidden size is 512.
GNN. We combine two sets as one input for the extension of GNN [7]. Because
this model is not presented to train in an end-to-end with the feature extractor,
we do not finetune the CNN in fashion set matching, where pre-trained CNNs
are used, but train it in an end-to-end manner for the group re-id task. Note
that we omit the context provided from the external graphs in the evaluation
stage to apply this model in the same scenarios of our tasks. We set the training
epoch to 256 in the group re-id to enhance the training results of the GNN.

The properties in the above models are different from ours. The extension of
Set Transformer satisfies the exchangeability criteria; however, no interactions
between paired sets are provided. Both extensions of BERT and GNN provide
the interactions but do not facilitate the exchangeability of two sets.

Additionally, in our first experiments, we introduce a conventional CNN,
trained by Hard-Aware Point-to-Set loss (HAP2S) [84] as a minimum configura-
tion. We use the exponential weighting and the same parameter setting described
in [84]. We also use the batch all strategy [19] to train the CNN effectively.

5.3 Training Settings

In this section, we briefly describe the training settings. We use a stochastic
gradient descent method with a learning rate of 0.005, a momentum of 0.5,
and a weight decay of 0.00004. We set the numbers of matching candidates and
the training epochs to 4 and 32, 16 and 128, and 81 and 3500, for the tasks
of fashion set matching, Market-1501 Group dataset, and Road Group dataset,
respectively. We train both the CNN and set-matching model in an end-to-end
manner. In each iteration, we randomly swap pairs of sets and items in each set,
and randomly flip images horizontally, to learn all the methods stably.

5.4 Fashion Set Matching

Dataset. We examine the set matching task for fashion recommendation, using
the IQON dataset [51]. The dataset consists of recently created, high-quality
outfits, including 199,792 items grouped into 88,674 outfits. We split these outfits
into groups, using 70,997 for training, 8,842 for validation, and 8,835 for testing.

Our task can be considered an extended version of a standard task, Fill-In-
The-Blank [7], which requires us to select an item that best extends an outfit from
among four candidates. Because selecting a set corresponds to filling multiple
blanks, we consider the set matching problem as Fill-In-The-N -Blank.
Preparing Set Pairs. To construct the correct pair of sets to be matched, we
randomly halve the given outfit O into two non-empty proper subsets X and Y as
follows: O → {X ,Y}, where X ∩ Y = ∅. Here, we extend this setting to include
more general situations. We select Q outfits {O(1), · · · ,O(Q)} randomly and
split the respective outfits in half O(q) → {X (q),Y(q)}, where q ∈ {1, · · · , Q}.
We regard the two sets {X (1), · · · ,X (Q)} and {Y(1), · · · ,Y(Q)} as the correct
pair, which consists of Q fashion styles. In the training phase, we set Q = 4.
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Table 1: Accuracy of fashion set matching (%). Cand and Mix indicate the
number of matching candidates and number of mixed outfits (Q), respectively.

Cand:4 Cand:8
Method Mix:1 Mix:2 Mix:4 Mix:1 Mix:2 Mix:4

Set Transformer 68.0 73.5 65.3 50.5 57.5 49.6
BERTSMALL 82.1 87.3 69.7 69.9 77.0 53.0
BERTBASE 81.4 86.6 66.1 69.2 76.3 50.8
BERTBASE−AP 80.8 86.4 65.4 68.6 75.7 49.5
GNN 35.4 32.4 25.5 19.9 17.5 13.4
HAP2S 39.3 36.6 32.0 23.3 20.8 17.8
Cross Attention (ours) 80.8 88.8 74.3 68.9 80.6 58.9
Cross Affinity (ours) 85.1 90.6 75.9 73.8 82.8 61.9

Fashion Set Matching. We discuss the experimental results of the fashion
set matching. Table 1 shows significantly different results between our models
and the baselines. Here, Cross Attention and Cross Affinity denote our models
with the attention-based and affinity-based functions, respectively. Comparing
the performance of Cross Affinity and BERTSMALL, which is the most accurate
among the baselines, the differences in their accuracy were 5.2%, on average,
8.9%, at maximum, where the differences were relatively significant in the com-
plicated setting on Mix:4. Furthermore, Table 1 shows that the affinity-based
function performed better than the attention-based one.

In this experiment, we consider that the components on which the compar-
ative effectiveness of the proposed models depended were potentially three-fold.
Compared with the extensions of BERT, (a) our model preserves the exchange-
ability in two sets, which may ensure that the set features to be matched are
accurately represented. Furthermore, (b) our model preserves two set features
explicitly, whereas BERT provides a set of features with segment embedding
that may have a limitation. Compared with the results of the Set Transformer,
our models and BERT yielded accurate results is made possible by (c) providing
the strength of interactions between two sets. Therefore, we conclude that these
results justify the fine aspects of our architecture.

5.5 Group Re-Identification

We present the results of a group re-id on the Market-1501 Group dataset, a
new extension of a well-known person re-id dataset, Market-1501 [87], and the
Road Group dataset [77]. The task is to identify the pairs of sets that consist of
individual images of the (mostly) same multiple persons under noisy situations.

Evaluation on Market-1501 Group Dataset. We constructed the train-
ing/validation data based on query/gallery splits provided in [87]. Because there
are few person images provided for each camera position, we did not consider
camera information. We regard sets of gallery and query data as X and Y, re-
spectively, where each set contains three persons in non-noisy cases, and each
person is represented by three different images.
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We investigated noise robustness through the experiments to show that our
models do not over-fit on the data; here, the noise means that random persons
that accidentally contained into the group additionally or that the label noise [32]
for paired sets generated based on the given noise fraction. Note that the noise
persons and label noise have some relations, e.g., a candidate set composed of
only noise persons corresponds to a set mislabelled by label noise.

Table 2 presents the comparison results. In the non-noisy case, many models
showed almost perfect accuracies; we consider that averaging feature vectors
in sets achieves high accuracy in this homogeneous case. In the case the noise
person included, the noise ratio was inversely proportional to the accuracy across
all the models; however, our models yielded more accurate results, e.g., the
average accuracy of Cross Affinity, Set Transformer, and BERTBASE−AP was
87.0, 80.6, and 72.4%, respectively. Because the main differences between the
architectures exist in the interactions for paired sets or the exchangeability, the
results support the claim that considering these properties improves both the
accuracy and robustness. Furthermore, in the case of label noise fraction is 0.8,
the permutation invariance would be essential to preserve high accuracy.

Evaluation on Road Group Dataset. We conduct experiments on the Road
Group dataset [77, 40], which consists of 162 group pairs taken from a 2-camera-
view of a crowded road scene. One image per group for each camera is provided,
where most groups do not have the same person’s image in common with the
different group pairs. Following the experimental protocol described in [77, 40],
we construct training/validation datasets, splitting the 162 group pairs randomly
in half into two different 81 group pairs, and reporting the accuracies calculated
by the cumulative matching characteristic (CMC) metric [49].

Because group re-id is a newly emerging task, most datasets, including the
Road Group dataset, contain a small number of groups and images, and training
on such datasets is difficult [27]. Specifically, our set-to-set matching method
extracts features that rely on input set pairs, thus, the variations in the set pairs
are crucial. Considering the difference in appearances or camera parameters,
however, importing external data [27, 26] is also a challenging task itself.

To relax the data limitation, we introduce our novel set-data augmentation
(set-aug) method that significantly enhances the learning results of the proposed
set-to-set matching modules by increasing the training data. Given positive per-
son image pairs and several negative person images, creating set pairs randomly
on each training iteration, our set-aug effectively increases the group member
variations (please refer to supplementary materials for details).

Table 3 shows the experimental results. The top block in Table 3 indicates
the results of our methods with three types of data augmentation: (a) the hor-
izontal flipping [35], which is used to train the baseline model; (b) image-based
data augmentation (img-aug), which includes both scale augmentation [65, 17]
and random erasing [89] on images; and (c) our set-aug. Using the 81 pre-defined
groups, the baseline model was not very effective, even with img-aug. However,
using the set-aug, our method exhibited significant improvements without ap-
plying img-aug. These results imply that generating combinations on sets is very
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Table 2: Accuracy (%) for Market-1501 Group. The number of candidates is 5.

Non-noisy Ratio of noise persons in X × Y Label noise frac.
Method ( 0

3
, 1
4
) ( 1

4
, 1
4
) ( 0

3
, 3
6
) ( 0

3
, 5
8
) ( 3

6
, 3
6
) ( 5

8
, 5
8
) 0.2 0.4 0.8

Set Transformer 99.5 95.1 89.9 85.7 80.4 65.7 48.1 99.3 98.8 95.6
BERTSMALL 94.3 77.6 69.2 83.7 64.9 49.5 24.7 99.2 98.7 79.5
BERTBASE 96.8 80.5 77.6 68.8 69.9 61.9 49.2 98.9 98.1 76.0
BERTBASE−AP 97.3 84.4 74.7 70.7 69.3 62.8 47.7 99.3 97.5 77.9
GNN 82.0 29.3 46.0 23.7 22.1 29.3 21.1 81.7 73.0 76.7
Cross Attention (ours) 99.6 96.9 94.8 91.9 90.7 72.9 56.1 99.3 99.6 95.5
Cross Affinity (ours) 99.7 96.5 92.5 94.4 92.4 72.0 61.7 99.3 99.9 98.4

Table 3: Evaluation results (%) for Road Group dataset.
Method (detector-based) CMC-1 CMC-5 CMC-10 CMC-15 CMC-20

Data augmentation ablation
Cross Affinity (our baseline) 45.2 ± 3.5 77.5 ± 2.9 87.9 ± 3.8 91.9 ± 2.4 94.1 ± 2.1
Baseline + img-aug 47.7 ± 4.2 78.3 ± 3.2 87.7 ± 2.6 91.1 ± 2.4 93.3 ± 1.8
Baseline + set-aug 84.0 ± 3.6 93.8 ± 0.8 96.8 ± 0.6 97.0 ± 1.0 97.5 ± 1.1
Baseline + set-aug + img-aug 81.7 ± 1.9 94.1 ± 1.3 96.5 ± 1.1 97.0 ± 0.9 97.8 ± 0.8

Baseline + set-aug (ours) 84.0 ± 3.6 93.8 ± 0.8 96.8 ± 0.6 97.0 ± 1.0 97.5 ± 1.1
MGM w/ spatial layout [40] 80.2 93.8 96.3 97.5 97.5
MGM w/o spatial layout [40] 70.4 90.1 91.3 92.6 96.3
TSCN w/ external data [27] 84.0 95.1 96.3 - 98.8
GNN w/ external data [26] 74.1 90.1 92.6 - 98.8

Method (GT-based) CMC-1 CMC-5 CMC-10 CMC-15 CMC-20

Baseline + set-aug (ours) 85.7 ± 3.7 96.3 ± 0.8 97.8 ± 0.5 98.3 ± 0.6 98.3 ± 0.6
MGM w/ spatial layout [40] 82.4 95.1 96.3 97.5 98.0

beneficial to our models. The other parts in Table 3 show that our methods yield
very competitive results, compared with the state-of-the-art methods that utilize
a large transferred external dataset or auxiliary features such as spatial layout
information within each group. Furthermore, compared with MGM w/o spatial
layout [40], which also does not use the spatial layout information, our methods
significantly improved the accuracy of CMC-1 by 13.6%.

5.6 Ablation Study

In this section, we report the results of an ablation study performed to highlight
the importance of each proposed component. The top part in Table 4 shows the
two results obtained when our models are trained using triplet loss with the soft-
margin and batch all strategy [19] or the proposed K-pair-set loss. Triplet loss
triggered significant accuracy degradation, even though the losses converged to
near zero in the training stages. On the other hand, the proposed K-pair-set loss
can manage to accurately train the models by considering the loss of selecting
paired sets among multiple candidates. The second topmost part in Table 4 shows
the results of ablations in the feature extractor. Reducing the number of layers
and number of multiheads in the CSeFT, and excluding the encoder and CSeFT,
the accuracies are degraded by 1.0, 1.1, 1.3, and 4.2%. Our model without the
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encoder performed well (1.3% degradation) but showed a somewhat slow conver-
gence. However, excluding the CSeFT module significantly reduced the accuracy

Table 4: Ablation study. Aver-
age accuracies (%) on Market-
1501 Group are shown, where
the non-noisy and six noise
person patterns, presented in
Table 2, are included.

Method Accuracy

Training method ablation
Cross Affinity (baseline) 87.0
Baseline with triplet loss 45.5

Feature extractor ablation
Baseline with L=1 86.0
Baseline with h=1 85.9
w/o Enc 85.7
w/o CSeFT 82.8

Matching layer ablation
Single CS 86.0
w/o ReLU in mCS 85.0
Max pooling 86.1
Average pooling 85.8
Projection metric 67.0
Covariance matrix 61.1
Set kernel 53.3
Cosine similarity metric 53.1

Feature & matching layer ablation
Set Transformer 80.6

(4.2% degradation). These results imply that
the proposed CSeFT module is a crucial part
of the set-to-set matching model architecture.
The second lower part of Table 4 shows the
results of ablation study performed on the
matching layer. Reducing mCS to a single
CS and excluding ReLU from the CS func-
tions reduced the accuracies of both models
by 1.0 and 2.0%, respectively. It is interest-
ing to observe that the ReLU was more im-
portant than the number of CS functions; this
demonstrated the importance of nonlinearity in
the matching layer. Furthermore, replacing our
mCS with max pooling, average pooling, pro-
jection metric [25], covariance matrix [75, 4], set
kernel [33], and cosine similarity metric [53] all
resulted in significant accuracy degradation im-
plying the effectiveness of our mCS functions
(see supplementary materials for details). The
lowermost part of Table 4 shows the results of
ablation study performed on the feature extrac-
tor and matching layer. The extension of Set
Transformer, which does not include the pro-
posed CSeFT module and CS function, yielded
significant accuracy degradation. These results
show the validity of our architecture for hetero-
geneous set-to-set matching.

6 Conclusion

In this study, we investigated the heterogeneous set-to-set matching problem. We
proposed a novel architecture comprising the (1) cross-set feature transformation
(CSeFT) module and (2) cross-similarity (CS) function, in addition to a loss
function and set-data augmentation for performing set-to-set matching.

We showed that our architecture preserves the two types of exchangeability
for a pair of sets and also the items within them, thereby satisfying the require-
ments of set-to-set matching procedure.

We demonstrated that our models performed well compared with the state-
of-the-art methods and baselines in the fashion set matching and group re-id
experiments. Furthermore, we validated our proposed architecture through the
ablation study. These results support the claim that the exchangeability and the
feature representations extracted with interactions between the two sets improve
the accuracy and robustness of the heterogeneous set-to-set matching.
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