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Making Sense of CINNs: Interpreting Deep
Representations & Their Invariances with INNs

Supplementary Materials

A Implementation Details

A.1 Autoencoder E,D

In Sec. 3.1, we introduced an autoencoder to obtain a representation z of x,
which includes the invariances abstracted away by a given model representation
z. This autoencoder consists of an encoder E(x), and a decoder D(Z).

Because the INNs ¢ and e transform the distribution of zZ, we must ensure
a strictly positive density for Z to avoid degenerate solutions. This is readily
achieved with a stochastic encoder, i.e. we predict mean E(z), and diagonal
E(z),2 of a Gaussian distribution, and obtain the desired representation as z ~
N E(@),, ding(E(x),2)).

Following [10], we train this autoencoder as a Variational Autoencoder us-
ing the reparameterization trick [26,48] to match the encoded distribution to a
standard normal distribution, and jointly learn the output variance v under an
image metric ||z — Z|| to avoid blurry reconstructions. The resulting loss function
is thus

e~N(€|0,1)
Nz
% D {(E@)))] + (B(x)g2); — 1 — log(E(x),2)i }

i=1

For experiments on ColorMNIST, we use the squared L? norm for the image
metric, and the encoder and decoder architectures are summarized in Tab. S1.

Table S1. Autoencoder architecture for ColorMNIST at resolution 28 x 28.

Table S2. Encoder. Table S3. Decoder.
RGB image x € R#*28%3 2 € R% ~ N (, diag(c?))
Conv, Norm, LReLU — R14x14x64 FC — R7X7x128

Conv, Norm, LReLU — R”™*7%128  Conv transpose, Norm, LReLU — R14*14x64

FC — (p,0°) € R® x R Conv transpose, Tanh — R28%28%3
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Table S4. Architectures used to compute image metrics for CelebA, AnimalFaces and
Animals at resolution 128 x 128.

Table S5. VGG-16 pretrained on Ima-  Table S6. Discriminator. All convo-
geNet for feature extraction. Output of  lutions use kernel size 4. Norm refers
bold layers are used to compute feature ~ to Batch Normalization, Leaky ReLU

distances. uses slope parameter 0.2.
RGB image x € R!28x128x3 RGB image z € R128X128x3

2x Conv, ReLU — R128x128x64 Conv down, LReLLU — RO4x064x64
MaxPool — RO4*64x64 Conv down, Norm, LReLU — R32x32x128

2x Conv, ReLU — R64x64x128 Conv down, Norm, LReLLU — R!6x16x256
MaxPool — R32x32x128 Conv down, Norm, LReLU — R8*8x512

3x Conv, ReLU — R??732x256 Conv, Norm, LReLU — R¥*8x512
MaxPool —s R16%16x256 Conv — RE*8x1

3x Conv, ReLU — R16x16x512
MaxPool — R8*8x512

3x Conv, ReLU — R8*8x512

For the experiments on CelebA, AnimalFaces and Animals, we use an im-
proved image metric as in [13], which includes a perceptual loss and a discrimina-
tor loss. The perceptual loss consists of feature distances obtained from different
layers of a fixed, pretrained network. We used a VGG-16 network pretrained on
ImageNet and weighted distances of different layers as in [65]. The discriminator
is trained along with the autoencoder to distinguish reconstructed images from
real images using a binary classification loss, and the autoencoder maximizes
the log-probability that reconstructed images are classified as real images. The
architectures of VGG-16 and the discriminator are summarized in Tab. S4. For
FE we use an architecture based on ResNet-101 and for D we use an architecture
based on BigGAN, where we include a small fully connected network to replace
the class conditioning used in BigGAN by a conditioning on Z. See Tab. S7 for
a summary of this autoencoder architecture.

A.2 Details on the INN for Revealing Semantics of Deep
Representations

Previous works have successfully applied INNs for density estimation [12], inverse
problems [2], and on top of autoencoder representations [15,61]. This section
provides details on how we embed the approach of [15] to reveal the semantic
concepts of autoencoder representations z, c.f. Sec. 3.2.
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Table S7. Autoencoder architecture for CelebA, AnimalFaces and Animals at resolu-
tion 128 x 128.

Table S8. Resnet-101 based Encoder.  Table S9. Decoder based on BigGAN.

RGB image x € R!28%128x3

Conv down —s RO4x64x64

Norm, ReLU, MaxPool — R32*32x64

3x BottleNeck — R32*32%256

z € R'™?® ~ N (p, diag(c?))
3x (FC, LReLU) — R*%¢
FC, Softmax — R0%°
Embed — h € R?28

4x BottleNeck down — R16x16x512

FC(E) — R4><4><16»96

23x BottleNeck down — R3*8x1024

ResBlock(Z,h) up — R8*8x16:96

3x BottleNeck down — R*x4%2048

ResBlock(z,h) up — R16x16x8-96

AvgPool, FC — (,u/,o'z) c R2® x RI28

ResBlock(z,h) up — R32x32x4-96

ResBlock(z,h) up — RO4X 64296

Non-Local Block — R64%64%2:96
ResBlock(Z,h) up — R64X04x96
Norm, ReLU, Conv up — R28%128%3

Tanh s 7 € R128%128x3

Since we will never have examples for all relevant semantic concepts, we
include a residual concept that captures the remaining variability of Z, which is
not explained by the given semantic concepts.

Following [15], we learn a bijective transformation e(z), which translates
the non-interpretable representation z invertibly into a factorized representa-
tion (e;(2))E, = e(Z), where each factor e; € RV<: represents one of the given
semantic concepts for i = 1,..., K, and ey € R¥e0 is the residual concept.

The INN e establishes a one-to-one correspondence between an encoding
and different semantic concepts and, conversely, enables semantic modifications
to correctly alter the original encoding (see next section). Being an INN, e(2)
and Z need to have the same dimensionality and we set Ne, = Nz — > ;- Ne,.
We denote the indices of concept ¢ with respect to e(z) as Z; C {1,..., Nz} such
that we can write e; = (e(2)k)kez,-

Deriving a Loss Function for Training the Semantic INN Let e; be
the factor representing some semantic concept, e.g. gender, that the contents of
two images x%, 2? share. Then the projection of their encodings z%, 2° onto this
semantic concept must be similar [15, 30],

ei(2%) ~ €;(z°) where 2 = E(2%), 2" = E(a?). (8)

Moreover, to interpret Z we are interested in the separate contribution of different
semantic concepts e; that explain z. Hence, we seek a mapping e(e) that strives
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to disentangle different concepts,
ei(2) Lej(z) Vi#j,x where Z= E(z). (9)

The objectives in Eq. (8), (9) imply a correlation in e; for pairs z% and z°
and no correlation between concepts e;, e; for ¢ # j. This calls for a Gaussian
distribution with a covariance matrix that reflects these requirements.

Let e® = (e?) = (e;(E(z%))) and € likewise, where z%, 2° are samples from
a training distribution p(x®, x%) for the i-th semantic concept. The distribution
of pairs e® and e’ factorizes into a conditional and a marginal,

p(e?,e”) = p(e’le”)p(e”) (10)

Objective Eq. (9) implies a diagonal covariance for the marginal distribution
p(e®), i.e. a standard normal distribution, and Eq. (8) entails a correlation be-
tween e? and e?. Therefore, the correlation matrix is 2% = pdiag((dz, (k))n=,)-
By symmetry, p(e®) = p(e®), which gives

p(ele”) = N (e£°0e, 1 — (£°)2). (1)

Inserting Eq. (11) and a standard normal distribution for p(e®) into Eq. (10)
yields the negative log-likelihood for a pair €%, e’. The detailed formulation can
be found in the supplementary material.

Given pairs 2%, 2% as training data, another change of variables from 7% =
E(z%) to e* = e(z*) gives the training loss function for e as the negative log-
likelihood of z¢, 2°,

L(e) = Egapo [~ logp(e(E(z")), e(E(z")))
—log|det Ve(E(z*))|— log|det Ve(E(z))|] (12)

For simplicity we have derived the loss for a single semantic concept e;. Simply
summing over the losses of different semantic concepts yields their joint loss
function and allows us to learn a joint translator e for all of them.

Log-likelihood of Pairs The loss for e in Eq. (12) contains the log-likelihood
of pairs e?, e’. Inserting Eq. (11) and a standard normal distribution for p(e?)
into Eq. (10) yields

a 1 (6b — pea)Q Ak a
“logpete”) =5 | Y0 TEE+ Y ()P (D)7 | +C (13)
k€EL; p keI k=1

where C' = C(p, Nz) is a constant that can be ignored for the optimization
process. p € (0, 1) determines the relative importance of loss terms corresponding
to the similarity requirement in Eq. (8) and the independence requirement in
Eq. (9). We use a fixed value of p = 0.9 for all experiments.
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Fig. S2. Architectures of our INN models. top: The semantic INN e consists of stacked
invertible blocks. bottom: The conditional INN ¢ is composed of a embedding module H
that downsamples (upsamples if necessary) a given model representation h = H(z) =
H(®(x)). Subsequently, h is concatenated to the inputs of each block of the invertible
model.

Architecture of the Semantic INN In our implementation, e is built by
stacking invertible blocks, see Fig. S1, which consist of three invertible layers:
coupling blocks [12], actnorm layers [27] and shuffling layers. The final output is
split into the factors (e;), see Fig. S2.

Coupling blocks split their input @ = (x1,22) along the channel dimension
and use fully connected neural networks s; and t¢; to perform the following com-
putation:

Tl =121 - 81(332) + tl(l‘g) (14)
.%2 =T - Sg(fl) + tg(fl) (15)

Actnorm layers consist of learnable shift and scale parameters for each channel,
which are initialized to ensure activations with zero mean and unit variance
on the first training batch. Shuffling layers use a fixed, randomly initialized
permutation to shuffle the channels of its input, which provides a better mixing
of channels for subsequent coupling layers.
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A.3 Conditional INN for Recovering Invariances of Deep
Representations

Architecture of the Conditional INN: We build the conditional invertible
neural network ¢ by expanding the semantic model e as follows: Given a model
representation z, which is used as the conditioning of the INN, we first calculate
its embedding

h=H(z) (16)

which is subsequently fed into the affine coupling block:

r1 =21 'Sl(xg,h)-i-tl(l‘g,h) (17)
To = To -+ Sg(fh h) + tg(fl, h) (18)

where s; and ¢; are modified from Eq. (15) such that they are capable of process-
ing a concatenated input (z;, k). The embedding module H is usually a shallow
convolutional neural network, used to down-/upsample a given model represen-
tation z to a size that the networks s; and t; are able to process. This means
that ¢, analogous to e, consists of stacked invertible blocks, where each block is
composed of coupling blocks, actnorm layers and shuffling layers, c.f. Sec. A.2
and Fig. S1. The complete architectures of both ¢ and e are depicted in Fig. S2.
Additionally, Fig. S3 provides a graphical distinction of the training and testing
process of ¢t. During training, the autoencoder D o E provides a representation
of the data that contains both the invariances and the representation of some
model w.r.t. the input z. After training of ¢, the encoder may be discarded and
visual decodings and/or semantic interpretations of a model representation z
can be obtained by sampling and transforming v as described in Eq. (2).



Making Sense of CNNs 7

flx) = ¥(&(z))

t:zlz— v

training

[
E
L —

e

€ € (55:¢

Fig. S3. Graphical distinction of information flow during training and inference. During
training of ¢, the encoder E provides an (approximately complete) data representation,
which is used to learn the invariances of a given model’s representations z. At inference,
the encoder is not neccessarily needed anymore: Given a representation z = ®(x),
invariances can be sampled from the prior distribution and decoded into data space
trough ¢~ .

B Evaluation Details

An overview of INN hyperparameters for all experiments is provided in Tab. S10.

B.1 Architectures of Interpreted Models

Throughout our experiments, we interpret four different models: SqueezeNet,
AlexNet, ResNet and FaceNet. Summaries of each of model’s architecture are
provided in Tab. S11 and Tab. S14. Implementations and pretrained weights of
these models are taken from:

- SqueezeNet (1 . 1) https://pytorch.org/docs/stable/_modules/torchvision/models/squeezenet
— ResNet: https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html

— AleXNet: https://pytorch.org/docs/stable/_modules/torchvision/models/alexnet.html

— FaceNet: https://github.com/timesler/facenet-pytorch
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Table S10. Hyperparameters of INNs for each experiment. n 0, denotes the number
of invertible blocks within in the model, see Fig. S1. h,, and hq refer to the width and
depth of the fully connected subnetworks s; and ;.

Experiment INN input dim. nfiow hw ha

Comparison Sec.4.1 t 128 20 1024 2
Understanding Models: FaceNet Sec. 4.2 ¢ 128 20 512 2
Understanding Models: FaceNet Sec. 4.2 e 128 12 512 2
Data Effects: Adversarial Attack Sec. 4.3 ¢ 128 20 1024 2
Data Effects: Texture Bias Sec. 4.3 t 268 20 1024 2
Data Effects: Domain Shift Sec. B.6 t 128 20 1024 2
Modifications: FaceNet & CelebA Sec. 4.4 ¢ 128 12 512 2

B.2 Explained Variance

To quantify the amount of invariances and semantic concepts, we use the fraction
of the total variance explained by invariances (Fig. 5) and the fraction of the
variance of a semantic concept explained by the model representation (Fig. 4).

Using the INN ¢, we can consider z = t~!(v|z) as a function of v and z.
The total variance of Z is then obtained by sampling v, via its prior which is a
standard normal distribution, and z, via z = ®(x) with  ~ pyasa(x) sampled
from a validation set. We compare this total variance to the average variance
obtained when sampling v for a given z to obtain the fraction of the total variance
explained by invariances:

Var, ar(wjo,n) t (0] @ ("))

@/ ~puatia (') Vary wp. . (z) t=(v|®(z))
’UNN('U|071)

E (19)

In combination with the INN e, which transform z to semantically meaningful
factors, we can analyze the semantic content of a model representation z. To
analyze how much of a semantic concept represented by factor e; is captured by
z, we use e to transform Z into e; and measure its variance. To measure how
much the semantic concept is explained by z, we simply swap the roles of z and
v in Eq. (19), to obtain

VarENPvalid(x) e(t_l (v"(I)(x)))Z
Var, war(vjo,1) e(t~H(v]®(2)))s

T~Pyalid (T)

EU/NN(U’\O,l) (20)

Fig. 5 reports Eq. (19) and its standard error when evaluated via 10k sam-
ples, and Fig. 4 reports Eq. (20) and its standard error when evaluated via 10k
samples.
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Table S11. High-level architectures of FaceNet and ResNet, depicted as pytorch-
modules. Layers investigated in our experiments are marked in bold. Spatial sizes are
provided as a visual aid and vary from model to model in our experiments. If not stated
otherwise, we always extract from the last layer in a series of blocks (e.g. in Tab. S13:
23x BottleNeck down — R®*8%1024 yeferg to the last module in the series of 23
blocks.)

Table S12. FaceNet: Implemen-
tations of layers Mixed, Block35,
Block17, Block8 can be found at
https://github.com/timesler/

facenet-pytorch. In 1.4, the repre- Table S13.  ResNet-101:  See

sentation from the 2nd convolutional
layer is extraced. Furthermore, BN
refers to batch normalization.

https://pytorch.org/docs/stable/
torchvision/models.html for details
on other variants of ResNet.

RGB image x € R128x128x3

RGB image z € R128x128x3

Conv down —> R84x64x64
Norm, ReLU, MaxPool — R32%32x64
3x BottleNeck — R32%32x256
4x BottleNeck down — R16X16x512
23%x BottleNeck down — R8*8%1024
3x BottleNeck down — R*>4x2048

AvgPool, FC

3x Conv, BN, ReLU — R61x61x64
MaxPool —s R30x30x64
3x Conv, BN, ReLU — R3%13x256

5x Block35 — RI3x13x256

R6><6><896

Mixed down —

10x Block17 — R6*6x896

Mixed down — R2X2X1792

5% Block8 —s R2*2x1792

AdaAvgPool — RI*1x1792

output — R0

Dropout, Linear, BN — R>!2

identity embedding — R5'?

B.3 Comparison to Existing Visualization Methods

In Sec. 4.1, we compare to existing layer inversion methods that aim to recon-
struct an input « from its representation z = ®(x). Both our method and D&B’s
[13] method were trained on the Animals dataset, which consists of a mixture
of all carnivorous mammal animal classes from ImageNet and all animals from
the Animals with Attributes 2 [60] dataset. Hyperparameters of our autoencoder
model can be found in Tab. S7. The decoder in [13] was re-implemented based
on our decoder shown in Tab. S9, where we set the latent dimension to 4096
to avoid introduction of an artificial bottleneck and allow for a fair compari-
son. Both methods were trained by minimizing the image metric described in
Sec.A.1 and Tab. S4, where no Kullback-Leibler divergence term was used for
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Table S14. High-level architectures of SquuezeNet and AlexNet, depicted as pytorch-

modules. C.f. Tab.S11 for further details.

Table S15. SqueezeNet. We extract
the penultimate Fire block for interpre-
tation in Sec. 4.2.

Table S16. AlexNet: The first convo-
lution uses kernel size 11.

RGB image x € R128x128x3

RGB image x € R128%128%3

Conv, ReLU, MaxPool — R31%31x64

Conv, ReLU, MaxPool — R®*15x64

2% Fire — R3l><31><128

Conv, ReLU, MaxPool — R7*7*192

MaxPool — R®*15%128

Conv, ReLU — R7X7x384

2x Fire — R15%15x256 2x Conv, ReLU — R7*7*256
MaxPool — R7*7%256 MaxPool — R?*3%2%6
4x Fire — RTX7x512 AdaAvgPool, Flatten — R9216
Dropout, Conv, ReLU — R7X7*1000 Dropout, Linear, ReL, U — R*0%
AdaAvgPool — R7X7x1000 Dropout, Linear, ReL U — R%0%
output — R199° Linear — R!000

D&B’s method. Images from [39] are taken from their publication. Additional
visual comparisons can be found in Fig. S4, S5, S6.
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reconstructions from model representations

example: snow leopard example: wolf
layer our D&B our D&B

Fig. S4. Additional examples for layerwise reconstructions from model representations
z = ®(x) with our method and [13] (D&B). We show 10 samples per layer represen-
tation obtained with our generative approach. Here, o denotes the softmax function,
i.e. reconstructions are obtained from class probabilities provided by the model. We
provide a comparison of equally sized images in Fig. S6 and Fig. S5.
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reconstructions from model representations

layer our D&B

convd

o (logits)

Fig. S5. Zooming into representation conditional samples for example wolf. To verify
that our samples are outperforming those of [13] in visual quality, we repeat row 2
(convb) and row 6 (o (logits)) of Fig. S4 with scaled images. Here, o denotes the softmax
function.
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reconstructions from model representations

layer our D&B

convb

Fig. S6. Zooming into representation conditional samples for example snow leopard.
To verify that our samples are outperforming those of [13] in visual quality, we repeat
row 2 (convb) and row 6 (o(logits)) of Fig. S4 with scaled images. Here, o denotes the
softmax function.
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B.4 Relevance of Factors

input Decoded samples Z = D(t™*(v|2))

T 4000 training iterations 36000 training iterations

Fig. S7. Additional z conditional samples after 4k and 36k training steps, as in Fig. 4.
Each row is conditioned on z = ®(z) and each column is conditioned on a v ~ N'(v]0, 1).
At 4k (resp. 36k) iterations, z explains 2.57% (resp. 36.08%) of the variance in the
digit factor. Thus, the digit class of samples obtained at 4k iterations change with
the sampled invariances across columns, while it stays the same at 36k iterations.
Conversely, at 4k (resp. 36k) iterations, z explains 38.44% (resp. 2.76%) of the variance
in the background color factor. Thus, the background color of samples obtained at 4k
iterations change with the sampled representation z = ®(x) across rows, while it stays
the same at 38k iterations.

In Sec. 4.2, we trained SqueezeNet for digit classification on ColorMNIST,
which consists of MNIST images with randomly choosen fore- and background
colors. In addition, we trained the autoencoder of Tab. S1 on ColorMNIST and
the INN e to obtain the following factors

— ey representing the digit class defined by pairs of images showing the same
digit in different styles and colors,

— eg representing the foreground color defined by pairs of images showing the
same foreground color on different digits and backgrounds,

— e3 representing the background color defined by pairs of images showing the
same background color for differently colored digits.

Finally, we trained the INN ¢ for 20 different checkpoints of SqueezeNet
obtained between training steps zero and 40k, to obtain the stochastic mapping
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from z, the penultimate Fire layer of SqueezeNet, to the semantic factors (e;).
Fig. 4 plots Eq. (20) against the training step, with shaded areas representing
the standard error obtained with 10k samples.

At step zero, i.e. for a randomly initialized SqueezeNet, we observe that the
representation z mostly contains the background color and, to a lesser degree,
the foreground color. This observation is consistent with the fact that color in-
formation is directly encoded in the pixel representation of the image and that
there are more background pixels than foreground pixels. In contrast, informa-
tion about the digit class is not directly encoded in pixel values and requires
learning. As the network starts to learn between steps 10k and 15k, we indeed
observe a drastic change in the semantic content of z, which becomes invariant to
color information and sensitive to digit class information. Note that the network
could also learn to retain color information while seperating digit classes in the
last classification layer, but our results demonstrate that the network learns to
abstract away task-irrevant information before that.

We show additional z conditional samples, both before and after learning, in
Fig. S7.
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B.5 Modifying Representations

Training Details: In Sec. 4.4 we trained the autoencoder of Tab. S7 on CelebA
at resolution 128 x 128. Using the attribute labels provided for this dataset, we
trained an INN e for the semantic factors

— e representing hair color, defined by pairs with the same Black_Hair at-
tribute.

— e5 representing glasses, defined by pairs with the same Eyeglasses attribute.

— e3 representing gender, defined by pairs with the same Male attribute.

— ey representing beard, defined by pairs with the same No_Beard attribute.

— e5 representing age, defined by pairs with the same Young attribute.

— eg representing smiling, defined by pairs with the same Smiling attribute.

Additional Results and Comparisons We provide a larger version of Fig. 7
with more examples in Fig. S8 and Fig. S9. While our approach aims to provide
semantic understanding of representations learned by models, the invertibility of
e together with the decoder D enables semantic image editing. To evaluate our
approach on this task, we compare it to StarGAN? [8], a specialized approach for
attribute modifications of face images. Our approach consistently outperforms
[8] across all semantic attributes in terms of the quality of modified images, which
is quantified by FID scores [23] in Fig. S9. Moreover, we observe some particular
qualitative differences between our method and [8]: Changing factors with our
approach produces more coherent changes, i.e. changes in gender cause changes
in hair length (for all examples in Fig. S8), changes to an older age cause thin,
white hairs (e.g. examples 1, 2, 6 in Fig. S8), and changes in the beard factor
have no effect on female faces (e.g. examples 2, 3, 5, 6 in Fig. S8), suggesting
that our model has learned the correct causal structure (as present in the data)
where beard is caused by gender and not the other way around. In contrast, [8]
produces very localized, pixelwise changes without taking the global structure
into account. While such a behavior might be desired for some specialized ap-
plications, it generally leads to unnatural results, e.g. when changing gender,
beard and age in example 2 or gender and beard in example 3 of Fig. S8.

2 We used the author’s official implementation available at https://github.com/
yunjey/stargan
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input method hair glasses  gender beard age smiling
x €1 €2 es €4 €5 €6

our

our

(8]

our

our

our

our

Fig. S8. Additional examples corresponding to Fig. 7. In each column, we replace a
semantic factor e;(E(x)) by e;j, which is obtained from another, randomly chosen, image
that differs in the corresponding attribute (see Sec. B.5). Subsequently we decode a
semantically modified image using the invertibility of e to obtain Z* = D(e™'((e}))).
The results of StarGAN [8] are obtained by negating the binary value for the column’s
attribute. FID scores in Fig. S9.
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input hair glasses  gender beard age smiling
m
€1 €2 €3 €4 €5 €6

our

8]

m our

our

our

our

8]

our 16.24 24.97 15.17 12.84 13.21 12.96

FID [8] 20.94 41.27 20.04 19.88 21.77 14.47

Fig. S9. Additional examples as in Fig. S8. Moreover, the last row contains FID scores
[23] of semantically modified images obtained by our approach and [8], which shows
that our approach consistently outperforms [8].
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B.6 Effects of Data Shifts - Additional Results

Reconstruction Samples
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Fig. S10. Shifting domains: Human faces to animal faces evaluated with a fixed
FaceNet. The evaluation procedure is similar to the method described in Fig. 3. Al-
though never trained on data consisting of something else than human faces, FaceNet
is able to capture the ”identity” of the input to a certain degree. Information about
appearance is approximately preserved until the last layer, i.e. the final identity em-
bedding.

Data Shift from Humans to Animals As an extension of Sec. 4.3, we run
an experiment on FaceNet and condition the invariance recovering model ¢ on
five different representations of the model (see Tab. S12) by training ¢ on Ani-
malFaces instead of CelebA and an autoencoder which is trained on both Ani-
malFaces and CelebA, c.f. Tab. S7 for details. Furthermore, note that FaceNet
is not re-trained on the new data and fixed during training, c.f. Fig. S3.

Fig. S10 depicts the visualized representations and corresponding learned in-
variances accross several layers of FaceNet. Evidently, even deep representations
of the off-domain input image may be visualized, at least as deep as the penulti-
mate layer (AdaAvgPool). Another interesting result is that FaceNet seems to
conserve class identity of the input to some degree: The appearance of samples
generated by conditioning on model representations is similar, to some extend
even for the last layer (identity embedding). This suggests that the model is
able to generalize to a surprisingly large margin of data, given the input images
show some kind of symmetry and perceptual similarity to human faces.
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Fig. S11. Applying our approach to BigGAN [6]. We directly train ¢ on latent codes
of the generator model, utilizing a simple variational autoencoder model for dequanti-
zation of discrete classes c. See Sec.B.6 for technical details.

Verifying the Texture-Bias Hypothesis In Section 4.3 we trained the INN
t conditioned on representations of ResNet-50 from the penultimate layer (i.e.
extracted before the final classification layer, c.f. Tab. S13) with the goal of
validating the texture-bias hypothesis from [18]. In their work, [18] showed that
typical convolutional neural classification networks are biased towards texture
when being trained on ImageNet. They proposed that this bias can be removed
by training the CNNs on a stylized version of ImageNet instead.

Following [49], we gained access to the dataset and a powerful decoder by
relying on a synthetic version of ImageNet, provided through the pre-trained gen-
erator of BigGAN [6].3 Thus, with Eq. (5) in mind, we identify the concatenated
vector (2, We)) as z. Here, R1? 5 7 ~ N(0,1) is sampled from a multivariate
normal distribution and ¢ € {0,1}¥ is a one-hot vector representing one of the
K = 1000 ImageNet classes. W maps the one-hot class representation c to the
space of real numbers, i.e. Wc = h € R'2%, Note that W is part of the BigGAN
generator Dpje and is thus also pre-trained. See Fig. S11 for a visual summaray
of the application of our approach to BigGAN. To avoid overfitting ¢ on a single
dimension of z, the vector h is passed trough a small, fully connected variational
autoencoder before being concatenated with Z as z = (2, h). The architecture
of this VAE is depicted in Tab. S17. Utilizing this approach can be interpreted
as a variant of deep dequantization. Equipped with a dequantized version of

3 We wused a pretrained generator available at https://github.com/
LoreGoetschalckx/GANalyze
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Table S17. Architecture of the VAE used for dequantization when training solely on
synthetic BigGAN data. Here, a slope parameter of o = 0.01 is used in Leaky ReLU.

Embedding h € R'?8
(FC, LReLU) — R0
2x (FC, LReLU) — R*09

1w, 02 for each:

(FC, LReLU) — R'?®
(FC, LReLU) — R0
2x (FC, LReLU) — R*09
(FC, LReLU) — R'?®
h € R'28 ~ N (, diag(c?))
(FC, LReLU) — R0
3x (FC, LReLU) — R*%
(FC, LReLU) — R'?®

z = (%, h) and corresponding images © = Dpy(Z), we trained ¢ as described in
Sec. 3.1.

Additional samples conditioned on representations of (i) a ResNet-50 trained
on standard TmageNet and (ii) a ResNet-50 trained on the stylized version of Ima-
geNet are provided in Fig. S12. These results further confirm the texture&shape-
bias of (i) and the reverse behavior for (ii). Line 7 and 8 explicitly show that
a texture-agnostic classifier can be used to create new content based on input
sketches or cartoons.

Furthermore, note that both models perform reasonably well on the domain
of natural images, c.f. line 1-2 of Tab. S12.
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samples Z = D(t™*(v|z)) conditioned on ResNet pre-logits z = ®(z)

Dyanitia: ResNet-50 trained on Dtytized: ResNet-50 trained on

inputs standard ImageNet stylized ImageNet

Fig. S12. Texture bias: Additional examples for representation-conditional samples of
two variants of ResNet-50, one trained on standard ImageNet, the other on a stylized
version of ImageNet. See also Tab. 6.
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Fig. S13. More visualizations of adversarial attacks as in Fig. 5. Predictions of original
vs. attacked version of the input image for all depicted examples: top left: ‘Lycaon
pictus’ vs. ‘Cuon alpinus’; top right: ‘Snow Leopard’ vs. ‘Leopard’; bottom left: ‘West

Highland white Terrier’ vs. ‘Yorkshire Terrier’;

‘Japanese Spaniel’.

bottom right: ‘Blenheim Spaniel’ vs.
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