
Making Sense of CNNs 1

Making Sense of CNNs: Interpreting Deep
Representations & Their Invariances with INNs

–
Supplementary Materials

A Implementation Details

A.1 Autoencoder E,D

In Sec. 3.1, we introduced an autoencoder to obtain a representation z̄ of x,
which includes the invariances abstracted away by a given model representation
z. This autoencoder consists of an encoder E(x), and a decoder D(z̄).

Because the INNs t and e transform the distribution of z̄, we must ensure
a strictly positive density for z̄ to avoid degenerate solutions. This is readily
achieved with a stochastic encoder, i.e. we predict mean E(x)µ and diagonal
E(x)σ2 of a Gaussian distribution, and obtain the desired representation as z̄ ∼
N (z̄|E(x)µ,diag(E(x)σ2)).

Following [10], we train this autoencoder as a Variational Autoencoder us-
ing the reparameterization trick [26, 48] to match the encoded distribution to a
standard normal distribution, and jointly learn the output variance γ under an
image metric ‖x− x̄‖ to avoid blurry reconstructions. The resulting loss function
is thus

L(E,D, γ) = Ex∼p(x)
ε∼N (ε|0,1)

[
1

γ
‖x−D(E(x)µ +

√
diag(E(x)σ2) ε)‖+ log γ

+
1

2

Nz̄∑
i=1

{
(E(x)µ)2

i + (E(x)σ2)i − 1− log(E(x)σ2)i
}]

For experiments on ColorMNIST, we use the squared L2 norm for the image
metric, and the encoder and decoder architectures are summarized in Tab. S1.

Table S1. Autoencoder architecture for ColorMNIST at resolution 28× 28.

Table S2. Encoder.

RGB image x ∈ R28×28×3

Conv, Norm, LReLU → R14×14×64

Conv, Norm, LReLU → R7×7×128

FC 7→ (µ, σ2) ∈ R64 × R64

Table S3. Decoder.

z ∈ R64 ∼ N (µ, diag(σ2))

FC → R7×7×128

Conv transpose, Norm, LReLU → R14×14×64

Conv transpose, Tanh → R28×28×3

2 R. Rombach et al.

Table S4. Architectures used to compute image metrics for CelebA, AnimalFaces and
Animals at resolution 128× 128.

Table S5. VGG-16 pretrained on Ima-
geNet for feature extraction. Output of
bold layers are used to compute feature
distances.

RGB image x ∈ R128×128×3

2× Conv, ReLU → R128×128×64

MaxPool → R64×64×64

2× Conv, ReLU → R64×64×128

MaxPool → R32×32×128

3× Conv, ReLU → R32×32×256

MaxPool → R16×16×256

3× Conv, ReLU → R16×16×512

MaxPool → R8×8×512

3× Conv, ReLU → R8×8×512

Table S6. Discriminator. All convo-
lutions use kernel size 4. Norm refers
to Batch Normalization, Leaky ReLU
uses slope parameter 0.2.

RGB image x ∈ R128×128×3

Conv down, LReLU → R64×64×64

Conv down, Norm, LReLU → R32×32×128

Conv down, Norm, LReLU → R16×16×256

Conv down, Norm, LReLU → R8×8×512

Conv, Norm, LReLU → R8×8×512

Conv → R8×8×1

For the experiments on CelebA, AnimalFaces and Animals, we use an im-
proved image metric as in [13], which includes a perceptual loss and a discrimina-
tor loss. The perceptual loss consists of feature distances obtained from different
layers of a fixed, pretrained network. We used a VGG-16 network pretrained on
ImageNet and weighted distances of different layers as in [65]. The discriminator
is trained along with the autoencoder to distinguish reconstructed images from
real images using a binary classification loss, and the autoencoder maximizes
the log-probability that reconstructed images are classified as real images. The
architectures of VGG-16 and the discriminator are summarized in Tab. S4. For
E we use an architecture based on ResNet-101 and for D we use an architecture
based on BigGAN, where we include a small fully connected network to replace
the class conditioning used in BigGAN by a conditioning on z̄. See Tab. S7 for
a summary of this autoencoder architecture.

A.2 Details on the INN for Revealing Semantics of Deep
Representations

Previous works have successfully applied INNs for density estimation [12], inverse
problems [2], and on top of autoencoder representations [15, 61]. This section
provides details on how we embed the approach of [15] to reveal the semantic
concepts of autoencoder representations z̄, c.f . Sec. 3.2.

Making Sense of CNNs 3

Table S7. Autoencoder architecture for CelebA, AnimalFaces and Animals at resolu-
tion 128× 128.

Table S8. Resnet-101 based Encoder.

RGB image x ∈ R128×128×3

Conv down → R64×64×64

Norm, ReLU, MaxPool → R32×32×64

3× BottleNeck → R32×32×256

4× BottleNeck down → R16×16×512

23× BottleNeck down → R8×8×1024

3× BottleNeck down → R4×4×2048

AvgPool, FC 7→ (µ, σ2) ∈ R128 × R128

Table S9. Decoder based on BigGAN.

z̄ ∈ R128 ∼ N (µ, diag(σ2))
3× (FC, LReLU) → R256

FC, Softmax → R1000

Embed 7→ h ∈ R128

FC(z̄) → R4×4×16·96

ResBlock(z̄,h) up → R8×8×16·96

ResBlock(z̄,h) up → R16×16×8·96

ResBlock(z̄,h) up → R32×32×4·96

ResBlock(z̄,h) up → R64×64×2·96

Non-Local Block → R64×64×2·96

ResBlock(z̄,h) up → R64×64×96

Norm, ReLU, Conv up → R128×128×3

Tanh 7→ x̄ ∈ R128×128×3

Since we will never have examples for all relevant semantic concepts, we
include a residual concept that captures the remaining variability of z̄, which is
not explained by the given semantic concepts.

Following [15], we learn a bijective transformation e(z̄), which translates
the non-interpretable representation z̄ invertibly into a factorized representa-
tion (ei(z̄))

K
i=0 = e(z̄), where each factor ei ∈ RNei represents one of the given

semantic concepts for i = 1, . . . ,K, and e0 ∈ RNe0 is the residual concept.
The INN e establishes a one-to-one correspondence between an encoding

and different semantic concepts and, conversely, enables semantic modifications
to correctly alter the original encoding (see next section). Being an INN, e(z̄)

and z̄ need to have the same dimensionality and we set Ne0 = Nz̄ −
∑K
i=1Nei .

We denote the indices of concept i with respect to e(z̄) as Ii ⊂ {1, . . . , Nz̄} such
that we can write ei = (e(z̄)k)k∈Ii .

Deriving a Loss Function for Training the Semantic INN Let ei be
the factor representing some semantic concept, e.g . gender, that the contents of
two images xa, xb share. Then the projection of their encodings z̄a, z̄b onto this
semantic concept must be similar [15, 30],

ei(z̄
a) ' ei(z̄b) where z̄a = E(xa), z̄b = E(xb). (8)

Moreover, to interpret z̄ we are interested in the separate contribution of different
semantic concepts ei that explain z̄. Hence, we seek a mapping e(•) that strives

4 R. Rombach et al.

to disentangle different concepts,

ei(z̄) ⊥ ej(z̄) ∀i 6= j, x where z̄ = E(x). (9)

The objectives in Eq. (8), (9) imply a correlation in ei for pairs z̄a and z̄b

and no correlation between concepts ei, ej for i 6= j. This calls for a Gaussian
distribution with a covariance matrix that reflects these requirements.

Let ea = (eai) = (ei(E(xa))) and eb likewise, where xa, xb are samples from
a training distribution p(xa, xb) for the i-th semantic concept. The distribution
of pairs ea and eb factorizes into a conditional and a marginal,

p(ea, eb) = p(eb|ea)p(ea) (10)

Objective Eq. (9) implies a diagonal covariance for the marginal distribution
p(ea), i.e. a standard normal distribution, and Eq. (8) entails a correlation be-
tween eai and ebi . Therefore, the correlation matrix is Σab = ρ diag((δIi(k))Nz̄

k=1).
By symmetry, p(eb) = p(ea), which gives

p(eb|ea) = N (eb|Σabea,1− (Σab)2). (11)

Inserting Eq. (11) and a standard normal distribution for p(ea) into Eq. (10)
yields the negative log-likelihood for a pair ea, eb. The detailed formulation can
be found in the supplementary material.

Given pairs xa, xb as training data, another change of variables from z̄a =
E(xa) to ea = e(z̄a) gives the training loss function for e as the negative log-
likelihood of z̄a, z̄b,

L(e) = Exa,xb

[
− log p(e(E(xa)), e(E(xb)))

− log|det∇e(E(xa))|− log|det∇e(E(xb))|
]

(12)

For simplicity we have derived the loss for a single semantic concept ei. Simply
summing over the losses of different semantic concepts yields their joint loss
function and allows us to learn a joint translator e for all of them.

Log-likelihood of Pairs The loss for e in Eq. (12) contains the log-likelihood
of pairs ea, eb. Inserting Eq. (11) and a standard normal distribution for p(ea)
into Eq. (10) yields

− log p(ea, eb) =
1

2

∑
k∈Ii

(ebk − ρeak)2

1− ρ2
+
∑
k∈Ici

(ebk)2 +

Nz̄∑
k=1

(eak)2

+ C (13)

where C = C(ρ,Nz̄) is a constant that can be ignored for the optimization
process. ρ ∈ (0, 1) determines the relative importance of loss terms corresponding
to the similarity requirement in Eq. (8) and the independence requirement in
Eq. (9). We use a fixed value of ρ = 0.9 for all experiments.

Making Sense of CNNs 5

Fig. S1. A single invertible block used to build our invertible neural networks.

Fig. S2. Architectures of our INN models. top: The semantic INN e consists of stacked
invertible blocks. bottom: The conditional INN t is composed of a embedding module H
that downsamples (upsamples if necessary) a given model representation h = H(z) =
H(Φ(x)). Subsequently, h is concatenated to the inputs of each block of the invertible
model.

Architecture of the Semantic INN In our implementation, e is built by
stacking invertible blocks, see Fig. S1, which consist of three invertible layers:
coupling blocks [12], actnorm layers [27] and shuffling layers. The final output is
split into the factors (ei), see Fig. S2.

Coupling blocks split their input x = (x1, x2) along the channel dimension
and use fully connected neural networks si and ti to perform the following com-
putation:

x̃1 = x1 · s1(x2) + t1(x2) (14)

x̃2 = x2 · s2(x̃1) + t2(x̃1) (15)

Actnorm layers consist of learnable shift and scale parameters for each channel,
which are initialized to ensure activations with zero mean and unit variance
on the first training batch. Shuffling layers use a fixed, randomly initialized
permutation to shuffle the channels of its input, which provides a better mixing
of channels for subsequent coupling layers.

6 R. Rombach et al.

A.3 Conditional INN for Recovering Invariances of Deep
Representations

Architecture of the Conditional INN: We build the conditional invertible
neural network t by expanding the semantic model e as follows: Given a model
representation z, which is used as the conditioning of the INN, we first calculate
its embedding

h = H(z) (16)

which is subsequently fed into the affine coupling block:

x̃1 = x1 · s1(x2, h) + t1(x2, h) (17)

x̃2 = x2 · s2(x̃1, h) + t2(x̃1, h) (18)

where si and ti are modified from Eq. (15) such that they are capable of process-
ing a concatenated input (xi, h). The embedding module H is usually a shallow
convolutional neural network, used to down-/upsample a given model represen-
tation z to a size that the networks si and ti are able to process. This means
that t, analogous to e, consists of stacked invertible blocks, where each block is
composed of coupling blocks, actnorm layers and shuffling layers, c.f . Sec. A.2
and Fig. S1. The complete architectures of both t and e are depicted in Fig. S2.
Additionally, Fig. S3 provides a graphical distinction of the training and testing
process of t. During training, the autoencoder D ◦ E provides a representation
of the data that contains both the invariances and the representation of some
model w.r.t. the input x. After training of t, the encoder may be discarded and
visual decodings and/or semantic interpretations of a model representation z
can be obtained by sampling and transforming v as described in Eq. (2).

Making Sense of CNNs 7

Fig. S3. Graphical distinction of information flow during training and inference. During
training of t, the encoder E provides an (approximately complete) data representation,
which is used to learn the invariances of a given model’s representations z. At inference,
the encoder is not neccessarily needed anymore: Given a representation z = Φ(x),
invariances can be sampled from the prior distribution and decoded into data space
trough t−1.

B Evaluation Details

An overview of INN hyperparameters for all experiments is provided in Tab. S10.

B.1 Architectures of Interpreted Models

Throughout our experiments, we interpret four different models: SqueezeNet,
AlexNet, ResNet and FaceNet. Summaries of each of model’s architecture are
provided in Tab. S11 and Tab. S14. Implementations and pretrained weights of
these models are taken from:

– SqueezeNet (1.1) https://pytorch.org/docs/stable/_modules/torchvision/models/squeezenet

– ResNet: https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html

– AlexNet: https://pytorch.org/docs/stable/_modules/torchvision/models/alexnet.html

– FaceNet: https://github.com/timesler/facenet-pytorch

8 R. Rombach et al.

Table S10. Hyperparameters of INNs for each experiment. nflow denotes the number
of invertible blocks within in the model, see Fig. S1. hw and hd refer to the width and
depth of the fully connected subnetworks si and ti.

Experiment INN input dim. nflow hw hd

Comparison Sec.4.1 t 128 20 1024 2

Understanding Models: FaceNet Sec. 4.2 t 128 20 512 2

Understanding Models: FaceNet Sec. 4.2 e 128 12 512 2

Data Effects: Adversarial Attack Sec. 4.3 t 128 20 1024 2

Data Effects: Texture Bias Sec. 4.3 t 268 20 1024 2

Data Effects: Domain Shift Sec. B.6 t 128 20 1024 2

Modifications: FaceNet & CelebA Sec. 4.4 e 128 12 512 2

B.2 Explained Variance

To quantify the amount of invariances and semantic concepts, we use the fraction
of the total variance explained by invariances (Fig. 5) and the fraction of the
variance of a semantic concept explained by the model representation (Fig. 4).

Using the INN t, we can consider z̄ = t−1(v|z) as a function of v and z.
The total variance of z̄ is then obtained by sampling v, via its prior which is a
standard normal distribution, and z, via z = Φ(x) with x ∼ pvalid(x) sampled
from a validation set. We compare this total variance to the average variance
obtained when sampling v for a given z to obtain the fraction of the total variance
explained by invariances:

Ex′∼pvalid(x′)

Varv∼N (v|0,1) t
−1(v|Φ(x′))

Varx∼pvalid(x)
v∼N (v|0,1)

t−1(v|Φ(x))

 (19)

In combination with the INN e, which transform z̄ to semantically meaningful
factors, we can analyze the semantic content of a model representation z. To
analyze how much of a semantic concept represented by factor ei is captured by
z, we use e to transform z̄ into ei and measure its variance. To measure how
much the semantic concept is explained by z, we simply swap the roles of z and
v in Eq. (19), to obtain

Ev′∼N (v′|0,1)

Varx∼pvalid(x) e(t
−1(v′|Φ(x)))i

Varv∼N (v|0,1)
x∼pvalid(x)

e(t−1(v|Φ(x)))i

 (20)

Fig. 5 reports Eq. (19) and its standard error when evaluated via 10k sam-
ples, and Fig. 4 reports Eq. (20) and its standard error when evaluated via 10k
samples.

Making Sense of CNNs 9

Table S11. High-level architectures of FaceNet and ResNet, depicted as pytorch-
modules. Layers investigated in our experiments are marked in bold. Spatial sizes are
provided as a visual aid and vary from model to model in our experiments. If not stated
otherwise, we always extract from the last layer in a series of blocks (e.g . in Tab. S13:
23× BottleNeck down → R8×8×1024 refers to the last module in the series of 23
blocks.)

Table S12. FaceNet: Implemen-
tations of layers Mixed, Block35,

Block17, Block8 can be found at
https://github.com/timesler/

facenet-pytorch. In l.4, the repre-
sentation from the 2nd convolutional
layer is extraced. Furthermore, BN
refers to batch normalization.

RGB image x ∈ R128×128×3

3× Conv, BN, ReLU → R61×61×64

MaxPool → R30×30×64

3× Conv, BN, ReLU → R13×13×256

5× Block35 → R13×13×256

Mixed down → R6×6×896

10× Block17 → R6×6×896

Mixed down → R2×2×1792

5× Block8 → R2×2×1792

AdaAvgPool → R1×1×1792

Dropout, Linear, BN → R512

identity embedding → R512

Table S13. ResNet-101: See
https://pytorch.org/docs/stable/

torchvision/models.html for details
on other variants of ResNet.

RGB image x ∈ R128×128×3

Conv down → R64×64×64

Norm, ReLU, MaxPool → R32×32×64

3× BottleNeck → R32×32×256

4× BottleNeck down → R16×16×512

23× BottleNeck down → R8×8×1024

3× BottleNeck down → R4×4×2048

AvgPool, FC

output → R1000

B.3 Comparison to Existing Visualization Methods

In Sec. 4.1, we compare to existing layer inversion methods that aim to recon-
struct an input x from its representation z = Φ(x). Both our method and D&B’s
[13] method were trained on the Animals dataset, which consists of a mixture
of all carnivorous mammal animal classes from ImageNet and all animals from
the Animals with Attributes 2 [60] dataset. Hyperparameters of our autoencoder
model can be found in Tab. S7. The decoder in [13] was re-implemented based
on our decoder shown in Tab. S9, where we set the latent dimension to 4096
to avoid introduction of an artificial bottleneck and allow for a fair compari-
son. Both methods were trained by minimizing the image metric described in
Sec.A.1 and Tab. S4, where no Kullback-Leibler divergence term was used for

10 R. Rombach et al.

Table S14. High-level architectures of SquuezeNet and AlexNet, depicted as pytorch-
modules. C.f . Tab.S11 for further details.

Table S15. SqueezeNet. We extract
the penultimate Fire block for interpre-
tation in Sec. 4.2.

RGB image x ∈ R128×128×3

Conv, ReLU, MaxPool → R31×31×64

2× Fire → R31×31×128

MaxPool → R15×15×128

2× Fire → R15×15×256

MaxPool → R7×7×256

4× Fire → R7×7×512

Dropout, Conv, ReLU → R7×7×1000

AdaAvgPool → R7×7×1000

output → R1000

Table S16. AlexNet: The first convo-
lution uses kernel size 11.

RGB image x ∈ R128×128×3

Conv, ReLU, MaxPool → R15×15×64

Conv, ReLU, MaxPool → R7×7×192

Conv, ReLU → R7×7×384

2× Conv, ReLU → R7×7×256

MaxPool → R3×3×256

AdaAvgPool, Flatten → R9216

Dropout, Linear, ReLU → R4096

Dropout, Linear, ReLU → R4096

Linear → R1000

D&B’s method. Images from [39] are taken from their publication. Additional
visual comparisons can be found in Fig. S4, S5, S6.

Making Sense of CNNs 11

reconstructions from model representations

example: snow leopard example: wolf

layer our D&B our D&B

input

conv5

fc8

fc7

fc6

σ(logits)

Fig. S4. Additional examples for layerwise reconstructions from model representations
z = Φ(x) with our method and [13] (D&B). We show 10 samples per layer represen-
tation obtained with our generative approach. Here, σ denotes the softmax function,
i.e. reconstructions are obtained from class probabilities provided by the model. We
provide a comparison of equally sized images in Fig. S6 and Fig. S5.

12 R. Rombach et al.

reconstructions from model representations

layer our D&B

conv5

σ(logits)

Fig. S5. Zooming into representation conditional samples for example wolf. To verify
that our samples are outperforming those of [13] in visual quality, we repeat row 2
(conv5) and row 6 (σ(logits)) of Fig. S4 with scaled images. Here, σ denotes the softmax
function.

Making Sense of CNNs 13

reconstructions from model representations

layer our D&B

conv5

σ(logits)

Fig. S6. Zooming into representation conditional samples for example snow leopard.
To verify that our samples are outperforming those of [13] in visual quality, we repeat
row 2 (conv5) and row 6 (σ(logits)) of Fig. S4 with scaled images. Here, σ denotes the
softmax function.

14 R. Rombach et al.

B.4 Relevance of Factors

input Decoded samples x̄ = D(t−1(v|z))

x 4000 training iterations 36000 training iterations

Fig. S7. Additional z conditional samples after 4k and 36k training steps, as in Fig. 4.
Each row is conditioned on z = Φ(x) and each column is conditioned on a v ∼ N (v|0, 1).
At 4k (resp. 36k) iterations, z explains 2.57% (resp. 36.08%) of the variance in the
digit factor. Thus, the digit class of samples obtained at 4k iterations change with
the sampled invariances across columns, while it stays the same at 36k iterations.
Conversely, at 4k (resp. 36k) iterations, z explains 38.44% (resp. 2.76%) of the variance
in the background color factor. Thus, the background color of samples obtained at 4k
iterations change with the sampled representation z = Φ(x) across rows, while it stays
the same at 38k iterations.

In Sec. 4.2, we trained SqueezeNet for digit classification on ColorMNIST,
which consists of MNIST images with randomly choosen fore- and background
colors. In addition, we trained the autoencoder of Tab. S1 on ColorMNIST and
the INN e to obtain the following factors

– e1 representing the digit class defined by pairs of images showing the same
digit in different styles and colors,

– e2 representing the foreground color defined by pairs of images showing the
same foreground color on different digits and backgrounds,

– e3 representing the background color defined by pairs of images showing the
same background color for differently colored digits.

Finally, we trained the INN t for 20 different checkpoints of SqueezeNet
obtained between training steps zero and 40k, to obtain the stochastic mapping

Making Sense of CNNs 15

from z, the penultimate Fire layer of SqueezeNet, to the semantic factors (ei).
Fig. 4 plots Eq. (20) against the training step, with shaded areas representing
the standard error obtained with 10k samples.

At step zero, i.e. for a randomly initialized SqueezeNet, we observe that the
representation z mostly contains the background color and, to a lesser degree,
the foreground color. This observation is consistent with the fact that color in-
formation is directly encoded in the pixel representation of the image and that
there are more background pixels than foreground pixels. In contrast, informa-
tion about the digit class is not directly encoded in pixel values and requires
learning. As the network starts to learn between steps 10k and 15k, we indeed
observe a drastic change in the semantic content of z, which becomes invariant to
color information and sensitive to digit class information. Note that the network
could also learn to retain color information while seperating digit classes in the
last classification layer, but our results demonstrate that the network learns to
abstract away task-irrevant information before that.

We show additional z conditional samples, both before and after learning, in
Fig. S7.

16 R. Rombach et al.

B.5 Modifying Representations

Training Details: In Sec. 4.4 we trained the autoencoder of Tab. S7 on CelebA
at resolution 128× 128. Using the attribute labels provided for this dataset, we
trained an INN e for the semantic factors

– e1 representing hair color, defined by pairs with the same Black Hair at-
tribute.

– e2 representing glasses, defined by pairs with the same Eyeglasses attribute.
– e3 representing gender, defined by pairs with the same Male attribute.
– e4 representing beard, defined by pairs with the same No Beard attribute.
– e5 representing age, defined by pairs with the same Young attribute.
– e6 representing smiling, defined by pairs with the same Smiling attribute.

Additional Results and Comparisons We provide a larger version of Fig. 7
with more examples in Fig. S8 and Fig. S9. While our approach aims to provide
semantic understanding of representations learned by models, the invertibility of
e together with the decoder D enables semantic image editing. To evaluate our
approach on this task, we compare it to StarGAN2 [8], a specialized approach for
attribute modifications of face images. Our approach consistently outperforms
[8] across all semantic attributes in terms of the quality of modified images, which
is quantified by FID scores [23] in Fig. S9. Moreover, we observe some particular
qualitative differences between our method and [8]: Changing factors with our
approach produces more coherent changes, i.e. changes in gender cause changes
in hair length (for all examples in Fig. S8), changes to an older age cause thin,
white hairs (e.g . examples 1, 2, 6 in Fig. S8), and changes in the beard factor
have no effect on female faces (e.g . examples 2, 3, 5, 6 in Fig. S8), suggesting
that our model has learned the correct causal structure (as present in the data)
where beard is caused by gender and not the other way around. In contrast, [8]
produces very localized, pixelwise changes without taking the global structure
into account. While such a behavior might be desired for some specialized ap-
plications, it generally leads to unnatural results, e.g . when changing gender,
beard and age in example 2 or gender and beard in example 3 of Fig. S8.

2 We used the author’s official implementation available at https://github.com/

yunjey/stargan

Making Sense of CNNs 17

input
method

hair glasses gender beard age smiling
x e1 e2 e3 e4 e5 e6

our

[8]

our

[8]

our

[8]

our

[8]

our

[8]

our

[8]

Fig. S8. Additional examples corresponding to Fig. 7. In each column, we replace a
semantic factor ei(E(x)) by e∗i , which is obtained from another, randomly chosen, image
that differs in the corresponding attribute (see Sec. B.5). Subsequently we decode a
semantically modified image using the invertibility of e to obtain x̄∗ = D(e−1((e∗i))).
The results of StarGAN [8] are obtained by negating the binary value for the column’s
attribute. FID scores in Fig. S9.

18 R. Rombach et al.

input
method

hair glasses gender beard age smiling
x e1 e2 e3 e4 e5 e6

our

[8]

our

[8]

our

[8]

our

[8]

our

[8]

FID
our 16.24 24.97 15.17 12.84 13.21 12.96
[8] 20.94 41.27 20.04 19.88 21.77 14.47

Fig. S9. Additional examples as in Fig. S8. Moreover, the last row contains FID scores
[23] of semantically modified images obtained by our approach and [8], which shows
that our approach consistently outperforms [8].

Making Sense of CNNs 19

B.6 Effects of Data Shifts - Additional Results

Fig. S10. Shifting domains: Human faces to animal faces evaluated with a fixed
FaceNet. The evaluation procedure is similar to the method described in Fig. 3. Al-
though never trained on data consisting of something else than human faces, FaceNet
is able to capture the ”identity” of the input to a certain degree. Information about
appearance is approximately preserved until the last layer, i.e. the final identity em-
bedding.

Data Shift from Humans to Animals As an extension of Sec. 4.3, we run
an experiment on FaceNet and condition the invariance recovering model t on
five different representations of the model (see Tab. S12) by training t on Ani-
malFaces instead of CelebA and an autoencoder which is trained on both Ani-
malFaces and CelebA, c.f . Tab. S7 for details. Furthermore, note that FaceNet
is not re-trained on the new data and fixed during training, c.f . Fig. S3.

Fig. S10 depicts the visualized representations and corresponding learned in-
variances accross several layers of FaceNet. Evidently, even deep representations
of the off-domain input image may be visualized, at least as deep as the penulti-
mate layer (AdaAvgPool). Another interesting result is that FaceNet seems to
conserve class identity of the input to some degree: The appearance of samples
generated by conditioning on model representations is similar, to some extend
even for the last layer (identity embedding). This suggests that the model is
able to generalize to a surprisingly large margin of data, given the input images
show some kind of symmetry and perceptual similarity to human faces.

20 R. Rombach et al.

Fig. S11. Applying our approach to BigGAN [6]. We directly train t on latent codes
of the generator model, utilizing a simple variational autoencoder model for dequanti-
zation of discrete classes c. See Sec.B.6 for technical details.

Verifying the Texture-Bias Hypothesis In Section 4.3 we trained the INN
t conditioned on representations of ResNet-50 from the penultimate layer (i.e.
extracted before the final classification layer, c.f . Tab. S13) with the goal of
validating the texture-bias hypothesis from [18]. In their work, [18] showed that
typical convolutional neural classification networks are biased towards texture
when being trained on ImageNet. They proposed that this bias can be removed
by training the CNNs on a stylized version of ImageNet instead.

Following [49], we gained access to the dataset and a powerful decoder by
relying on a synthetic version of ImageNet, provided through the pre-trained gen-
erator of BigGAN [6].3 Thus, with Eq. (5) in mind, we identify the concatenated
vector (z̃,Wc)) as z̄. Here, R140 3 z̃ ∼ N (0,1) is sampled from a multivariate
normal distribution and c ∈ {0, 1}K is a one-hot vector representing one of the
K = 1000 ImageNet classes. W maps the one-hot class representation c to the
space of real numbers, i.e. Wc = h ∈ R128. Note that W is part of the BigGAN
generator DBIG and is thus also pre-trained. See Fig. S11 for a visual summaray
of the application of our approach to BigGAN. To avoid overfitting t on a single
dimension of z̄, the vector h is passed trough a small, fully connected variational
autoencoder before being concatenated with z̃ as z̄ = (z̃, h). The architecture
of this VAE is depicted in Tab. S17. Utilizing this approach can be interpreted
as a variant of deep dequantization. Equipped with a dequantized version of

3 We used a pretrained generator available at https://github.com/

LoreGoetschalckx/GANalyze

Making Sense of CNNs 21

Table S17. Architecture of the VAE used for dequantization when training solely on
synthetic BigGAN data. Here, a slope parameter of α = 0.01 is used in Leaky ReLU.

Embedding h ∈ R128

(FC, LReLU) → R4096

2× (FC, LReLU) → R4096

µ, σ2: for each:

(FC, LReLU) → R128

(FC, LReLU) → R4096

2× (FC, LReLU) → R4096

(FC, LReLU) → R128

h ∈ R128 ∼ N (µ,diag(σ2))

(FC, LReLU) → R4096

3× (FC, LReLU) → R4096

(FC, LReLU) → R128

z̄ = (z̃, h) and corresponding images x = DBIG(z̄), we trained t as described in
Sec. 3.1.

Additional samples conditioned on representations of (i) a ResNet-50 trained
on standard ImageNet and (ii) a ResNet-50 trained on the stylized version of Ima-
geNet are provided in Fig. S12. These results further confirm the texture&shape-
bias of (i) and the reverse behavior for (ii). Line 7 and 8 explicitly show that
a texture-agnostic classifier can be used to create new content based on input
sketches or cartoons.

Furthermore, note that both models perform reasonably well on the domain
of natural images, c.f . line 1-2 of Tab. S12.

22 R. Rombach et al.

samples x̄ = D(t−1(v|z)) conditioned on ResNet pre-logits z = Φ(x)

inputs
Φvanilla: ResNet-50 trained on Φstylized: ResNet-50 trained on

standard ImageNet stylized ImageNet

Fig. S12. Texture bias: Additional examples for representation-conditional samples of
two variants of ResNet-50, one trained on standard ImageNet, the other on a stylized
version of ImageNet. See also Tab. 6.

Making Sense of CNNs 23

Fig. S13. More visualizations of adversarial attacks as in Fig. 5. Predictions of original
vs. attacked version of the input image for all depicted examples: top left: ‘Lycaon
pictus’ vs. ‘Cuon alpinus’; top right: ‘Snow Leopard’ vs. ‘Leopard’; bottom left: ‘West
Highland white Terrier’ vs. ‘Yorkshire Terrier’; bottom right: ‘Blenheim Spaniel’ vs.
‘Japanese Spaniel’.

24 R. Rombach et al.

References

1. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep rep-
resentations. The Journal of Machine Learning Research 19(1), 1947–1980 (2018)

2. Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E.W., Klessen, R.S.,
Maier-Hein, L., Rother, C., Köthe, U.: Analyzing inverse problems with invertible
neural networks (2018)

3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7), e0130140 (2015)

4. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection:
Quantifying interpretability of deep visual representations. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (Jul 2017).
https://doi.org/10.1109/cvpr.2017.354, http://dx.doi.org/10.1109/CVPR.2017.
354

5. Bau, D., Zhu, J.Y., Strobelt, H., Zhou, B., Tenenbaum, J.B., Freeman, W.T.,
Torralba, A.: Gan dissection: Visualizing and understanding generative adversarial
networks (2018)

6. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

7. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for
recognising faces across pose and age. In: 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018). pp. 67–74. IEEE (2018)

8. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified gener-
ative adversarial networks for multi-domain image-to-image translation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018)

9. Commission, E.: On artificial intelligence - a european approach to excellence and
trust. Tech. rep. (2020 (accessed February, 2020)), https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=COM:2020:65:FIN

10. Dai, B., Wipf, D.: Diagnosing and enhancing vae models (2019)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

12. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp (2016)

13. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks (2016)

14. Esser, P., Haux, J., Ommer, B.: Unsupervised robust disentangling of latent
characteristics for image synthesis. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) (Oct 2019). https://doi.org/10.1109/iccv.2019.00279,
http://dx.doi.org/10.1109/ICCV.2019.00279

15. Esser, P., Rombach, R., Ommer, B.: A disentangling invertible interpretation net-
work for explaining latent representations. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 9223–9232 (2020)

16. Fong, R., Vedaldi, A.: Net2vec: Quantifying and explaining how con-
cepts are encoded by filters in deep neural networks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Jun 2018).
https://doi.org/10.1109/cvpr.2018.00910, http://dx.doi.org/10.1109/CVPR.

2018.00910

Making Sense of CNNs 25

17. Fong, R., Vedaldi, A.: Net2vec: Quantifying and explaining how concepts are en-
coded by filters in deep neural networks. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 8730–8738 (2018)

18. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

19. Goetschalckx, L., Andonian, A., Oliva, A., Isola, P.: Ganalyze: Toward visual def-
initions of cognitive image properties. arXiv preprint arXiv:1906.10112 (2019)

20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

21. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. AI Magazine 38(3), 50–57 (Oct 2017).
https://doi.org/10.1609/aimag.v38i3.2741, http://dx.doi.org/10.1609/aimag.

v38i3.2741

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

23. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium (2017)

24. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016)

25. Jacobsen, J.H., Behrmann, J., Zemel, R., Bethge, M.: Excessive invariance causes
adversarial vulnerability (2018)

26. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

27. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-
tions. In: Advances in Neural Information Processing Systems. pp. 10215–10224
(2018)

28. Kotovenko, D., Sanakoyeu, A., Lang, S., Ommer, B.: Content and style disentan-
glement for artistic style transfer. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) pp. 4421–4430 (2019)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

30. Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convolutional in-
verse graphics network (2015)

31. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

32. LeCun, Y.: Learning invariant feature hierarchies. In: European conference on com-
puter vision. pp. 496–505. Springer (2012)

33. Li, Y., Singh, K.K., Ojha, U., Lee, Y.J.: Mixnmatch: Multifactor disentanglement
and encoding for conditional image generation (2019)

34. Lipton, Z.C.: The mythos of model interpretability (2016)
35. Liu, M.Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-

shot unsupervised image-to-image translation. arXiv preprint arXiv:1905.01723
(2019)

36. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (December
2015)

26 R. Rombach et al.

37. Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem,
O.: Challenging common assumptions in the unsupervised learning of disentangled
representations (2018)

38. Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disen-
tangling of object shape and appearance. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) pp. 10947–10956 (2019)

39. Mahendran, A., Vedaldi, A.: Visualizing deep convolutional neural networks using
natural pre-images. International Journal of Computer Vision 120(3), 233–255
(2016)

40. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence 267, 1–38 (2019)

41. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recog-
nition 65, 211–222 (2017)

42. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understand-
ing deep neural networks. Digital Signal Processing 73, 1–15 (2018)

43. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural net-
works (2015)

44. Nash, C., Kushman, N., Williams, C.K.: Inverting supervised representations with
autoregressive neural density models. In: The 22nd International Conference on
Artificial Intelligence and Statistics. pp. 1620–1629 (2019)

45. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks (2016)

46. Plumb, G., Al-Shedivat, M., Xing, E., Talwalkar, A.: Regularizing black-box models
for improved interpretability (2019)

47. Redlich, A.N.: Supervised factorial learning. Neural Computation 5(5), 750–766
(1993). https://doi.org/10.1162/neco.1993.5.5.750

48. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and ap-
proximate inference in deep generative models. In: Proceedings of the 31st Inter-
national Conference on International Conference on Machine Learning-Volume 32.
pp. II–1278. JMLR. org (2014)

49. Rombach, R., Esser, P., Ommer, B.: Network fusion for content creation with
conditional inns (2020)

50. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: Un-
derstanding, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296 (2017)

51. Santurkar, S., Tsipras, D., Tran, B., Ilyas, A., Engstrom, L., Madry, A.: Image
synthesis with a single (robust) classifier (2019)

52. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

53. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Ba-
tra, D.: Grad-cam: Visual explanations from deep networks via gradient-
based localization. International Journal of Computer Vision 128(2), 336–359
(Oct 2019). https://doi.org/10.1007/s11263-019-01228-7, http://dx.doi.org/10.
1007/s11263-019-01228-7

54. Shocher, A., Gandelsman, Y., Mosseri, I., Yarom, M., Irani, M., Freeman,
W.T., Dekel, T.: Semantic pyramid for image generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2020)

Making Sense of CNNs 27

55. Simon, M., Rodner, E.: Neural activation constellations: Unsupervised part
model discovery with convolutional networks. 2015 IEEE International Conference
on Computer Vision (ICCV) (Dec 2015). https://doi.org/10.1109/iccv.2015.136,
http://dx.doi.org/10.1109/ICCV.2015.136

56. Simon, M., Rodner, E., Denzler, J.: Part detector discovery in deep convolutional
neural networks. ArXiv abs/1411.3159 (2014)

57. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

58. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks (2013)

59. Upchurch, P., Gardner, J., Pleiss, G., Pless, R., Snavely, N., Bala, K., Weinberger,
K.: Deep feature interpolation for image content changes. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7064–7073 (2017)

60. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a comprehen-
sive evaluation of the good, the bad and the ugly. IEEE transactions on pattern
analysis and machine intelligence 41(9), 2251–2265 (2018)

61. Xiao, Z., Yan, Q., Amit, Y.: Generative latent flow (2019)
62. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural

networks through deep visualization (2015)
63. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

Lecture Notes in Computer Science p. 818–833 (2014)
64. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 8827–8836 (2018)

65. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

66. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors
emerge in deep scene cnns (2014)

67. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Jun 2016). https://doi.org/10.1109/cvpr.2016.319,
http://dx.doi.org/10.1109/CVPR.2016.319

