Deep Image Compression using Decoder Side
Information

Sharon Ayzik and Shai Avidan

Dept. of Electrical Engineering
Tel Aviv University
ayziksha@mail.tau.ac.il , avidan@eng.tau.ac.il

Abstract. We present a Deep Image Compression neural network that
relies on side information, which is only available to the decoder. We
base our algorithm on the assumption that the image available to the
encoder and the image available to the decoder are correlated, and we
let the network learn these correlations in the training phase.

Then, at run time, the encoder side encodes the input image without
knowing anything about the decoder side image and sends it to the de-
coder. The decoder then uses the encoded input image and the side
information image to reconstruct the original image.

This problem is known as Distributed Source Coding (DSC) in Informa-
tion Theory, and we discuss several use cases for this technology. We com-
pare our algorithm to several image compression algorithms and show
that adding decoder-only side information does indeed improve results.
Our code is publicly available *.

Keywords: Deep Distributed Source Coding, Deep Neural Networks,
Deep Learning, Image Reconstruction

Without ST 0.03199 bpp With SI (ours) 0.03019 bpp

Fig. 1: Reconstruction from very low bits per pixel (bpp). Our method that use
an additional Side Information (SI) image in the decoders’ side can restore fine
details as well as colors and textures that vanished as a result of the aggressive
compression rate. Note the small red car, the crosswalk, the building to the back
right side with the blue vehicle, and even the trees textures.

'Our code is available at: https://github.com/ayziksha/DSIN

2 S. Ayzik and S. Avidan

1 Introduction

Deep Image Compression uses Deep Neural Networks (DNN) for image com-
pression. Instead of relying on handcrafted representations to capture natural
image statistics, DNN methods learn this representation directly from the data.
Recent results show that indeed they perform better than traditional methods.

Ultimately, there is a limit to the compression rate of all methods, that is
governed by the rate-distortion curve. This curve determines, for any given rate,
what is the minimal amount of distortion that we must pay. We can break this
barrier by introducing side information that can assist the network in compress-
ing the target image even further.

Figure 1 gives an example of results obtained by our system. The left image
shows the results of a state-of-the-art deep image compression algorithm. The
right image shows the results of our method that relies on side information. As
can be seen, our method does a better job of restoring the details.

One can catalogue image compression schemes into three classes (see Fig-
ure 2). The first (top row) is a standard image compression scheme. Such a
network makes no use of side information, and the trade-off is governed by the
rate-distortion curve of the image.

Deep Video Compression (second row in Figure 2) goes one step further and,
in addition to natural image statistics, also relies on previous frames as side in-
formation that is available to both the encoder and the decoder. The availability
of this side information improves the compression ratio of video compared to
images. The limit of this scheme is bounded by the conditional probability of
the current frame given previous frames. This works well when the two frames
are correlated, as is often the case in video.

We consider a different scenario in which the side information is only avail-
able at the decoder side (third row of Figure 2). This is different from deep
video compression, where side information is available both to the decoder and
the encoder. It turns out that even in this case, the compression scheme can
benefit from side information. That is, DSC can, in theory, achieve the same
compression ratios as deep video compression, even though the side information
is not available to the encoder. But when does this scenario occur in practice?

It turns out that this DSC scenario occurs quite frequently, and here are
a couple of examples. Consider the case of a camera array. For simplicity, we
focus on a stereo camera, which is the simplest of camera arrays. The left and
right cameras of the stereo pair are each equipped with a micro-controller that
captures the image from the camera, compresses it, and sends it to the host
computer. Since both cameras capture the same scene at the same time, their
content is highly correlated with each other. But since the left and right cam-
eras do not communicate, they only communicate with the host computer and
can not use the fact that they capture highly correlated images to improve the
compression ratio. This puts a heavy burden on the host computer, which must
capture two images in the case of stereo camera and many more in the case of a
camera array.

Deep Image Compression using Decoder Side Information 3

(a) X —>{ Encoder Decoder —>X
(b) @j;{ Encoder Decoder —>X
(¢) X —> Encoder Decoder —>X

(0% !

Fig. 2: Different compression schemes. (a) Single image encoding-decoding. (b)
Video coding: joint encoding-decoding. The successive frame Y is used as side in-
formation. (c) Distributed source coding - image X is encoded and then decoded
using correlated side information image Y .

Now suppose that the left camera transmitted its image to the host com-
puter and the right camera as well. Then the right camera can encode its image
conditioned on the left image and transmit fewer bits to the host computer. This
reduces the burden on the host computer at the cost of sending the left image
to the right camera. Distributed Source Coding theory tells us that we do not
have to transmit the image from the left camera to the right camera at all, and
still achieve the same compression ratio. When considering a camera array with
multiple cameras, the savings can be substantial.

Camera arrays are assumed to be calibrated and synchronized, but we can
take a much more general approach. For example, a group of people taking
pictures of some event is a common occurrence nowadays. We can treat that as
a distributed, uncalibrated, and unsynchronized camera array. Instead of each
person uploading his images to the cloud, we can pick, at random, a reference
person to upload his images to the cloud and let the rest of the people upload
their images conditioned on the reference images.

Taking this idea one step further, we envision a scenario in which before
uploading an image to the cloud, we will first transmit the camera’s position
and orientation (information that is already collected by smartphones). As a
result, the cloud will be able to select existing images that are only stored in the
cloud to use as side information.

Our approach is using recent advances in deep image compression, where we
add side information to the decoder side. During training, we provide the network
with pairs of real-world, correlated images. The network learns to compress the
input image, and then add the side information image to help restore the original
image. At inference time, the encoder is used for compressing the image before
transmitting it. The rest of the network, which lies at the receiver side, is used
by the decoder to decode the original image, using the compressed image and
the side information image. To the best of our knowledge, this is the first time
Deep Learning is used for DSC in the context of image compression.

4 S. Ayzik and S. Avidan

We evaluate our system on two versions of the KITTI dataset that are de-
signed to simulate some of the scenarios described earlier. In the first, we use the
KITTT Stereo dataset to simulate the scenario of a camera array (in this case, a
stereo camera). In the second case, we use pairs of images from the KITTI Stereo
dataset that are taken several frames apart. This case is designed to simulate
the scenario where an image is uploaded to the cloud, and some other image,
from the same location, is used as side information.

Our experiments show that using the side information can help reduce the
communication bandwidth by anywhere between 10% and 50%, depending on
the distortion level and the correlation between the side information image and
the image to be compressed.

2 Related work

Deep compression: Using DNN in many applications has gained much popu-
larity in recent years, the same goes for the task of image compression. Common
usage of DNN for the task of compression are RNNs [28,29] and auto-encoders
[36,4,19]. The networks are usually designed in an end-to-end manner, aiming
to minimize the final loss on the decompressed image.

Toderici et al. [28,29] used progressive image compression techniques and
tested various types of recurrent neural networks to create a hybrid network
that extracts a binary representation code using an entropy coder. Ballé et al.
[4] used quantization rather than binarization. Theis et al. [27] use a simple ap-
proximation to replace the rounding-based quantization, in addition to bounding
the discrete entropy loss. And Mentzer et al. [19] use an auto-encoder and a con-
text model that learns to asses the distribution of the bitstream in addition to
an importance map to improve performance.

Recent work by Agustsson et al. [3] suggests using GAN based architecture to
break the rate-distortion bounds. They encode the image with fewer bits than
what is dictated by the rate-distortion curve. Then they use a GAN, on the
decoder side, to synthesize a similar image that is visually pleasant.

Building on the success of Deep image compression schemes, we witnessed
the emergence of Deep video compression schemes. Early work replaced various
steps in the video compression scheme with a DNN counterpart. For example,
Lu et al. [18] use a deep network to remove compression artifacts in the post-
processing step. Tsai et al. [30] use an auto-encoder to compress the residuals
of an H.264 encoder. Wu et al. [34] treat video compression as a repeated image
interpolation and build a full network for that. Recently, Lu et al. [18] proposed
a network that replaces all the components of a video encoder with a single
end-to-end architecture.

Distributed Source Coding: Distributed Source Coding (DSC) started with
the groundbreaking result of Slepian-Wolf [25,10] who proved that it is possible
to encode a source X given a correlated source Y even if Y is only available to
the decoder side. This result applied to the lossless case and was later extended

Deep Image Compression using Decoder Side Information 5

by Wyner-Ziv [35] to the lossy case by first quantizing the continuous signal and
then applying the Slepian-Wolf theorem.

Although the theory of DSC dates back to the ’70s, it was only 30 years
later that its first practical implementation was presented. One of the most
important works was done by Pradhan and Ramchandran - Distributed Source
Coding Using Syndromes (DISCUS) [23]. They presented a practical framework
for the asymmetric case of source coding with side information at the decoder,
based on sending the syndrome of the code-word coset for statistically dependent
binary and Gaussian sources.

Much of the work on DSC was in the context of light-weight video com-
pression. That is, instead of running a standard video compression scheme (i.e.,
MPEG) that requires motion estimation on the encoder side [17], DSC offers the
possibility of shifting the computational load from the encoder to the decoder.
This scheme is useful, for example, in the case of a smartphone that needs to send
a video to the cloud. For example, Girod et al. 2,1, 12] focused on Distributed
Video Coding (DVC). The video sequence was split to odd and even frames,
the odd frames were used as side information at the decoder while Wyner-Ziv
coding was applied to the even frames.

In [31, 8] the authors apply DSC to stereo images, in which one encoded image
is decoded with reference to side information derived from disparity-compensated
versions of the other image with the additional use of gray code.

3 Deep Distributed Source Coding For Images

Toy Example: To gain some intuition into the DSC problem, consider the
following toy example. Suppose X and Y are two 8-bit gray-scale images that
are known to be aligned such that pixel X(i) corresponds to pixel Y (i). Assume
image X is available to the encoder on the smartphone, and image Y is avail-
able to the decoder in the cloud. Transmitting X to the cloud requires 8-bits
per pixel. But what if the corresponding pixels, X(i);Y (i) are correlated? For
example, they satisfy the following correlation: jX (i) Y (i)j 3. How can we
take advantage of this correlation? A moment of thought shows that given Y (i),
X(i) can only take seven different values, so we should hope to encode X(i)
using only 3 bits and not 8.

How can we do this in practice? Here is a numerical example. Let X (i) = 110
and Y (i) = 113. Consider the following DSC scheme: the encoder computes
6 = mod(X(i); 8) and sends the number 6 to the cloud using only 3 bits. The
modulo operation created a coset f6; 14; 22; :::; 102; 110; 118; :::; 2549 of pixel val-
ues. Every element X of this coset satisfy the constraint that mod(x;8) = 6.
And, by construction, the minimal distance between any pair of elements in the
coset is at least 8. Given these facts, the decoder knows that the unknown X(i)
must be one of the elements in the coset. It also knows that jX(i) Y (i)j 3.
Given that Y (i) = 113, the decoder can deduce that X(i) must be 110. We have
encoded X using only 3 bits per pixel, instead of 8. Observe that the encoder

6 S. Ayzik and S. Avidan

did not know the value of pixel Y (i) that is only available to the decoder. The
prior information on the correlation between the two images is sufficient.

DSC for images: DSC was applied to video compression, where successive
frames are almost aligned. This near alignment was enough to assume that
patches in successive frames that are in the same location in the image plane
are correlated. Applying DSC to video compression did not get traction because
the side information (i.e., previous frame in the case of video) is known to the
encoder as well as the decoder.

Here, we consider the case where the two images are taken by two di erent
cameras at slightly different time steps. We assume that one camera uploads its
image to the cloud and then let the other camera upload its image conditioned on
the other image without ever having access to that image. The shift in space and
time is enough to render the alignment assumption useless. We can no longer
assume that the two images are aligned, nor that the layout of the images is
similar. For example, we would like two images containing a house next to a tree
to be correlated even if the tree is to the right of the house in one image, and is
to the left in the other.

One way to address this challenge is to break the two images into patches
and use patches to measure the correlation between the images. But this raises a
new problem- instead of having one (image) X and one (image) Y , we now have
multiple (patches) X and multiple (patches) Y. Now, if we use the coset trick,
then we don’t know which patch in Y to use since the images are not aligned.

We have conflicting demands. On the one hand, we need to transmit sufficient
information about a patch in X, to allow the decoder to pick the correlated patch
in Y. On the other hand, we only wish to transmit a code for the coset and let
the decoder use that, together with the corresponding patch in Y , to recover the
correct patch in X. We solve the DSC problem for images using DNN.

3.1 Architecture

The overall architecture of the network is given in Figure 3. The encoder has
access to the input image X, and the decoder has access to a correlated image
Y . Our architecture consists of two sub-networks, the first is an auto-encoder
designed for image compression and based on the model of Mentzer et al. [19].
It takes the input image X and produces the decoded image Xgec. The second
network takes the decoded image Xgec along with image Y and uses it to con-
struct a synthetic side information image Ysyn. The decoded image Xgec and
synthetic side information Ysyn are then concatenated and used to produce the
final output image X. The entire network, consisting of both sub-networks, is
trained jointly. Then, at inference time, the encoder uses the encoder part of the
auto-encoder sub-network, while the decoder uses the rest of the network.

It should be noted that the quantized latent vector Z of our auto-encoder
network is not designed to reconstruct the original image X, nor is it designed
to create a coset from which the decoder can recover the correct X. Its goal is
to provide sufficient information to construct a good synthetic image Y that,

Deep Image Compression using Decoder Side Information 7

‘,/ SkDecoder N

©

[-ineri‘
& — =0)

Autoencoder

Decoder [
H
1

Xdec

E
1~
m
=3
Q
o
o
]
=
L
32x3x3l1
32x3x312
[[32x3x314]
32x3x3116
[(32x3x3132) £
z
32x3x3164 | @
5>

Fig. 3: Our network’s architecture. The image X is encoded to Z and decoded
to the image Xgec using the auto-encoder model based on [19]. Xgec is used
to create Ysyn using the SI-Finder block that finds for each patch in Xgec, the
closest patch in Y . Xgec and Ysyn are concatenated (marked as) and forwarded
to the SI-Net block that outputs the final reconstruction - X. The SI-Net block
is based on [9] and uses convolution layers with increasing dilation rates that
approximate enlarged convolutions receptive field. C K K notation in the
SI-Net block refers to K K convolutions with C filters. The number following
the pipe indicates the rate of kernel dilation.

together with the decoded image Xgec, can be used to recover the final result
X. This means it should reconstruct an image Xgec that has sufficient details to
search for good patches in Y that are as correlated, as much as possible, with
their corresponding patches in X.

Formally, image compression algorithms encode an input image X to some
quantized latent representation Z from which they can decode a reconstructed
image Xgec. The goal of the compression is to minimize a distortion function.
The trade-off between compression rate and distortion is defined by:

dOX; X) + H(Z) (1)
where H(Z) is the entropy of Z (i.e., the bit cost of encoding Z), d(X; X) is the
distortion function and is a scalar that sets the trade-off between the two.
3.2 Using Side Information

We wish to minimize (1) given a correlated image Y that is only available to the
decoder. To do that, we wish to create an image Ysyn from Y that is aligned with
X. Let f encode the offset of every patch in Xgec to its corresponding patch in
Ygec, where Ygec is the result of passing Y through the auto-encoder:

f(i)Zarg}naxcorr((Xdec(D)); (Yaec())) (2)

where corr() is a correlation metric, (Xgec(i)) is the patch around pixel
Xdec(i). Then the synthetic image Ysyn is given by:

Ysyn(i) = Y (F(i)) 3)

8 S. Ayzik and S. Avidan

/ SI-Finder

S

Fig.4: SI-Finder block illustration. This block receives Xgec and Y images,
projects Y to the same plane as Xgec by passing Y through the auto-encoder
in inference mode to receive Ygec. Each non-overlapping patch in image Xgec is
compared to all possible patches in Ygec. The location of the maximum correla-
tion patch in Ygec is chosen, and the corresponding patch is taken from Y image.
Finally, the patch is placed in Ygyn in the corresponding Xgec patch location.

That is, Ysyn is a reconstruction of X from Y. We perform this reconstruction
step in the SI-Finder block, which is illustrated in Figure 4. It receives the
images Xgec and Y . We then pass Y through the auto-encoder to produce Ygec
(this is only done at inference mode, so the encoder does not learn anything
about Y). We do this since we found that matching Ygec with Xgec works better
than matching Y with Xgec. Then, the SI-Finder compares each non-overlapping
patch in Xgec to all possible patches in Ygec. This creates a (sparse) function
T that is used to create Ysyn from Y. It should be noted that the SI-Finder is
implemented as part of the network graph using CNN layers but is non-trainable
since the CNN kernels are the image Xgec-

Eventually we feed Xgec and Ysyn to the SI-Net block and let it try to recon-
struct X. Since we use concatenation of Xgec to the side information image Ysyn
during training, we must maintain a reconstruction loss over Xgec. Therefore,
the total rate-distortion trade-off from (1) is set to be:

(1) d(X; Xgec) + d(X;X)+ H(Z) (4)

where denotes the weight for the final system’s output X, and the total dis-
tortion weight sums to 1 in order to maintain the balance between the distortion
and the rate.

4 Experiments

In the following section, we discuss the datasets we use and the training proce-
dure in 4.1, and then present the results of our experiments in 4.2. A detailed
example regarding our chosen prior, images from our constructed dataset, and
additional visual results appear in the supplementary material.

