
Bridging the Sim-to-Real Gap: Unsupervised Learning
of Scene Structure for Synthetic Data Generation

Supplementary Material

Jeevan Devaranjan?1,3, Amlan Kar?1,2,4, and Sanja Fidler1,2,4

1NVIDIA 2University of Toronto 3University of Waterloo 4Vector Institute

In the Supplementary Material, we present all experimental details in Sec. 1 and show
additional qualitative results in Sec. 2.

1 Experimental Details

1.1 Loss gradient scale

We estimate the log ratio ln
qf
pf

using kernel density estimators. The magnitude of this
value can be large and lead to unstable training. We scale this value by 10−2. This
was chosen empirically in order to match the magnitude of the MMD. Since we have
λ = 10−2 in our original loss and rreject(F) is independent of F and dependent only on
the structure generation model we rewrite the loss gradient as

∇θL ≈ 10−2
(

1

M

m∑
j=1

(ln q̃f (ϕ(v
′
j))− ln p̃f (ϕ(v

′
j)))∇θ log qI(v′j) + 1(1,∞)(rreject)

)
where rreject is the rejection rate (rejections per successful sample) of the model when
sampling the m images in the batch.

1.2 Multi-MNIST

Feature Network Architecture: We use a ResNet architecture consisting of 6 resid-
ual blocks and 3 fully connected layers. We use the standard residual block consisting
of two 3x3 convolutions with batch normalization and leaky relu activations. Average
pooling is performed before passing the output to the fully connected layers. The fi-
nal fully-connected layer outputs a vector of dimension 10 which corresponding to the
logits for detecting whether a given digit class is in the scene. Since the Multi-MNIST
images are grayscale, we duplicate them across channels to create a 3-channel image.
The Multi-MNIST images are 256x256. The features used for training our structure
generation model come from the average pool layer and the first two fully connected
layers.

Structure Generation Model Architecture: The logits used for sampling are gener-
ated in an autoregressive fashion using an LSTM. The input of the LSTM is a one-hot
? authors contributed equally, work done during JD’s internship at NVIDIA

2 Devaranjan, Kar et al.

encoding of the previous rule index (70 dimensional, in the Multi-MNIST case). We
used a hidden dimension of 50 for the LSTM. The embedding of the one-hot encodings
are computing using a fully connected layer. The output of the LSTM is produced by a
fully connected layer which takes the hidden state of the LSTM as input and produces
the logits used for rule sampling.

Feature Network Training: We first sample 5000 prior structures and their correspond-
ing images, then train our feature network until we reach 75% accuracy on digit detec-
tions (around 10 epochs). We use the sigmoid cross entropy loss, and use the ADAM
optimizer with learning rate ε = 10−3, β1 = 0.9 and β2 = 0.999 with a batch size of
50.

Structure Generation Model Pre-Training: Using the 5000 prior structures generated
for training the feature network, we train our structure generation model to minimize
the negative log likelihood of the generated structures. This is done for 10 epochs using
the ADAM optimizer with learning rate ε = 10−3, β1 = 0.9 and β2 = 0.999 with a
batch size of 100.

Structure Generation Model Training: We train using 5000 target images. We use a
batch size of m = 500 and l = 500 for both the generated and real images. We train for
20 epochs. We use the ADAM optimizer with a learning rate of ε = 10−4, β1 = 0.9 and
β2 = 0.999. We also use a moving average baseline with α = 0.05 in order to reduce
the variance of the REINFORCE estimator.

1.3 Aerial 2D

Feature Network Architecture: We use the same feature network architecture as the
Multi-MNIST with the final fully connected layer producing a vector of dimension 100.
This vector is then split into 4 vectors of dimension 25 which correspond to the logits for
one hot encodings. The one hot encodings represent (ranging from 0 to 24) represent the
total number of objects of that class (cars, roads, trees and houses) in the scene. Aerial
images are 256x256. The features used for training our structure generation model come
from the average pool layer and the first two fully connected layers.

Feature Network Training: We first sample 5000 prior structures and their correspond-
ing images, then train our feature network until we reach 75% accuracy on car counting
and road counting while ignoring the accuracy figures for trees and houses. Our loss
function is the average of the cross entropy loss for each scene element. We use the
ADAM optimizer with learning rate ε = 10−3, β1 = 0.9 and β2 = 0.999.

Structure Generation Model Pre-Training: Using the 5000 prior structures generated
for training the feature network, we train our structure generation model to minimize
the negative log likelihood of the generated structures. This is done for 10 epochs using
the ADAM optimizer with learning rate ε = 10−3, β1 = 0.9 and β2 = 0.999 with a
batch size of 100.

Structure Generation Model Training: We train using 5000 target images only (no
structure ground truth). We use a batch size of m = 500 and l = 500 for both the
generated and real images. We train for 20 epochs. We use the ADAM optimizer with

Learning to Generate Synthetic Scene Structure for Sim-to-Real 3

a learning rate of ε = 10−4, β1 = 0.9 and β2 = 0.999. We also use a moving average
baseline with α = 0.05 in order to reduce the variance of the REINFORCE estimator.

1.4 3D Driving Scenes

Structure Generation Model Architecture: We use the same architecture as the previ-
ous experiments except we use 3 models in conjunction with three scenarios, as defined
by [4]. Each scenario has a slightly different grammar, as described below.

Scenario Grammars: Different grammars are used for each scenario following SDR.
The most general is the city scenario grammar

Scity → Street OuterL OuterR
Street→ Median Cars |Median Cars Cars | Cars Median Cars |

Cars Median Cars Cars | Cars Cars Median Cars |
Cars Cars Median Cars Cars

OuterL → Sidewalk Buildings Buildings Foliage
OuterR → Sidewalk Buildings Buildings Foliage

Cars→ car | ε | Cars
Foliage→ tree | ε | Foliage

Buildings→ building | ε | Buildings
Sidewalk→ pole | sign | pedestrian | object | bike | ε | Sidewalk

Median→ bush | object | tree | ε |M

The suburban grammar is a restriction of the city grammar, specifically having one
collection of buildings in the OuterL and OuterR non-terminals.

Ssuburban → Street OuterL OuterR
Street→ Median Cars |Median Cars Cars | Cars Median Cars |

Cars Median Cars Cars | Cars Cars Median Cars |
Cars Cars Median Cars Cars

OuterL → Sidewalk Buildings Foliage
OuterR → Sidewalk Buildings Foliage

Cars→ car | ε | Cars
Foliage→ tree | ε | Foliage

Buildings→ building | ε | Buildings
Sidewalk→ pole | sign | pedestrian | object | bike | ε | Sidewalk

Median→ bush | object | tree | ε |M

4 Devaranjan, Kar et al.

The rural grammar is a further restriction with the addition of a shoulder instead of a
sidewalk

Srural → Street OuterL OuterR
Street→ Cars Median Cars | Cars Median Cars Cars |

Cars Cars Median Cars | Cars Cars Median Cars Cars
OuterL → Shoulder Foliage
OuterR → Shoulder Foliage

Cars→ car | ε | Cars
Foliage→ tree | ε | Foliage
Median→ ε

The Median non-terminal represents a grass or stone median that divides the left and
right portions of the street. Note that the order of non-terminals in a production rule
does not always reflection position on the scene but rather the order in sampling. The
position of a child object within its parent is decided by its parameters, that come from
either a prior or are learnt, using the method of [3].

Feature Network Architecture: We use the pool-3 layer of the inception-v3 network
pre-trained on imagenet as our feature network.

Structure Generation Model Pre-Training: We sample 2000 prior structures for each
scenario. We train the structure generation model of each scenario to minimize the neg-
ative log likelihood of the generated structures for the given scenario. This is done for
10 epochs using the default ADAM optimizer with a batch size of 100. We have two dif-
ferent priors for sampling structures. The prior from [3] and a simple prior. Both priors
have the same sampling procedure but differ in terms of the distribution. In general sam-
pling is done by sampling a random number of objects to be placed onto each container
(the containers being Street, Outer, Shoulder, Sidewalk and Median). The sampling
is done using a uniform distribution bounded by nmin and nmax which determine the
minimum and maximum number of objects in the container. In both priors the objects
(i.e pole, sign, bike) are sampled with equal probability with replacement from the set
of allowable objects in that specific container. An additional detail is determining the
number of lanes on the road and whether or not the scene has a Median container and
where should it be placed in the rural and urban scenarios. In both priors the number of
lanes is sampled uniformly from 1 to 4 and the probability of a road having a median
is 0.5. This can be interpreted as selecting a random production rule for the Street non
terminal. Where the priors differ is in their choices of (nmin, nmax) for each container.
In the prior from [3] the bounds are chosen to match the given scenario. For example
in the rural setting there is a large bound on the number of foliage while in the urban
setting it is smaller. Thus each container has a unique (nminnmax) that is determined by
the scenario. In the simple prior we restrict nmin = 0 and nmax = 2 for all containers in
all scenarios.

Structure Generation Model Training: We use a batch size of l = 300 for the
real images V = {v1, . . . , vl}. The real images are taken from the train split of the

Learning to Generate Synthetic Scene Structure for Sim-to-Real 5

KITTI dataset. To produce our generated batch we sample m = 100 images Bs =
{vs1, . . . , vsm} for each scenario s ∈ {city, suburban, rural}. We then get KDE estimates

p̃f (F) =
1

3m

∑
s

m∑
j=1

KH(F − ϕ(vsj)) q̃f (F) =
1

l

l∑
j=1

KH(F − ϕ(vj))

The gradient of the loss for a single structure generation model is given by

∇θLs ≈ 10−2
(

1

M

m∑
j=1

(ln q̃f (ϕ(v
s
j))− ln p̃f (ϕ(v

s
j)))∇θ log qI(vsj) + 1(1,∞)(r

s
reject)

)
so the densities are calculated using the whole generated set but only use images gener-
ated by that scenario for the REINFORCE sample. We use the ADAM optimizer with
learning rate ε = 10−4, β1 = 0.9 and β2 = 0.999. We train for 5 epochs and use a mov-
ing average baseline with α = 0.05 in order to reduce the variance of the REINFORCE
estimator.

Mask-RCNN Training: We train a Mask-RCNN [2]1 network on a generated train-
ing set and then test on the KITTI validation set [1]. In both the original and simple
prior experiments we produce the generated image set by generating 10K samples for
each experiment setting, with the scenario being chosen uniformly. For training, we
render images with random saturation and contrast, which we observed to work bet-
ter. Both the good prior and simple prior have 3 experiment settings which correspond
to the rows of the Tab. 1 and 2. The training procedure for both experiments is the same.

First, we train on 10K samples from the probabilistic grammar. We use the ADAM
optimizer with learning rate ε = 10−3, β1 = 0.9 and β2 = 0.999 with a batch size of
2. We finetune every row of Tab. 1 and Tab. 2 from the previous row. For the next two
rounds (corresponding to the second and third rows of Tab. 1 and 2), we use learning
rates of 5 ∗ 10−4 and 10−4.

2 Additional Qualitative Results

We show additonal generated images for the simple prior experiment in Fig. 1. Notice
how the prior images (left) are mostly empty, while our learnt generated images have
a structure that matches the real images much better. We notice that our method is
restricted by the quality of the grammar, and therefore cannot generate structures such
as parking side lanes (Row 5 KITTI Image) or intersections (Row 7.11 KITTI image)
etc. With more work on writing a grammar, we hope to learn much better structures to
cover more scenarios. Training for data generation is still very important after the effort
on making the grammar, since for different downstream domains (such as driving in
different countries), the target dataset can change drastically and appropriate synthetic
data must be generated, where learning can help mitigate long cycles of careful tuning
of scene parameters by humans.

1 Using code from: https://github.com/facebookresearch/maskrcnn-benchmark

6 Devaranjan, Kar et al.

Fig. 1. Random generated samples from the simple prior experiment. (Left) Using both the struc-
ture and parameter prior, (Middle) Using our learnt structure and parameters and (Right) random
KITTI images Note: images in the same row are not correlated

Learning to Generate Synthetic Scene Structure for Sim-to-Real 7

References
1. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for Autonomous Driving? The KITTI Vision

Benchmark Suite. In: CVPR (2012) 5
2. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE inter-

national conference on computer vision. pp. 2961–2969 (2017) 5
3. Kar, A., Prakash, A., Liu, M.Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D., Torralba,

A., Fidler, S.: Meta-sim: Learning to generate synthetic datasets. In: ICCV (2019) 4
4. Prakash, A., Boochoon, S., Brophy, M., Acuna, D., Cameracci, E., State, G., Shapira, O.,

Birchfield, S.: Structured domain randomization: Bridging the reality gap by context-aware
synthetic data. In: arXiv:1810.10093 (2018) 3

